Pub Date : 2024-10-29DOI: 10.1016/j.ijepes.2024.110334
Chun Wu, Xingying Chen, Haochen Hua, Kun Yu, Lei Gan, Bo Wang
Based on the renewable portfolio standard and carbon cap-and-trade scheme, consumers faced with the demand of power and carbon emission permits shall be able to participate in three markets, i.e., green power market, electricity market and carbon market. In this paper, we propose a two-step energy trading approach to help consumers optimize their utility, considering the conflict of interest regarding whether to purchase power from the aforementioned three markets and how much power to purchase from each market. This approach takes into account several factors, including the benefits of participating in demand response, the costs associated with consumer dissatisfaction, the costs of power purchased from the electricity market, the costs of renewable power purchased from the green power market, and the costs of carbon emission permits purchased from the carbon market. The two-step formulation establishes an equilibrium problem with equilibrium constraints. A chance-constrained optimization method is utilized due to the uncertain fluctuation of renewable power in the two steps. The equilibrium problem with equilibrium constraints in the two steps can be settled by the nonlinear optimization of multiple subproblems with corresponding Karush-Kuhn-Tucker conditions. Simulations show that the proposed approach is able to significantly improve the utility of the consumers in the energy trading process among green power, electricity and carbon markets.
{"title":"Optimal energy sharing for renewable portfolio standard and carbon cap-and-trade scheme: A two-step energy trading approach","authors":"Chun Wu, Xingying Chen, Haochen Hua, Kun Yu, Lei Gan, Bo Wang","doi":"10.1016/j.ijepes.2024.110334","DOIUrl":"10.1016/j.ijepes.2024.110334","url":null,"abstract":"<div><div>Based on the renewable portfolio standard and carbon cap-and-trade scheme, consumers faced with the demand of power and carbon emission permits shall be able to participate in three markets, i.e., green power market, electricity market and carbon market. In this paper, we propose a two-step energy trading approach to help consumers optimize their utility, considering the conflict of interest regarding whether to purchase power from the aforementioned three markets and how much power to purchase from each market. This approach takes into account several factors, including the benefits of participating in demand response, the costs associated with consumer dissatisfaction, the costs of power purchased from the electricity market, the costs of renewable power purchased from the green power market, and the costs of carbon emission permits purchased from the carbon market. The two-step formulation establishes an equilibrium problem with equilibrium constraints. A chance-constrained optimization method is utilized due to the uncertain fluctuation of renewable power in the two steps. The equilibrium problem with equilibrium constraints in the two steps can be settled by the nonlinear optimization of multiple subproblems with corresponding Karush-Kuhn-Tucker conditions. Simulations show that the proposed approach is able to significantly improve the utility of the consumers in the energy trading process among green power, electricity and carbon markets.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110334"},"PeriodicalIF":5.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1016/j.ijepes.2024.110318
Yuting Zheng, Fan Xiao, Weijie Xie, Chunming Tu, Qi Guo
Grid-connected converters (GCCs) exhibit diverse stability characteristics at different operating points. However, traditional stability analysis methods usually study the stability of GCC at a specific operating point. To analyze the stability under time-varying operation conditions, this paper proposes an area-based stability analysis method. Firstly, operating point variables are introduced by the coordinate transformation relationship in phase-locked loop (PLL). Secondly, the small-signal model of GCC considering the coupling between PLL and current control is built. Based on the built model, the stable operation domain can be obtained. The stability of the system can be quickly determined by the relative position of the operating point to the stable boundary. Then, the mechanisms of impedance parameters and control parameters on the stable domain are analyzed to improve the stability of GCC. Finally, the effectiveness and correctness of the proposed area-based stability analysis method are verified by simulation and experiment.
{"title":"Area-based stability analysis method of grid-connected converter under wide operating conditions","authors":"Yuting Zheng, Fan Xiao, Weijie Xie, Chunming Tu, Qi Guo","doi":"10.1016/j.ijepes.2024.110318","DOIUrl":"10.1016/j.ijepes.2024.110318","url":null,"abstract":"<div><div>Grid-connected converters (GCCs) exhibit diverse stability characteristics at different operating points. However, traditional stability analysis methods usually study the stability of GCC at a specific operating point. To analyze the stability under time-varying operation conditions, this paper proposes an area-based stability analysis method. Firstly, operating point variables are introduced by the coordinate transformation relationship in phase-locked loop (PLL). Secondly, the small-signal model of GCC considering the coupling between PLL and current control is built. Based on the built model, the stable operation domain can be obtained. The stability of the system can be quickly determined by the relative position of the operating point to the stable boundary. Then, the mechanisms of impedance parameters and control parameters on the stable domain are analyzed to improve the stability of GCC. Finally, the effectiveness and correctness of the proposed area-based stability analysis method are verified by simulation and experiment.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110318"},"PeriodicalIF":5.0,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142537867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-29DOI: 10.1016/j.ijepes.2024.110305
Pronob K. Ghosh, Soumya R. Mohanty
This paper proposes a new combinatorial technique for Wide Area Measurement System (WAMS) infrastructure deployment for cyber physical resiliency enhancement. A meaningful optimal placement of Phasor Measurement Unit (PMU) for substation oriented complete system observability and Phasor Data concentrator (PDC) have been ensured proposing new method for solving Integer Linear Programming (ILP) using General Algebraic Modelling Language (GAMS) platform. Critically important location vector have been formulated applying Multi Attribute Utility Technique (MAUT), which directs the PDC deployment location selection. However, only the optimal distribution of PMUs and PDCs throughout the network does not satisfy the purpose of these sophisticated yet costly measuring and monitoring devices; rather it is required to be ensured that the fast and precise measurements from this device can be reached to the generation and transmission operators via PDC through the shortest communication path. Hence, a shortest spanning path algorithm has been proposed for the minimization of the communication path among the WAMS elements. The proposed method has been extended while the cyber physical attack compromised device is present in the system. The empirical WAMS elements communication network has been modelled and executed in OMNeT++. The overall cost is calculated by considering some practical cost of the WAMS elements. The efficacy of the proposed technique is checked applying by it on standard IEEE test cases- IEEE 14 bus, 30 bus, and 118-bus system, and represented with post mortem analysis. Finally, to test the effectiveness of the proposed method the results have been compared to some well-established methods.
Pub Date : 2024-10-28DOI: 10.1016/j.ijepes.2024.110313
Alessandro Rosini , Milutin Petronijević , Filip Filipović , Andrea Bonfiglio , Renato Procopio
The energy transition is becoming one of the main challenges in recent years and it requires a fast discovery of new technologies and solutions to effectively integrate renewables in the electricity system. In this context, islanded AC Microgrids represent one of the most promising architectures, but they require smart and advanced control systems to allow fast and robust operations in all the possible operating scenarios. Among the advanced control techniques, Higher Order Sliding Mode control for power converters is one of the most promising solutions due to its ability to cope with model and parametric uncertainties without generating discontinuous control actions. This work presents the experimental validation of the approach proposed in a theoretical paper in which frequency and voltage controllers were defined that combined advantages of primary and secondary classic regulations. Such experimental campaign has been conducted at the Micro-grid and Smart-grid Research Lab of the Faculty of Electronic Engineering, University of Niš. Results show the correct behavior of the converters control in normal operation scenarios and the possibility to manage transitions between operating modes without any communication infrastructure among the generating units.
{"title":"Frequency and voltage communication-less control for islanded AC microgrids: Experimental validation via rapid control prototyping","authors":"Alessandro Rosini , Milutin Petronijević , Filip Filipović , Andrea Bonfiglio , Renato Procopio","doi":"10.1016/j.ijepes.2024.110313","DOIUrl":"10.1016/j.ijepes.2024.110313","url":null,"abstract":"<div><div>The energy transition is becoming one of the main challenges in recent years and it requires a fast discovery of new technologies and solutions to effectively integrate renewables in the electricity system. In this context, islanded AC Microgrids represent one of the most promising architectures, but they require smart and advanced control systems to allow fast and robust operations in all the possible operating scenarios. Among the advanced control techniques, Higher Order Sliding Mode control for power converters is one of the most promising solutions due to its ability to cope with model and parametric uncertainties without generating discontinuous control actions. This work presents the experimental validation of the approach proposed in a theoretical paper in which frequency and voltage controllers were defined that combined advantages of primary and secondary classic regulations. Such experimental campaign has been conducted at the Micro-grid and Smart-grid Research Lab of the Faculty of Electronic Engineering, University of Niš. Results show the correct behavior of the converters control in normal operation scenarios and the possibility to manage transitions between operating modes without any communication infrastructure among the generating units.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110313"},"PeriodicalIF":5.0,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1016/j.ijepes.2024.110330
Kunpeng Tian, Yi Zang, Jun Wang, Xiaoyuan Zhang
The rapid growth of renewable energy is integrated into the distribution system. The creation of both new market mechanisms and investment models has critical effects on the economics and security of the distribution market. Mobile energy storage has been used to increase the resilience of distribution grids due to their advantages in mobility and flexibility, which offer electricity arbitrage options for merchant investments. This paper presents a bi-level optimization framework based on location marginal pricing settlement of mobile energy storage financial rights revenue in active distribution systems. In the developed framework, the upper-level problem determines the optimal capacity, routing, and dispatching of mobile energy storage to maximize revenue in the liberalized electricity market. The lower-level problem performs the joint optimization of energy and reserve market clearing as well as renewable energy capacity optimization based on the alternating current optimal power flow model. The non-convexity of the line flow and location marginal pricing is linearized via second-order cone relaxation and Karush-Kuhn-Tucker. The bi-level programming is reformatted as mathematical programming with equilibrium constraints. Further, the revenue risk due to renewable energy uncertainty is measured via conditional value-at-risk. Finally, the effectiveness of the optimization framework and solution method is verified using the modified IEEE-33 test system. The results show that mobile energy storage promotes renewable energy and reduces distribution network costs by 2.3%.
{"title":"Electricity arbitrage for mobile energy storage in marginal pricing mechanism via bi-level programming","authors":"Kunpeng Tian, Yi Zang, Jun Wang, Xiaoyuan Zhang","doi":"10.1016/j.ijepes.2024.110330","DOIUrl":"10.1016/j.ijepes.2024.110330","url":null,"abstract":"<div><div>The rapid growth of renewable energy is integrated into the distribution system. The creation of both new market mechanisms and investment models has critical effects on the economics and security of the distribution market. Mobile energy storage has been used to increase the resilience of distribution grids due to their advantages in mobility and flexibility, which offer electricity arbitrage options for merchant investments. This paper presents a bi-level optimization framework based on location marginal pricing settlement of mobile energy storage financial rights revenue in active distribution systems. In the developed framework, the upper-level problem determines the optimal capacity, routing, and dispatching of mobile energy storage to maximize revenue in the liberalized electricity market. The lower-level problem performs the joint optimization of energy and reserve market clearing as well as renewable energy capacity optimization based on the alternating current optimal power flow model. The non-convexity of the line flow and location marginal pricing is linearized via second-order cone relaxation and Karush-Kuhn-Tucker. The bi-level programming is reformatted as mathematical programming with equilibrium constraints. Further, the revenue risk due to renewable energy uncertainty is measured via conditional value-at-risk. Finally, the effectiveness of the optimization framework and solution method is verified using the modified IEEE-33 test system. The results show that mobile energy storage promotes renewable energy and reduces distribution network costs by 2.3%.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110330"},"PeriodicalIF":5.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-25DOI: 10.1016/j.ijepes.2024.110306
Congfei Li, Jiayi Liu, Tian Ding, Xi Liu, Zhenyu Zhou, Zhongwei Sun
Photovoltaic (PV)-storage integrated 5G base station (BS) can participate in demand response on a large scale, conduct electricity transaction and provide auxiliary services, thus reducing the high electricity consumption of 5G BSs and increasing the flexibility resource capacity of the distribution network. However, the flexible resource regulation of PV-storage integrated 5G BSs still faces problems such as many regulators, ignored PV-load uncertainty, and poor adaptability of existing regulatory frameworks and scheduling methods, which leads to greater security operation risks in resource regulation decisions and affects the exploitation of the 5G BSs scheduling potential. Aiming at the above problems, this paper proposes an aggregated regulation and coordinated scheduling method of PV-storage integrated 5G BSs considering PV-load uncertainty. Firstly, a hierarchical cluster-cooperative aggregated regulation framework for the scale PV-storage integrated 5G BSs is established, and a regional communication operator (RCO) schedulable capability model and an information gap decision theory (IGDT) based PV-load uncertainty model are built. Next, a two-stage joint optimization problem is proposed for maximizing the RCO income while reducing the BS cluster operation cost. Then, the first-stage day-ahead transaction optimization problem in the electricity market is solved, and the reliable operation planning and economic operation planning strategies are proposed based on IGDT to adapt to the regulation demand under different uncertainty risks; the second-stage BS cluster real-time operation optimization problem is solved based on the adaptive consensus algorithm considering scheduling preferences (ACSP), achieving distributed real-time coordinated scheduling of multiple agents in the BS cluster. Finally, the effectiveness of the proposed method is verified by simulation examples, which show that the aggregated regulation and coordinated scheduling of PV-storage integrated 5G BSs can achieve mutual benefits for the distribution network and communication operators.
{"title":"Aggregated regulation and coordinated scheduling of PV-storage integrated 5G base stations considering PV-load uncertainty","authors":"Congfei Li, Jiayi Liu, Tian Ding, Xi Liu, Zhenyu Zhou, Zhongwei Sun","doi":"10.1016/j.ijepes.2024.110306","DOIUrl":"10.1016/j.ijepes.2024.110306","url":null,"abstract":"<div><div>Photovoltaic (PV)-storage integrated 5G base station (BS) can participate in demand response on a large scale, conduct electricity transaction and provide auxiliary services, thus reducing the high electricity consumption of 5G BSs and increasing the flexibility resource capacity of the distribution network. However, the flexible resource regulation of PV-storage integrated 5G BSs still faces problems such as many regulators, ignored PV-load uncertainty, and poor adaptability of existing regulatory frameworks and scheduling methods, which leads to greater security operation risks in resource regulation decisions and affects the exploitation of the 5G BSs scheduling potential. Aiming at the above problems, this paper proposes an aggregated regulation and coordinated scheduling method of PV-storage integrated 5G BSs considering PV-load uncertainty. Firstly, a hierarchical cluster-cooperative aggregated regulation framework for the scale PV-storage integrated 5G BSs is established, and a regional communication operator (RCO) schedulable capability model and an information gap decision theory (IGDT) based PV-load uncertainty model are built. Next, a two-stage joint optimization problem is proposed for maximizing the RCO income while reducing the BS cluster operation cost. Then, the first-stage day-ahead transaction optimization problem in the electricity market is solved, and the reliable operation planning and economic operation planning strategies are proposed based on IGDT to adapt to the regulation demand under different uncertainty risks; the second-stage BS cluster real-time operation optimization problem is solved based on the adaptive consensus algorithm considering scheduling preferences (ACSP), achieving distributed real-time coordinated scheduling of multiple agents in the BS cluster. Finally, the effectiveness of the proposed method is verified by simulation examples, which show that the aggregated regulation and coordinated scheduling of PV-storage integrated 5G BSs can achieve mutual benefits for the distribution network and communication operators.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110306"},"PeriodicalIF":5.0,"publicationDate":"2024-10-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Due to the rapid development of the distribution network, there is an urgent need for high-precision state estimation and safe and stable operation, this paper proposes a joint optimal placement method for Phasor Measurement Unit (PMU) and Dual Use Line Relay (DULR) in distribution networks considering fault reconstruction and state estimation accuracy. The proposed method aims to minimize the cost of PMU and DULR configuration. Based on the known pseudo-measurements and Supervisory Control and Data Acquisition (SCADA) measurements, we use the E-optimal standard design of the state estimation error covariance matrix to form the state estimation accuracy index and take the relay protection function of Feeder Terminal Unit (FTU) device and DULR device into consideration of the fault reconstruction. By solving the mixed integer semidefinite programming (MISDP) model, the optimal placement result is obtained, so that the network under normal condition and the network after multiple fault reconstruction can meet the constraints of state estimation accuracy and load loss rate respectively. The proposed method is tested on IEEE 33-node, 123-node systems as an example. The experimental results show that the proposed method is effective and practical.
Note to Practitioners—This study is stimulated by the need for optimizing the placement of Micro-PMU (µPMU) in distribution network. Since the new µPMU device DULR has the same relay protection function as FTU, and distributed generation can supply power to the island after failure, this paper adds the load loss rate to the constraint conditions to study the influence of fault reconstruction on the placement scheme. A new two-step SE method considering mixed measurements was used in this paper to improve the computational efficiency of real-time SE of large-scale system while ensuring the accuracy of the calculation results. We have conducted tests in IEEE-33 and IEEE-123 systems. After preliminary verification, compared with the single fault scenario, we find that the placement scheme considering multiple fault scenarios can effectively improve the accuracy of state estimation and reduce the load loss rate of each fault scenario and only increase the cost a little. The increase in the number of DG and contact lines in the network will also effectively improve the feasibility of the placement scheme. The increase of the number of FTU configurations can effectively reduce the configuration of DULR by adding a small amount of µPMU, reduce the total cost as a result. In future studies, we will further consider the integrated configuration of µPMU, DULR and FTU, to meet more failure scenarios while reducing costs.
{"title":"Joint optimal PMU and DULR placement in distribution network considering fault reconstruction and state estimation accuracy","authors":"Zhi Wu , Jiachen Jiang , Shu Zheng , Jingtao Zhao , Wei Gu","doi":"10.1016/j.ijepes.2024.110320","DOIUrl":"10.1016/j.ijepes.2024.110320","url":null,"abstract":"<div><div>Due to the rapid development of the distribution network, there is an urgent need for high-precision state estimation and safe and stable operation, this paper proposes a joint optimal placement method for Phasor Measurement Unit (PMU) and Dual Use Line Relay (DULR) in distribution networks considering fault reconstruction and state estimation accuracy. The proposed method aims to minimize the cost of PMU and DULR configuration. Based on the known pseudo-measurements and Supervisory Control and Data Acquisition (SCADA) measurements, we use the E-optimal standard design of the state estimation error covariance matrix to form the state estimation accuracy index and take the relay protection function of Feeder Terminal Unit (FTU) device and DULR device into consideration of the fault reconstruction. By solving the mixed integer semidefinite programming (MISDP) model, the optimal placement result is obtained, so that the network under normal condition and the network after multiple fault reconstruction can meet the constraints of state estimation accuracy and load loss rate respectively. The proposed method is tested on IEEE 33-node, 123-node systems as an example. The experimental results show that the proposed method is effective and practical.</div><div><strong><em>Note to Practitioners—</em>This study is stimulated by the need for optimizing the placement of Micro-PMU (µPMU) in distribution network. Since the new µPMU device DULR has the same relay protection function as FTU, and distributed generation can supply power to the island after failure, this paper adds the load loss rate to the constraint conditions to study the influence of fault reconstruction on the placement scheme. A new two-step SE method considering mixed measurements was used in this paper to improve the computational efficiency of real-time SE of large-scale system while ensuring the accuracy of the calculation results. We have conducted tests in IEEE-33 and IEEE-123 systems. After preliminary verification, compared with the single fault scenario, we find that the placement scheme considering multiple fault scenarios can effectively improve the accuracy of state estimation and reduce the load loss rate of each fault scenario and only increase the cost a little. The increase in the number of DG and contact lines in the network will also effectively improve the feasibility of the placement scheme. The increase of the number of FTU configurations can effectively reduce the configuration of DULR by adding a small amount of</strong> µ<strong>PMU, reduce the total cost as a result. In future studies, we will further consider the integrated configuration of</strong> µ<strong>PMU, DULR and FTU, to meet more failure scenarios while reducing costs.</strong></div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110320"},"PeriodicalIF":5.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538608","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.ijepes.2024.110316
Guido Carpinelli , Christian Noce , Angela Russo , Pietro Varilone , Paola Verde
In this paper the siting and sizing problem of battery energy storage systems in unbalanced active distribution systems is formulated as a mixed-integer, non-linear, constrained multi objective (MO) optimization problem under uncertainties. The problem is cumbersome from the computational point of view due to the presence of intertemporal constraints, a great number of state variables and the presence of uncertainties in the problem input data. A new approach based on the trade-off/risk analysis is proposed to obtain with acceptable computational efforts a solution that may not be the optimal solution but represents a reasonable and robust compromise. We use the trade-off/risk analysis, because it was specifically developed for power system planning problems in which we deal with a wide range of options, with possible conflicting objectives, and with uncertainty and risk. The proposed approach includes new procedures to select an adequate set of planning alternatives to be considered in the trade-off/risk analysis framework and to assist the planning engineer when difficulties arise in setting probabilities of the input data. Numerical applications to an IEEE unbalanced test system demonstrate the effectiveness of the proposed procedure and indicate the best alternatives of storage systems in the range from 450 kW to 600 kW globally installed in a reduced set of nodes.
{"title":"Optimal siting and sizing of battery energy storage systems in unbalanced distribution systems: A multi objective problem under uncertainty","authors":"Guido Carpinelli , Christian Noce , Angela Russo , Pietro Varilone , Paola Verde","doi":"10.1016/j.ijepes.2024.110316","DOIUrl":"10.1016/j.ijepes.2024.110316","url":null,"abstract":"<div><div>In this paper the siting and sizing problem of battery energy storage systems in unbalanced active distribution systems is formulated as a mixed-integer, non-linear, constrained multi objective (MO) optimization problem under uncertainties. The problem is cumbersome from the computational point of view due to the presence of intertemporal constraints, a great number of state variables and the presence of uncertainties in the problem input data. A new approach based on the trade-off/risk analysis is proposed to obtain with acceptable computational efforts a solution that may not be the optimal solution but represents a reasonable and robust compromise. We use the trade-off/risk analysis, because it was specifically developed for power system planning problems in which we deal with a wide range of options, with possible conflicting objectives, and with uncertainty and risk. The proposed approach includes new procedures to select an adequate set of planning alternatives to be considered in the trade-off/risk analysis framework and to assist the planning engineer when difficulties arise in setting probabilities of the input data. Numerical applications to an IEEE unbalanced test system demonstrate the effectiveness of the proposed procedure and indicate the best alternatives of storage systems in the range from 450 kW to 600 kW globally installed in a reduced set of nodes.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110316"},"PeriodicalIF":5.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-24DOI: 10.1016/j.ijepes.2024.110321
Yao Guo , Shaorong Wang , Xinchi Wei , Jiaxuan Ren , Youhang Yang , Dezhi Chen
For any practically applied AC/DC hybrid distribution network (AC/DC-HDN), the hard issue of removing DC short-circuit currents must be solved by a cost-effective scheme. However, up to now, in the most published achievements of AC/DC-HDN, the systematic scheme to address the above issue is rarely found. This paper proposes a novel strategy with a low cost for solving this problem. The proposed strategy can: (i) greatly decrease the DC short-circuit current components flowing from the AC/DC converters to the fault point, (ii) fast switch off the paths of DC short-circuit current components from DG branches to the fault point, (iii) completely block the DC short-circuit current components that feed into the fault point from the capacitors paralleled on the DC ports of load branches. Also, in this paper, a new topology of DC/DC converter with a controlled zero-current output function is proposed for fast switching off the paths of DC short-circuit current components from DG branches to the fault point. The scheme of relay protection and automatic control matching with the proposed strategy is designed. The principles of the scheme and design are explained in detail. The simulation results verified the effectiveness of the proposed strategy are given.
{"title":"A low-cost strategy for systematically removing DC short-circuit currents in AC/DC-HDN","authors":"Yao Guo , Shaorong Wang , Xinchi Wei , Jiaxuan Ren , Youhang Yang , Dezhi Chen","doi":"10.1016/j.ijepes.2024.110321","DOIUrl":"10.1016/j.ijepes.2024.110321","url":null,"abstract":"<div><div>For any practically applied AC/DC hybrid distribution network (AC/DC-HDN), the hard issue of removing DC short-circuit currents must be solved by a cost-effective scheme. However, up to now, in the most published achievements of AC/DC-HDN, the systematic scheme to address the above issue is rarely found. This paper proposes a novel strategy with a low cost for solving this problem. The proposed strategy can: (i) greatly decrease the DC short-circuit current components flowing from the AC/DC converters to the fault point, (ii) fast switch off the paths of DC short-circuit current components from DG branches to the fault point, (iii) completely block the DC short-circuit current components that feed into the fault point from the capacitors paralleled on the DC ports of load branches. Also, in this paper, a new topology of DC/DC converter with a controlled zero-current output function is proposed for fast switching off the paths of DC short-circuit current components from DG branches to the fault point. The scheme of relay protection and automatic control matching with the proposed strategy is designed. The principles of the scheme and design are explained in detail. The simulation results verified the effectiveness of the proposed strategy are given.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110321"},"PeriodicalIF":5.0,"publicationDate":"2024-10-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538607","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This paper presents a three-phase power system state estimation method based on weighted least square criteria in which not only bus voltage phasors but also transformer parameters, i.e. its tap ratio and leakage admittance, as well as overhead transmission line conductor temperatures are considered as state variables. The method integrates the admittance matrix model of three-phase transformers and a weather dependent thermal model of the overhead transmission lines into the power system state estimation process, which is then formulated as a constrained nonlinear optimization problem. A solution technique based on constrained alternating optimization, suitable for the temperature-dependent state estimation considering the transformer’s parameters, is also proposed. The state estimation optimization is divided into two constrained sub-optimization problems, which are solved alternately until convergence conditions are satisfied. A predictor–corrector interior point based algorithm is applied for solving the sub-optimization problems. Several tests on modified IEEE 30-bus and 118-bus systems configured as three-phase test systems indicate that the proposed temperature-dependent state estimation significantly outperforms traditional methods.
{"title":"Temperature-dependent state estimation based on constrained alternating optimization for three-phase power networks considering transformer parameters","authors":"Dumrongsak Wongta , Jonglak Pahasa , Chawasak Rakpenthai , Sermsak Uatrongjit","doi":"10.1016/j.ijepes.2024.110292","DOIUrl":"10.1016/j.ijepes.2024.110292","url":null,"abstract":"<div><div>This paper presents a three-phase power system state estimation method based on weighted least square criteria in which not only bus voltage phasors but also transformer parameters, i.e. its tap ratio and leakage admittance, as well as overhead transmission line conductor temperatures are considered as state variables. The method integrates the admittance matrix model of three-phase transformers and a weather dependent thermal model of the overhead transmission lines into the power system state estimation process, which is then formulated as a constrained nonlinear optimization problem. A solution technique based on constrained alternating optimization, suitable for the temperature-dependent state estimation considering the transformer’s parameters, is also proposed. The state estimation optimization is divided into two constrained sub-optimization problems, which are solved alternately until convergence conditions are satisfied. A predictor–corrector interior point based algorithm is applied for solving the sub-optimization problems. Several tests on modified IEEE 30-bus and 118-bus systems configured as three-phase test systems indicate that the proposed temperature-dependent state estimation significantly outperforms traditional methods.</div></div>","PeriodicalId":50326,"journal":{"name":"International Journal of Electrical Power & Energy Systems","volume":"162 ","pages":"Article 110292"},"PeriodicalIF":5.0,"publicationDate":"2024-10-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142538604","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}