首页 > 最新文献

Journal of Composites Science最新文献

英文 中文
Preliminary Investigations and Support for the Mechanical and Dynamic Characteristics of a Natural Rubber Reinforcement in E-Glass/CNT/Epoxy Composite 对电子玻璃/碳纳米管/环氧树脂复合材料中天然橡胶增强材料的机械和动态特性的初步研究和支持
Pub Date : 2024-04-10 DOI: 10.3390/jcs8040140
Selvaraj Anidha, Santhosh Mozhuguan Sekar, Elango Natarajan, M. Muthukkumar, K. Markandan, C. Ang, Gérald Franz
The present investigation reports the synthesis and mechanical properties of a hybrid polymer composite consisting of E-Glass fiber, epoxy and 2 wt.% carbon nanotubes (CNTs) with a varying percentage of natural rubber (NR). The prepared hybrid polymer composites were examined in terms of their surface morphology, thermal properties as well as mechanical properties. The findings from the present study indicate that natural rubber enhances the mechanical properties of the hybrid polymer composites and, in particular, 10 wt.% is the optimum percentage of NR that yields the highest strength of 88 MPa, while the strength is 52 MPa with 5 wt.% NR. In order to evaluate the damping properties, a dynamic mechanical analysis was carried out on the E-Glass/CNT with NR composites at various frequencies along with a thermogravimetric analysis. It was found that the composite reinforced with 10 wt.% natural rubber exhibited a higher glass transition temperature of 376.86 °C and storage modulus of 2468 MPa when compared to the other composites, which indicates the enhanced cross-linking density and higher polymer modulus of the composite. X-ray diffraction analysis was also conducted and the results are reported to improve the general understanding of crystalline phases.
本研究报告介绍了由电子玻璃纤维、环氧树脂和 2 wt.% 的碳纳米管(CNTs)以及不同比例的天然橡胶(NR)组成的杂化聚合物复合材料的合成和机械性能。研究人员对制备的混合聚合物复合材料的表面形态、热性能和机械性能进行了检测。本研究的结果表明,天然橡胶提高了杂化聚合物复合材料的机械性能,特别是 10 wt.% 的天然橡胶是产生 88 MPa 最高强度的最佳比例,而 5 wt.% 的天然橡胶的强度为 52 MPa。为了评估阻尼特性,在不同频率下对 E-Glass/CNT 与 NR 复合材料进行了动态机械分析,并进行了热重分析。结果发现,与其他复合材料相比,用 10 wt.% 天然橡胶增强的复合材料显示出更高的玻璃化转变温度(376.86 °C)和存储模量(2468 兆帕),这表明该复合材料的交联密度更高,聚合物模量更大。此外,还进行了 X 射线衍射分析,并报告了分析结果,以增进对结晶相的总体了解。
{"title":"Preliminary Investigations and Support for the Mechanical and Dynamic Characteristics of a Natural Rubber Reinforcement in E-Glass/CNT/Epoxy Composite","authors":"Selvaraj Anidha, Santhosh Mozhuguan Sekar, Elango Natarajan, M. Muthukkumar, K. Markandan, C. Ang, Gérald Franz","doi":"10.3390/jcs8040140","DOIUrl":"https://doi.org/10.3390/jcs8040140","url":null,"abstract":"The present investigation reports the synthesis and mechanical properties of a hybrid polymer composite consisting of E-Glass fiber, epoxy and 2 wt.% carbon nanotubes (CNTs) with a varying percentage of natural rubber (NR). The prepared hybrid polymer composites were examined in terms of their surface morphology, thermal properties as well as mechanical properties. The findings from the present study indicate that natural rubber enhances the mechanical properties of the hybrid polymer composites and, in particular, 10 wt.% is the optimum percentage of NR that yields the highest strength of 88 MPa, while the strength is 52 MPa with 5 wt.% NR. In order to evaluate the damping properties, a dynamic mechanical analysis was carried out on the E-Glass/CNT with NR composites at various frequencies along with a thermogravimetric analysis. It was found that the composite reinforced with 10 wt.% natural rubber exhibited a higher glass transition temperature of 376.86 °C and storage modulus of 2468 MPa when compared to the other composites, which indicates the enhanced cross-linking density and higher polymer modulus of the composite. X-ray diffraction analysis was also conducted and the results are reported to improve the general understanding of crystalline phases.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"22 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140720377","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Radiation-Induced Defect Formation Kinetics in Inconel–Cu Multimetallic Layered Composites 因科镍钴铜多金属层状复合材料中辐射诱导的缺陷形成动力学
Pub Date : 2024-04-10 DOI: 10.3390/jcs8040139
Rajesh Ramesh, K. Momeni
This study investigates the stability of Inconel–Cu Multimetallic Layered Composites (MMLCs) in nuclear reactor applications using Molecular Dynamics simulations. The focus is on understanding the underlying mechanisms governing the properties of MMLCs for advanced nuclear reactors, specifically, the mechanochemistry of the interface between Inconel and copper alloys. The selection of Inconel–Cu MMLCs is primarily due to copper’s superior thermal conductivity, enhancing heat management within reactors by preventing hotspots and ensuring uniform temperature distribution. This research examines Incoloy 800H and two Inconel variants (718 and 625), assessing their stability at 1000 K after exposure to 10 keV collision cascades up to 0.12 dpa. Notable findings include defect clustering on the {1 2 0} family of planes of Inconel and Cu, with Stacking Faults and Lomer–Cottrell locks on the Inconel side.
本研究利用分子动力学模拟研究了因科镍钴铜多金属层状复合材料(MMLC)在核反应堆应用中的稳定性。重点是了解先进核反应堆用多金属层状复合材料特性的基本机制,特别是铬镍铁合金和铜合金界面的机械化学性质。选择 Inconel-Cu MMLCs 的主要原因是铜具有优异的导热性,可通过防止出现热点和确保温度分布均匀来加强反应堆内的热管理。本研究对 Incoloy 800H 和两种 Inconel 变体(718 和 625)进行了研究,评估了它们在 1000 K 温度下暴露于 10 keV 碰撞级联(最高达 0.12 dpa)后的稳定性。值得注意的发现包括铬镍铁合金和铜的{1 2 0}系列平面上的缺陷集群,以及铬镍铁合金一侧的堆叠断层和 Lomer-Cottrell 锁。
{"title":"Radiation-Induced Defect Formation Kinetics in Inconel–Cu Multimetallic Layered Composites","authors":"Rajesh Ramesh, K. Momeni","doi":"10.3390/jcs8040139","DOIUrl":"https://doi.org/10.3390/jcs8040139","url":null,"abstract":"This study investigates the stability of Inconel–Cu Multimetallic Layered Composites (MMLCs) in nuclear reactor applications using Molecular Dynamics simulations. The focus is on understanding the underlying mechanisms governing the properties of MMLCs for advanced nuclear reactors, specifically, the mechanochemistry of the interface between Inconel and copper alloys. The selection of Inconel–Cu MMLCs is primarily due to copper’s superior thermal conductivity, enhancing heat management within reactors by preventing hotspots and ensuring uniform temperature distribution. This research examines Incoloy 800H and two Inconel variants (718 and 625), assessing their stability at 1000 K after exposure to 10 keV collision cascades up to 0.12 dpa. Notable findings include defect clustering on the {1 2 0} family of planes of Inconel and Cu, with Stacking Faults and Lomer–Cottrell locks on the Inconel side.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"1994 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140719148","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical Investigation on the Capability of Modeling Approaches for Composite Cylinders under Low-Velocity Impact Loading 低速冲击载荷下复合材料圆柱体建模方法能力的数值研究
Pub Date : 2024-04-10 DOI: 10.3390/jcs8040141
Shiva Rezaei Akbarieh, D. Ma, C. Sbarufatti, A. Manes
Composite pressure vessels can be exposed to extreme loadings, for instance, impact loading, during manufacturing, maintenance, or their service lifetime. These kinds of loadings may provoke both visible and invisible levels of damage, e.g., fiber breakage matrix cracks and delamination and eventually may lead to catastrophic failures. Thus, the quantification and evaluation of such damages are of great importance. Considering the cost of relevant full-scale experiments, a numerical model can be a powerful tool for such a kind of study. This paper aims to provide a numerical study to investigate the capability of different modeling methods to predict delamination in composite vessels. In this study, various numerical modeling aspects, such as element types (solid and shell elements) and material parameters (such as interface properties), were considered to investigate delamination in a composite pressure vessel under low-velocity impact loading. Specifically, solid elements were used to model each layer of the composite pressure vessel, while, in another model, shell elements with composite layup were considered. Compared with the available experimental data from low-velocity impact tests described in the literature, the capability of these two models to predict both mechanical responses and failure phenomena is shown.
复合材料压力容器在制造、维护或使用寿命期间可能会受到极端载荷的影响,例如冲击载荷。这些载荷可能会引发可见和不可见的损伤,例如纤维断裂、基体裂纹和分层,最终可能导致灾难性的故障。因此,量化和评估此类损坏非常重要。考虑到相关全尺寸实验的成本,数值模型可以成为此类研究的有力工具。本文旨在提供一项数值研究,探讨不同建模方法预测复合材料容器分层的能力。在这项研究中,考虑了各种数值建模方面的因素,如元素类型(实体和壳体元素)和材料参数(如界面属性),以研究复合材料压力容器在低速冲击载荷下的分层问题。具体来说,复合材料压力容器的每一层都使用了实体元素建模,而在另一个模型中,则考虑了复合材料层叠的壳元素。与文献中描述的现有低速冲击试验数据相比,这两个模型都显示出预测机械响应和破坏现象的能力。
{"title":"Numerical Investigation on the Capability of Modeling Approaches for Composite Cylinders under Low-Velocity Impact Loading","authors":"Shiva Rezaei Akbarieh, D. Ma, C. Sbarufatti, A. Manes","doi":"10.3390/jcs8040141","DOIUrl":"https://doi.org/10.3390/jcs8040141","url":null,"abstract":"Composite pressure vessels can be exposed to extreme loadings, for instance, impact loading, during manufacturing, maintenance, or their service lifetime. These kinds of loadings may provoke both visible and invisible levels of damage, e.g., fiber breakage matrix cracks and delamination and eventually may lead to catastrophic failures. Thus, the quantification and evaluation of such damages are of great importance. Considering the cost of relevant full-scale experiments, a numerical model can be a powerful tool for such a kind of study. This paper aims to provide a numerical study to investigate the capability of different modeling methods to predict delamination in composite vessels. In this study, various numerical modeling aspects, such as element types (solid and shell elements) and material parameters (such as interface properties), were considered to investigate delamination in a composite pressure vessel under low-velocity impact loading. Specifically, solid elements were used to model each layer of the composite pressure vessel, while, in another model, shell elements with composite layup were considered. Compared with the available experimental data from low-velocity impact tests described in the literature, the capability of these two models to predict both mechanical responses and failure phenomena is shown.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"46 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140717572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Tailoring Basalt Fibers and E-Glass Fibers as Reinforcements for Increased Impact Resistance 定制玄武岩纤维和电子玻璃纤维作为增强材料以提高抗冲击性
Pub Date : 2024-04-09 DOI: 10.3390/jcs8040137
Elango Natarajan, Santhosh Mozhuguan Sekar, K. Markandan, C. Ang, Gérald Franz
The usage of basalt fiber in the engineering industries has gained significant interest due to its characteristics such as alkali resistance and enhanced mechanical properties. Similarly, E-glass-fiber-reinforced composites have been widely used in the fabrication of electrically resistive industrial components such as switches, circuit panels, and covering cases. In the present study, the tensile, flexural, thermogravimetric, and low-velocity impact characteristics of various percentages of basalt/E-glass-fiber-reinforced polymer composites fabricated via vacuum-assisted resin transfer molding were investigated. The results show that a higher volume percentage of basalt (39%) significantly enhances the impact resistance up to 45% with a moderate improvement in flexural properties. The higher the vol % of E-glass (40%), the more the tensile and flexural properties are increased, i.e., 185 N/mm2 and 227.87 N/mm2, respectively. It is concluded that by choosing the optimum hybridization method, impact resistance and other mechanical properties can be improved significantly. The thermogravimetric analysis results show that PC313534 (35 vol % basalt and 34 vol % E-glass) possesses the lowest decomposition temperature of 381.10 °C. The results from the present study indicate that the polymer composite fabricated in the present study is suitable for applications where higher structural-load-resistive properties are required.
由于玄武岩纤维具有耐碱性和更强的机械性能等特点,它在工程行业的应用已获得了极大的关注。同样,玻璃纤维增强复合材料也被广泛用于制造开关、电路板和外壳等电阻性工业部件。本研究调查了通过真空辅助树脂传递模塑法制造的不同比例的玄武岩/E 玻璃纤维增强聚合物复合材料的拉伸、弯曲、热重和低速冲击特性。结果表明,玄武岩的体积百分比越高(39%),抗冲击性就会显著提高 45%,弯曲性能也会有适度改善。E 玻璃的体积百分比越高(40%),拉伸和弯曲性能就越高,分别达到 185 牛顿/平方毫米和 227.87 牛顿/平方毫米。结论是,通过选择最佳的杂化方法,可以显著提高抗冲击性和其他机械性能。热重分析结果表明,PC313534(35 体积%玄武岩和 34 体积%E-玻璃)的分解温度最低,为 381.10 ℃。本研究的结果表明,本研究中制造的聚合物复合材料适用于需要较高抗结构荷载性能的应用领域。
{"title":"Tailoring Basalt Fibers and E-Glass Fibers as Reinforcements for Increased Impact Resistance","authors":"Elango Natarajan, Santhosh Mozhuguan Sekar, K. Markandan, C. Ang, Gérald Franz","doi":"10.3390/jcs8040137","DOIUrl":"https://doi.org/10.3390/jcs8040137","url":null,"abstract":"The usage of basalt fiber in the engineering industries has gained significant interest due to its characteristics such as alkali resistance and enhanced mechanical properties. Similarly, E-glass-fiber-reinforced composites have been widely used in the fabrication of electrically resistive industrial components such as switches, circuit panels, and covering cases. In the present study, the tensile, flexural, thermogravimetric, and low-velocity impact characteristics of various percentages of basalt/E-glass-fiber-reinforced polymer composites fabricated via vacuum-assisted resin transfer molding were investigated. The results show that a higher volume percentage of basalt (39%) significantly enhances the impact resistance up to 45% with a moderate improvement in flexural properties. The higher the vol % of E-glass (40%), the more the tensile and flexural properties are increased, i.e., 185 N/mm2 and 227.87 N/mm2, respectively. It is concluded that by choosing the optimum hybridization method, impact resistance and other mechanical properties can be improved significantly. The thermogravimetric analysis results show that PC313534 (35 vol % basalt and 34 vol % E-glass) possesses the lowest decomposition temperature of 381.10 °C. The results from the present study indicate that the polymer composite fabricated in the present study is suitable for applications where higher structural-load-resistive properties are required.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"43 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140723776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Dynamic Behavior and Permanent Indentation in S2-Glass Woven Fabric Reinforced Polymer Composites under Impact: Experimentation and High-Fidelity Modeling S2 玻纤织物增强聚合物复合材料在冲击下的动态行为和永久压痕:实验和高保真建模
Pub Date : 2024-04-09 DOI: 10.3390/jcs8040138
M. Rezasefat, Yogesh Kumar, Amanda AX da Silva, S. Amico, James D. Hogan, A. Manes
This paper studies the behavior of S2-glass woven fabric reinforced polymer composite under low-velocity impact at 18–110 J energy. A macro-homogeneous finite element model for the prediction of their response is implemented, considering the non-linear material behavior and intralaminar and interlaminar failure modes for the prediction of impact damage. The model accurately predicted the permanent indentation caused by impact. By applying the Ramberg-Osgood formulation, different initial stiffness values are examined to assess the post-impact unloading response. This approach reveals the significant role of initial stiffness in inelastic strain accumulation and its consequent effect on permanent indentation depth. A higher initial stiffness correlates with increased inelastic strain, influencing the impactor rebound and resulting in greater permanent indentation. By accurately predicting permanent indentation, and damage accumulation for different impact energies, this study contributes to a better understanding of the impact behavior of composite materials, thereby promoting their wider application.
本文研究了 S2 玻璃编织布增强聚合物复合材料在 18-110 J 能量的低速冲击下的行为。考虑到材料的非线性行为以及层内和层间破坏模式,建立了用于预测其响应的宏观均质有限元模型,以预测冲击破坏。该模型准确预测了冲击造成的永久压痕。通过应用 Ramberg-Osgood 公式,研究了不同的初始刚度值,以评估冲击后的卸载响应。这种方法揭示了初始刚度在非弹性应变累积中的重要作用及其对永久压痕深度的影响。初始刚度越大,非弹性应变就越大,从而影响冲击器的回弹,导致永久压痕越大。通过准确预测不同冲击能量下的永久压痕和损伤累积,本研究有助于更好地理解复合材料的冲击行为,从而促进其更广泛的应用。
{"title":"Dynamic Behavior and Permanent Indentation in S2-Glass Woven Fabric Reinforced Polymer Composites under Impact: Experimentation and High-Fidelity Modeling","authors":"M. Rezasefat, Yogesh Kumar, Amanda AX da Silva, S. Amico, James D. Hogan, A. Manes","doi":"10.3390/jcs8040138","DOIUrl":"https://doi.org/10.3390/jcs8040138","url":null,"abstract":"This paper studies the behavior of S2-glass woven fabric reinforced polymer composite under low-velocity impact at 18–110 J energy. A macro-homogeneous finite element model for the prediction of their response is implemented, considering the non-linear material behavior and intralaminar and interlaminar failure modes for the prediction of impact damage. The model accurately predicted the permanent indentation caused by impact. By applying the Ramberg-Osgood formulation, different initial stiffness values are examined to assess the post-impact unloading response. This approach reveals the significant role of initial stiffness in inelastic strain accumulation and its consequent effect on permanent indentation depth. A higher initial stiffness correlates with increased inelastic strain, influencing the impactor rebound and resulting in greater permanent indentation. By accurately predicting permanent indentation, and damage accumulation for different impact energies, this study contributes to a better understanding of the impact behavior of composite materials, thereby promoting their wider application.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"102 6","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140725780","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Evaluation of Benzene Adsorption onto Grass-Derived Biochar and Comparison of Adsorption Capacity via RSM (Response Surface Methodology) 通过 RSM(响应面方法学)评估草衍生生物炭对苯的吸附情况并比较吸附容量
Pub Date : 2024-04-05 DOI: 10.3390/jcs8040132
Yuhyeon Na, Seung Hyeon Weon, G. Lee, Hyung-Joo Kim, Sang Hyun Lee, Young-Hoo Kim, Ji Eun Kim, G. Kang, Saerom Park, Yong-Keun Choi
The present study reports the effective removal of benzene in aqueous phase onto biochar. The adsorption capacity of benzene onto biochars made at different pyrolytic temperatures (e.g., 350, 550, and 750 °C) and from various feedstocks (e.g., grape pomace, rice husk, and Kentucky bluegrass) were investigated. The adsorption capacity of Kentucky bluegrass-derived biochar (KB-BC) prepared at 550 °C for benzene was better than other biochars, owing to the higher surface area and functional groups. The adsorption isotherms and kinetics model for benzene by KB-BC550 fitted the Freundlich and pseudo-first order, respectively. In addition, the results of response surface methodology (RSM) designed with biochar dose, reaction time, and benzene concentration showed the maximum adsorption capacity (ca. 136 mg BZ/g BC) similar to that from kinetic study. KB-BCs obtained as waste grass biomass may be a valuable adsorbent, and RSM may be a useful tool for the investigation of optimal conditions and results.
本研究报告了生物炭有效去除水相中苯的情况。研究了不同热解温度(如 350、550 和 750 ℃)和不同原料(如葡萄渣、稻壳和肯塔基蓝草)制成的生物炭对苯的吸附能力。在 550 ℃ 下制备的肯塔基蓝草衍生生物炭(KB-BC)对苯的吸附能力优于其他生物炭,原因是其具有更高的表面积和官能团。KB-BC550 对苯的吸附等温线和动力学模型分别符合 Freundlich 和伪一阶。此外,根据生物炭剂量、反应时间和苯浓度设计的响应面方法(RSM)结果显示,最大吸附容量(约 136 毫克 BZ/g BC)与动力学研究结果相似。从废草生物质中获得的 KB-BCs 可能是一种有价值的吸附剂,RSM 可能是研究最佳条件和结果的有用工具。
{"title":"Evaluation of Benzene Adsorption onto Grass-Derived Biochar and Comparison of Adsorption Capacity via RSM (Response Surface Methodology)","authors":"Yuhyeon Na, Seung Hyeon Weon, G. Lee, Hyung-Joo Kim, Sang Hyun Lee, Young-Hoo Kim, Ji Eun Kim, G. Kang, Saerom Park, Yong-Keun Choi","doi":"10.3390/jcs8040132","DOIUrl":"https://doi.org/10.3390/jcs8040132","url":null,"abstract":"The present study reports the effective removal of benzene in aqueous phase onto biochar. The adsorption capacity of benzene onto biochars made at different pyrolytic temperatures (e.g., 350, 550, and 750 °C) and from various feedstocks (e.g., grape pomace, rice husk, and Kentucky bluegrass) were investigated. The adsorption capacity of Kentucky bluegrass-derived biochar (KB-BC) prepared at 550 °C for benzene was better than other biochars, owing to the higher surface area and functional groups. The adsorption isotherms and kinetics model for benzene by KB-BC550 fitted the Freundlich and pseudo-first order, respectively. In addition, the results of response surface methodology (RSM) designed with biochar dose, reaction time, and benzene concentration showed the maximum adsorption capacity (ca. 136 mg BZ/g BC) similar to that from kinetic study. KB-BCs obtained as waste grass biomass may be a valuable adsorbent, and RSM may be a useful tool for the investigation of optimal conditions and results.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"14 10","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140737576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Obtaining and Characterizing New Types of Materials Based on Low-Density Polyethylene and Thermoplastic Starch 获得并表征基于低密度聚乙烯和热塑性淀粉的新型材料
Pub Date : 2024-04-05 DOI: 10.3390/jcs8040134
M. Stelescu, O. Oprea, Ludmila Motelică, A. Ficai, Roxana Trusca, M. Sonmez, M. Nițuică, M. Georgescu
Significant interest is devoted to the development of new polymer blends by using concepts of the circular economy. Such materials have predetermined properties, are easy to recycle, ecological, and have a low carbon footprint. This research presents obtaining and characterization of polymer blends based on low-density polyethylene (LDPE) and thermoplastic starch (TPS). In the first stage, TPS was obtained through the gelatinization process, and, in the second stage, mixtures of LDPE and TPS were obtained through a melt mixing process at 150 °C for 7 min. The physical–mechanical characteristics of the samples, like hardness, elongation at break, rebound resilience, and tensile strength, were determined. The sample containing maleic anhydride grafted low-density polyethylene (LDPE-g-MA) as a compatibilizer shows improvements in elongation at break and tensile strength (by 6.59% and 40.47%, respectively) compared to the test sample. The FTIR microscopy maps show that samples containing LDPE-g-MA are more homogeneous. The SEM micrographs indicate that TPS-s is homogeneously dispersed as droplets in the LDPE matrix. From the thermal analysis, it was observed that both the degree of crystallinity and the mass loss at high temperature are influenced by the composition of the samples. The melt flow index has adequate values, indicating good processability of the samples by specific methods (such as extrusion or injection).
人们对利用循环经济概念开发新的聚合物混合物非常感兴趣。这些材料具有预先确定的特性,易于回收利用,生态环保,碳排放量低。本研究介绍了基于低密度聚乙烯(LDPE)和热塑性淀粉(TPS)的聚合物混合物的获得和表征。在第一阶段,TPS 通过糊化工艺获得;在第二阶段,LDPE 和 TPS 的混合物通过熔融混合工艺获得,混合温度为 150 ℃,混合时间为 7 分钟。测定了样品的物理机械特性,如硬度、断裂伸长率、回弹弹性和拉伸强度。与测试样品相比,含有马来酸酐接枝低密度聚乙烯(LDPE-g-MA)作为相容剂的样品的断裂伸长率和拉伸强度都有所提高(分别提高了 6.59% 和 40.47%)。傅立叶变换红外显微镜图显示,含有 LDPE-g-MA 的样品更均匀。扫描电镜显微照片显示,TPS-s 以液滴形式均匀地分散在 LDPE 基质中。热分析结果表明,结晶度和高温下的质量损失都受样品成分的影响。熔体流动指数具有适当的数值,表明样品可通过特定方法(如挤出或注射)进行加工。
{"title":"Obtaining and Characterizing New Types of Materials Based on Low-Density Polyethylene and Thermoplastic Starch","authors":"M. Stelescu, O. Oprea, Ludmila Motelică, A. Ficai, Roxana Trusca, M. Sonmez, M. Nițuică, M. Georgescu","doi":"10.3390/jcs8040134","DOIUrl":"https://doi.org/10.3390/jcs8040134","url":null,"abstract":"Significant interest is devoted to the development of new polymer blends by using concepts of the circular economy. Such materials have predetermined properties, are easy to recycle, ecological, and have a low carbon footprint. This research presents obtaining and characterization of polymer blends based on low-density polyethylene (LDPE) and thermoplastic starch (TPS). In the first stage, TPS was obtained through the gelatinization process, and, in the second stage, mixtures of LDPE and TPS were obtained through a melt mixing process at 150 °C for 7 min. The physical–mechanical characteristics of the samples, like hardness, elongation at break, rebound resilience, and tensile strength, were determined. The sample containing maleic anhydride grafted low-density polyethylene (LDPE-g-MA) as a compatibilizer shows improvements in elongation at break and tensile strength (by 6.59% and 40.47%, respectively) compared to the test sample. The FTIR microscopy maps show that samples containing LDPE-g-MA are more homogeneous. The SEM micrographs indicate that TPS-s is homogeneously dispersed as droplets in the LDPE matrix. From the thermal analysis, it was observed that both the degree of crystallinity and the mass loss at high temperature are influenced by the composition of the samples. The melt flow index has adequate values, indicating good processability of the samples by specific methods (such as extrusion or injection).","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"13 12","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140737937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Development of a Novel Lightweight Utility Pole Using a New Hybrid Reinforced Composite—Part 1: Fabrication and Experimental Investigation 使用新型混合增强复合材料开发新型轻质电线杆--第 1 部分:制造与实验研究
Pub Date : 2024-04-05 DOI: 10.3390/jcs8040136
Qianjiang Wu, Farid Taheri
This paper is the first part of a two-part paper that discusses the development of a novel lightweight and cost-effective hybrid 3D composite material and its and utilization for constructing utility poles. The main objective was to generate a material/pole with a comparable performance to the commercially available poles made of 2D fiber-reinforced polymer (FRP) and examine its feasibility. The novel hybrid composite was configured using a recently developed and marketed 3D E-glass fabric–epoxy composite reinforced with wood dowels, referred to as 3D dowel-reinforced FRPs (3D-drFRPs) hereafter. Firstly, the compressive and flexural properties of the 3D-drFRPs are evaluated. Then, the development of the 3D pole is discussed followed by the fabrication details of two 3D-drFRPs using the standard test method, and their responses are compared. For the second part, robust finite element (FE) models were developed in an LS-DYNA environment and calibrated based on the experimental results. A sophisticated nonlinear FE model was used to simulate the performances of ASTM standard-size compression and three-point bending specimens and tapered 2D and prismatic 3D poles. Moreover, the responses of equivalent 2D and 3D poles were simulated numerically, as the task could not be accommodated experimentally due to our laboratory’s deficiencies. The integrity of the numerical simulation results was validated against experimental results, confirming the accuracy of the developed model. As an example, the stiffness values for the 3-pt bending specimens and the 3D poles obtained through the simulations were very close to the experimentally obtained results, with small margins of errors of 3.2% and 0.89%, respectively. Finally, a simplified analytical calculation method was developed so practicing engineers can determine the stiffnesses of 3D-DrFRP poles very accurately and quickly.
本文由两部分组成,第一部分讨论了新型轻质、高性价比混合三维复合材料的开发及其在电线杆建造中的应用。主要目的是开发出一种性能与二维纤维增强聚合物(FRP)制成的商用电线杆相当的材料/电线杆,并研究其可行性。新型混合复合材料是使用最近开发并上市的一种用木榫加固的三维 E 玻璃纤维织物-环氧树脂复合材料(以下简称三维木榫加固玻璃钢(3D-drFRPs))制成的。首先,对 3D-drFRP 的抗压和抗弯特性进行了评估。然后,讨论了三维杆的开发,随后使用标准测试方法详细介绍了两种三维 drFRP 的制造,并对它们的响应进行了比较。第二部分是在 LS-DYNA 环境中开发稳健的有限元 (FE) 模型,并根据实验结果进行校准。复杂的非线性 FE 模型用于模拟 ASTM 标准尺寸压缩和三点弯曲试样以及锥形 2D 和棱柱形 3D 杆件的性能。此外,还对等效二维和三维杆的响应进行了数值模拟,因为我们的实验室条件有限,无法在实验中完成这项任务。数值模拟结果的完整性与实验结果进行了验证,证实了所开发模型的准确性。例如,通过模拟获得的 3pt 弯曲试样和 3D 极点的刚度值与实验结果非常接近,误差分别为 3.2% 和 0.89%。最后,我们还开发了一种简化的分析计算方法,以便工程师能够非常准确、快速地确定三维-DrFRP 杆件的刚度。
{"title":"Development of a Novel Lightweight Utility Pole Using a New Hybrid Reinforced Composite—Part 1: Fabrication and Experimental Investigation","authors":"Qianjiang Wu, Farid Taheri","doi":"10.3390/jcs8040136","DOIUrl":"https://doi.org/10.3390/jcs8040136","url":null,"abstract":"This paper is the first part of a two-part paper that discusses the development of a novel lightweight and cost-effective hybrid 3D composite material and its and utilization for constructing utility poles. The main objective was to generate a material/pole with a comparable performance to the commercially available poles made of 2D fiber-reinforced polymer (FRP) and examine its feasibility. The novel hybrid composite was configured using a recently developed and marketed 3D E-glass fabric–epoxy composite reinforced with wood dowels, referred to as 3D dowel-reinforced FRPs (3D-drFRPs) hereafter. Firstly, the compressive and flexural properties of the 3D-drFRPs are evaluated. Then, the development of the 3D pole is discussed followed by the fabrication details of two 3D-drFRPs using the standard test method, and their responses are compared. For the second part, robust finite element (FE) models were developed in an LS-DYNA environment and calibrated based on the experimental results. A sophisticated nonlinear FE model was used to simulate the performances of ASTM standard-size compression and three-point bending specimens and tapered 2D and prismatic 3D poles. Moreover, the responses of equivalent 2D and 3D poles were simulated numerically, as the task could not be accommodated experimentally due to our laboratory’s deficiencies. The integrity of the numerical simulation results was validated against experimental results, confirming the accuracy of the developed model. As an example, the stiffness values for the 3-pt bending specimens and the 3D poles obtained through the simulations were very close to the experimentally obtained results, with small margins of errors of 3.2% and 0.89%, respectively. Finally, a simplified analytical calculation method was developed so practicing engineers can determine the stiffnesses of 3D-DrFRP poles very accurately and quickly.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"23 7","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140737119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
The Polyurethane-Polystyrene Composite—Influence of the Blowing Agent Type on the Foaming Process, the Structure and the Properties 聚氨酯-聚苯乙烯复合材料--发泡剂类型对发泡过程、结构和性能的影响
Pub Date : 2024-04-05 DOI: 10.3390/jcs8040135
E. Malewska, A. Prociak, Natalia Świdzińska-Grela, M. Kurańska
In this study, polyurethane-polystyrene composites (RPURF-EPS) were obtained with the co-expansion method. This method consists of utilizing the heat of the exothermic reaction of polyurethane (PUR) formation to expand polystyrene beads (PSBs). The materials were obtained using polyurethane systems based on the selected blowing agents, such as cyclopentane, a mixture of fluorocarbons and water. The analysis of the foaming process was carried out using a special device called FOAMAT. The characteristic start, rise, gelation and curing times were defined. The rise profile, the reaction temperature, the pressure and the dielectric polarization were measured. The influence of selected blowing agents on the cell structure and physical–mechanical properties of reference rigid polyurethane foam (RPURF) and RPURF-EPS, such as apparent density, compressive strength and thermal conductivity, were evaluated. Based on the research, the blowing agents that have the most beneficial influence on the properties and structure of the composites and that provide the most efficient expansion of PSBs in a light porous composite were found.
本研究采用共同膨胀法获得了聚氨酯-聚苯乙烯复合材料(RPURF-EPS)。这种方法是利用聚氨酯(PUR)形成时放热反应的热量来膨胀聚苯乙烯珠(PSB)。这些材料是使用基于所选发泡剂(如环戊烷、碳氟化合物混合物和水)的聚氨酯系统获得的。使用一种名为 FOAMAT 的特殊装置对发泡过程进行了分析。确定了起始、上升、凝胶和固化时间的特征。测量了上升曲线、反应温度、压力和介电极化。评估了所选发泡剂对参考硬质聚氨酯泡沫(RPURF)和 RPURF-EPS 的泡孔结构和物理机械性能(如表观密度、抗压强度和导热性)的影响。研究结果表明,发泡剂对复合材料的性能和结构影响最大,并能使多孔轻质复合材料中的 PSB 得到最有效的扩展。
{"title":"The Polyurethane-Polystyrene Composite—Influence of the Blowing Agent Type on the Foaming Process, the Structure and the Properties","authors":"E. Malewska, A. Prociak, Natalia Świdzińska-Grela, M. Kurańska","doi":"10.3390/jcs8040135","DOIUrl":"https://doi.org/10.3390/jcs8040135","url":null,"abstract":"In this study, polyurethane-polystyrene composites (RPURF-EPS) were obtained with the co-expansion method. This method consists of utilizing the heat of the exothermic reaction of polyurethane (PUR) formation to expand polystyrene beads (PSBs). The materials were obtained using polyurethane systems based on the selected blowing agents, such as cyclopentane, a mixture of fluorocarbons and water. The analysis of the foaming process was carried out using a special device called FOAMAT. The characteristic start, rise, gelation and curing times were defined. The rise profile, the reaction temperature, the pressure and the dielectric polarization were measured. The influence of selected blowing agents on the cell structure and physical–mechanical properties of reference rigid polyurethane foam (RPURF) and RPURF-EPS, such as apparent density, compressive strength and thermal conductivity, were evaluated. Based on the research, the blowing agents that have the most beneficial influence on the properties and structure of the composites and that provide the most efficient expansion of PSBs in a light porous composite were found.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"8 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140739528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of the In-Plane Shear Behavior of and Process Influence on Uncured Unidirectional CF/Epoxy Prepreg Using Digital Image Correlation Analysis 利用数字图像相关分析确定未固化单向 CF/Epoxy 预浸料的平面内剪切行为及其工艺影响
Pub Date : 2024-04-05 DOI: 10.3390/jcs8040133
Hongfu Li, Haoxuan Zhang, Guangquan Yue, Boyu Guo, Ying Wu
The investigation of the in-plane shear behavior of prepreg is crucial for understanding the generation of wrinkles of preforms in advanced composite manufacturing processes, such as automated fiber placement and thermoforming. Despite this significance, there is currently no standardized test method for characterizing uncured unidirectional (UD) prepreg. This paper introduces a ±45° off-axis tensile test designed to assess the in-plane shear behavior of UD carbon fiber-reinforced epoxy prepreg (CF/epoxy). Digital image correlation (DIC) was employed to quantitatively track the strains in three dimensions and the shear angle evolution during the stretching process. The influences of the temperature and stretching rate on the in-plane shear behavior of the prepreg were further investigated. The results reveal that four shear characteristic zones and wrinkling behaviors are clearly distinguished. The actual in-plane shear angle is significantly lower than the theoretical value due to fiber constraints from both the in-plane and out-of-plane aspects. When the off-axis tensile displacement (d) is less than 15.6 mm, the ±45° specimens primarily exhibit macroscale in-plane shear behavior, induced by interlaminar interface shear between the +45° ply and −45° ply at the mesoscale. The shear angle increases linearly with the d. However, when d > 15.6 mm, fiber squeezing and wrinkling begin to occur. When d > 29 mm, the in-plane shear disappears in the completely sheared zone (A). The reduction in the resin viscosity of the CF/epoxy prepreg caused by increased temperature is identified as the primary factor in lowering the in-plane shear force resistance, followed by the effect of the increasing resin curing degree. Higher shear rates can lead to a substantial increase in shear forces, eventually causing cracking failure in the prepreg. The findings demonstrate the feasibility of the test method for predicting and extracting uncured prepreg in-plane shear behaviors and the strain-rate and temperature dependency of the material response.
研究预浸料的面内剪切行为对于了解自动纤维铺放和热成型等先进复合材料制造工艺中预成型件皱纹的产生至关重要。尽管意义重大,但目前还没有用于表征未固化单向(UD)预浸料的标准化测试方法。本文介绍了一种 ±45° 离轴拉伸试验,旨在评估 UD 碳纤维增强环氧树脂预浸料(CF/环氧树脂)的面内剪切行为。采用数字图像相关技术(DIC)定量跟踪拉伸过程中的三维应变和剪切角演变。还进一步研究了温度和拉伸速率对预浸料平面内剪切行为的影响。研究结果表明,预浸料具有明显的四个剪切特征区和起皱行为。由于纤维在面内和面外两方面的限制,实际面内剪切角明显低于理论值。当离轴拉伸位移 (d) 小于 15.6 mm 时,±45° 试样主要表现出宏观的面内剪切行为,这是由 +45° 层和 -45° 层之间的层间界面剪切在中尺度上引起的。然而,当 d > 15.6 mm 时,开始出现纤维挤压和起皱。当 d > 29 mm 时,面内剪切在完全剪切区(A)消失。温度升高导致 CF/epoxy 预浸料的树脂粘度降低,被认为是降低面内剪切力阻力的主要因素,其次是树脂固化度升高的影响。较高的剪切速率会导致剪切力大幅增加,最终导致预浸料开裂失效。研究结果证明了预测和提取未固化预浸料平面内剪切行为以及材料响应的应变速率和温度依赖性的测试方法的可行性。
{"title":"Determination of the In-Plane Shear Behavior of and Process Influence on Uncured Unidirectional CF/Epoxy Prepreg Using Digital Image Correlation Analysis","authors":"Hongfu Li, Haoxuan Zhang, Guangquan Yue, Boyu Guo, Ying Wu","doi":"10.3390/jcs8040133","DOIUrl":"https://doi.org/10.3390/jcs8040133","url":null,"abstract":"The investigation of the in-plane shear behavior of prepreg is crucial for understanding the generation of wrinkles of preforms in advanced composite manufacturing processes, such as automated fiber placement and thermoforming. Despite this significance, there is currently no standardized test method for characterizing uncured unidirectional (UD) prepreg. This paper introduces a ±45° off-axis tensile test designed to assess the in-plane shear behavior of UD carbon fiber-reinforced epoxy prepreg (CF/epoxy). Digital image correlation (DIC) was employed to quantitatively track the strains in three dimensions and the shear angle evolution during the stretching process. The influences of the temperature and stretching rate on the in-plane shear behavior of the prepreg were further investigated. The results reveal that four shear characteristic zones and wrinkling behaviors are clearly distinguished. The actual in-plane shear angle is significantly lower than the theoretical value due to fiber constraints from both the in-plane and out-of-plane aspects. When the off-axis tensile displacement (d) is less than 15.6 mm, the ±45° specimens primarily exhibit macroscale in-plane shear behavior, induced by interlaminar interface shear between the +45° ply and −45° ply at the mesoscale. The shear angle increases linearly with the d. However, when d > 15.6 mm, fiber squeezing and wrinkling begin to occur. When d > 29 mm, the in-plane shear disappears in the completely sheared zone (A). The reduction in the resin viscosity of the CF/epoxy prepreg caused by increased temperature is identified as the primary factor in lowering the in-plane shear force resistance, followed by the effect of the increasing resin curing degree. Higher shear rates can lead to a substantial increase in shear forces, eventually causing cracking failure in the prepreg. The findings demonstrate the feasibility of the test method for predicting and extracting uncured prepreg in-plane shear behaviors and the strain-rate and temperature dependency of the material response.","PeriodicalId":502935,"journal":{"name":"Journal of Composites Science","volume":"35 3","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140739725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Composites Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1