首页 > 最新文献

International Journal of Advanced Manufacturing Technology最新文献

英文 中文
Constitutive analysis of hot metal flow behavior of virgin and rejuvenated heat treatment creep exhausted power plant X20 steel 电厂 X20 钢原始和年轻化热处理蠕变衰竭热金属流动行为的构成分析
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-25 DOI: 10.1007/s00170-024-13443-9
Shem Maube, Japheth Obiko, Josias Van der Merwe, Fredrick Mwema, Desmond Klenam, Michael Bodunrin

This paper presents constitutive equations that describe the hot flow behaviour of Virgin (VG) X20 and rejuvenated heat-treated creep exhaust (CE) X20 steels. The study provides a foundation for determining the effect of rejuvenation heat treatment on CE steels by making comparisons to the VG steel. Hot compression tests were conducted in the temperature range of 900 °C to 1050 °C, at strain rates of 0.1–10 s−1 to a total strain of 0.6, and stress–strain curves were obtained. The flow stress curves of both steels exhibited dynamic recovery (DRV) characteristics as the main softening mechanism. Constitutive constants of steady-state stresses were determined. The stress exponents, n, were 6.62 (VG) and 5.58 (CE), and the apparent activation energy values were 380.36 kJmol−1(VG) and 435.70 kJmol−1 (CE). Analysis of the activation energies showed that VG steel had better workability properties than CE steel and was easier to deform at high temperatures. Constitutive equations for predicting the flow stress in the two steels were established. This were verified by statistical tools: Pearson’s correlation coefficient (R) and Absolute Average Relative Error (AARE). The results showed R-values were, 0.98 (VG) and 0.99 (CE), and the AARE values for VG were 4.17% and 9.01% for CE. The statistical parameters indicated a good correlation between the experimental and predicted values. The constitutive equations therefore adequately described the flow stress behaviour of both steels and can therefore efficiently analyse industrial metal forming schedules.

本文提出了描述初生 (VG) X20 钢和年轻化热处理蠕变排气 (CE) X20 钢热流动行为的构成方程。该研究通过与 VG 钢进行比较,为确定 CE 钢的年轻化热处理效果奠定了基础。在 900 °C 至 1050 °C 的温度范围内,以 0.1-10 s-1 的应变速率至 0.6 的总应变进行了热压缩试验,并获得了应力-应变曲线。两种钢材的流动应力曲线都表现出动态恢复(DRV)特征,这是主要的软化机制。确定了稳态应力的组成常数。应力指数 n 分别为 6.62(VG)和 5.58(CE),表观活化能分别为 380.36 kJmol-1(VG)和 435.70 kJmol-1(CE)。活化能分析表明,VG 钢的加工性能优于 CE 钢,且在高温下更容易变形。建立了预测两种钢中流动应力的构造方程。统计工具对此进行了验证:皮尔逊相关系数(R)和绝对平均相对误差(AARE)。结果显示,R 值分别为 0.98(VG)和 0.99(CE),VG 的 AARE 值为 4.17%,CE 为 9.01%。统计参数表明,实验值与预测值之间具有良好的相关性。因此,构成方程充分描述了这两种钢材的流动应力行为,可以有效地分析工业金属成型计划。
{"title":"Constitutive analysis of hot metal flow behavior of virgin and rejuvenated heat treatment creep exhausted power plant X20 steel","authors":"Shem Maube, Japheth Obiko, Josias Van der Merwe, Fredrick Mwema, Desmond Klenam, Michael Bodunrin","doi":"10.1007/s00170-024-13443-9","DOIUrl":"https://doi.org/10.1007/s00170-024-13443-9","url":null,"abstract":"<p>This paper presents constitutive equations that describe the hot flow behaviour of Virgin (VG) X20 and rejuvenated heat-treated creep exhaust (CE) X20 steels. The study provides a foundation for determining the effect of rejuvenation heat treatment on CE steels by making comparisons to the VG steel. Hot compression tests were conducted in the temperature range of 900 °C to 1050 °C, at strain rates of 0.1–10 s<sup>−1</sup> to a total strain of 0.6, and stress–strain curves were obtained. The flow stress curves of both steels exhibited dynamic recovery (DRV) characteristics as the main softening mechanism. Constitutive constants of steady-state stresses were determined. The stress exponents, n, were 6.62 (VG) and 5.58 (CE), and the apparent activation energy values were 380.36 kJmol<sup>−1</sup>(VG) and 435.70 kJmol<sup>−1</sup> (CE). Analysis of the activation energies showed that VG steel had better workability properties than CE steel and was easier to deform at high temperatures. Constitutive equations for predicting the flow stress in the two steels were established. This were verified by statistical tools: Pearson’s correlation coefficient (R) and Absolute Average Relative Error (AARE). The results showed R-values were, 0.98 (VG) and 0.99 (CE), and the AARE values for VG were 4.17% and 9.01% for CE. The statistical parameters indicated a good correlation between the experimental and predicted values. The constitutive equations therefore adequately described the flow stress behaviour of both steels and can therefore efficiently analyse industrial metal forming schedules.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"233 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299525","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effects of post-weld heat treatments in microstructure, mechanical properties, and corrosion resistance of simulated heat-affected zone of supermartensitic steel UNS S41426 焊后热处理对超马氏体钢 UNS S41426 模拟热影响区微观结构、机械性能和耐腐蚀性的影响
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-25 DOI: 10.1007/s00170-024-13448-4

Abstract

Supermartensitic stainless steel (SMSS) UNS S41426 is an extra-low carbon steel with 12–13%Cr-5%Ni-2%Mo (%wt.) and microadditions of Ti and V. This material offers an interesting combination of mechanical and corrosion resistance. Although the weldability was improved in relation to conventional martensitic steels, due to the drastic reduction of carbon content, post-weld heat treatments are still necessary to decrease the hardness of the heat affected zone (HAZ). The UNS S41426 is used to manufacture mandrels for chemical products or gas injection in the well in the oil and gas off-shore production. Those mandrels are constructed with forged parts and hot rolled seamless pipes joined by welding. The microstructure, hardness, toughness, and sensitization of simulated HAZ of SMSS UNS S41426 forged and hot rolled were investigated. The effect of single tempering at 650 °C for 5 min and at 620 °C for 1 h, as well as double tempering (670 °C/2 h + 600 °C/2 h), was analyzed. The short duration tempering treatments did not change considerably the microstructure, but provoked an undesirable decrease of toughness. The single tempering for 1 h and the double tempering promoted more important microstructural changes, accompanied by the decrease of hardness and the increase of the degree of sensitization.

摘要 超级马氏体不锈钢(SMSS)UNS S41426 是一种超低碳钢,含 12-13%Cr-5%Ni-2%Mo (%wt.)以及微量的 Ti 和 V。虽然与传统的马氏体钢相比,该材料的可焊性有所提高,但由于碳含量的大幅降低,仍有必要进行焊后热处理,以降低热影响区(HAZ)的硬度。UNS S41426 用于制造化工产品的心轴,或在石油和天然气的近海生产中将气体注入井中。这些心轴由锻造件和热轧无缝管焊接而成。研究了 SMSS UNS S41426 锻件和热轧件的微观结构、硬度、韧性和模拟热影响区的敏化。分析了在 650 °C 回火 5 分钟和 620 °C 回火 1 小时以及双回火(670 °C/2 小时 + 600 °C/2 小时)的影响。短时间的回火处理没有明显改变微观结构,但导致韧性下降。1小时的单次回火和双次回火促进了更重要的微观结构变化,同时伴随着硬度的降低和敏化程度的增加。
{"title":"Effects of post-weld heat treatments in microstructure, mechanical properties, and corrosion resistance of simulated heat-affected zone of supermartensitic steel UNS S41426","authors":"","doi":"10.1007/s00170-024-13448-4","DOIUrl":"https://doi.org/10.1007/s00170-024-13448-4","url":null,"abstract":"<h3>Abstract</h3> <p>Supermartensitic stainless steel (SMSS) UNS S41426 is an extra-low carbon steel with 12–13%Cr-5%Ni-2%Mo (%wt.) and microadditions of Ti and V. This material offers an interesting combination of mechanical and corrosion resistance. Although the weldability was improved in relation to conventional martensitic steels, due to the drastic reduction of carbon content, post-weld heat treatments are still necessary to decrease the hardness of the heat affected zone (HAZ). The UNS S41426 is used to manufacture mandrels for chemical products or gas injection in the well in the oil and gas off-shore production. Those mandrels are constructed with forged parts and hot rolled seamless pipes joined by welding. The microstructure, hardness, toughness, and sensitization of simulated HAZ of SMSS UNS S41426 forged and hot rolled were investigated. The effect of single tempering at 650 °C for 5 min and at 620 °C for 1 h, as well as double tempering (670 °C/2 h + 600 °C/2 h), was analyzed. The short duration tempering treatments did not change considerably the microstructure, but provoked an undesirable decrease of toughness. The single tempering for 1 h and the double tempering promoted more important microstructural changes, accompanied by the decrease of hardness and the increase of the degree of sensitization.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"233 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Microscopic and Mechanical Properties Characterization of Laser Beam Welded 5754 to 6063 Aluminum Alloys 激光束焊接 5754 至 6063 铝合金的微观和机械性能表征
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-25 DOI: 10.1007/s00170-024-13471-5
Epameinondas Katsikas, Anastasios Kladis, Dimitra Ioannidou, George Karafyllias, Stavros Deligiannis, Pantelis N. Botsaris, George Gaidajis, Petros E. Tsakiridis

Laser beam welding (LBW) has been widely employed to acquire defect-free joints between aluminum alloys for a wide range of applications, especially within the automotive industry. The current study aims to examine the effect of laser power on the final microstructure, as well as the mechanical properties of laser beam welded AA5754 and AA6063 aluminum alloys. Lap joints of the abovementioned alloys were performed using a 1030-nm Yb:YAG LBW process with a laser power of 3000 W and 3500 W. The microstructure of base metals (BM), heat-affected zone (HAZ), and fusion zone (FZ) was investigated by means of visible light microscopy (VLM) under non-polarized and polarized light, as well as of scanning electron microscopy (SEM) in conjunction with energy-dispersive spectroscopy (EDS), while the crystal structure was evaluated by X-ray diffraction (XRD). The mechanical properties of welded samples were investigated through Vickers microhardness and tensile shear tests. Furthermore, the fracture surfaces were observed under a stereoscope and a SEM. The metallographic examination revealed the presence of small defects, such as pores, with a diameter ranging from 20 to 50 μm, and microcracks, whose length ranged from 300 to 400 μm. Reducing the laser power was observed to affect the weld geometry, and more specifically the penetration, that was found at 900 μm for the samples welded with 3500 W and 333 μm for those welded with 3000 W. It was also noticed that reducing the laser power resulted in decreased width of the HAZ; the samples welded with 3000 W had a HAZ width of approximately 400–500 μm, while the samples welded with 3500 W had a HAZ width of 500 μm. Finally, applying higher laser power was observed to improve the mechanical properties of welded samples, resulting in higher relative ductility and fewer microhardness fluctuations within the FZ. The specimens welded with 3500 W presented increased tensile shear force and displacement of 3.8 kN in comparison to 3.4 kN of the joints welded with 3000 W.

激光束焊接(LBW)已被广泛用于获得铝合金之间的无缺陷接缝,应用范围十分广泛,尤其是在汽车行业。本研究旨在考察激光功率对激光焊接 AA5754 和 AA6063 铝合金最终微观结构以及机械性能的影响。上述合金的搭接采用 1030 纳米 Yb:YAG 激光束焊接工艺,激光功率分别为 3000 W 和 3500 W。通过非偏振光和偏振光下的可见光显微镜 (VLM)、扫描电子显微镜 (SEM) 以及能量色散光谱 (EDS) 研究了母材 (BM)、热影响区 (HAZ) 和熔合区 (FZ) 的微观结构,并通过 X 射线衍射 (XRD) 评估了晶体结构。通过维氏硬度和拉伸剪切试验研究了焊接样品的机械性能。此外,还在立体镜和扫描电镜下观察了断裂表面。金相检查发现了一些小缺陷,如直径在 20 至 50 μm 之间的气孔和长度在 300 至 400 μm 之间的微裂纹。降低激光功率会影响焊接几何形状,更具体地说会影响熔透,用 3500 瓦激光焊接的样品熔透为 900 微米,用 3000 瓦激光焊接的样品熔透为 333 微米。最后,据观察,使用更高的激光功率可改善焊接样品的机械性能,从而提高相对延展性,减少 FZ 内的显微硬度波动。与使用 3000 W 焊接的 3.4 kN 相比,使用 3500 W 焊接的试样的拉伸剪切力和位移增加了 3.8 kN。
{"title":"Microscopic and Mechanical Properties Characterization of Laser Beam Welded 5754 to 6063 Aluminum Alloys","authors":"Epameinondas Katsikas, Anastasios Kladis, Dimitra Ioannidou, George Karafyllias, Stavros Deligiannis, Pantelis N. Botsaris, George Gaidajis, Petros E. Tsakiridis","doi":"10.1007/s00170-024-13471-5","DOIUrl":"https://doi.org/10.1007/s00170-024-13471-5","url":null,"abstract":"<p>Laser beam welding (LBW) has been widely employed to acquire defect-free joints between aluminum alloys for a wide range of applications, especially within the automotive industry. The current study aims to examine the effect of laser power on the final microstructure, as well as the mechanical properties of laser beam welded AA5754 and AA6063 aluminum alloys. Lap joints of the abovementioned alloys were performed using a 1030-nm Yb:YAG LBW process with a laser power of 3000 W and 3500 W. The microstructure of base metals (BM), heat-affected zone (HAZ), and fusion zone (FZ) was investigated by means of visible light microscopy (VLM) under non-polarized and polarized light, as well as of scanning electron microscopy (SEM) in conjunction with energy-dispersive spectroscopy (EDS), while the crystal structure was evaluated by X-ray diffraction (XRD). The mechanical properties of welded samples were investigated through Vickers microhardness and tensile shear tests. Furthermore, the fracture surfaces were observed under a stereoscope and a SEM. The metallographic examination revealed the presence of small defects, such as pores, with a diameter ranging from 20 to 50 μm, and microcracks, whose length ranged from 300 to 400 μm. Reducing the laser power was observed to affect the weld geometry, and more specifically the penetration, that was found at 900 μm for the samples welded with 3500 W and 333 μm for those welded with 3000 W. It was also noticed that reducing the laser power resulted in decreased width of the HAZ; the samples welded with 3000 W had a HAZ width of approximately 400–500 μm, while the samples welded with 3500 W had a HAZ width of 500 μm. Finally, applying higher laser power was observed to improve the mechanical properties of welded samples, resulting in higher relative ductility and fewer microhardness fluctuations within the FZ. The specimens welded with 3500 W presented increased tensile shear force and displacement of 3.8 kN in comparison to 3.4 kN of the joints welded with 3000 W.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"202 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Design and construction for theory and method of magnetic-controlled negative pressure GTAW arc model based on multi-physics simulation 基于多物理场仿真的磁控负压 GTAW 电弧模型理论和方法的设计与构建
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-25 DOI: 10.1007/s00170-024-13399-w
Kefeng Xu, Jian Luo, Kunyu Cui, Riping Cheng, Lei Ling

The two-dimensional GTAW arc model is insufficient to fully explain the effects of the external longitudinal magnetic field on the arc. Therefore, a three-dimensional GTAW arc model was established to elucidate the recirculation flow and negative pressure arc characteristic of magnetic-controlled arc. The external magnetic field controls the surface temperature, pressure, and current density distribution of the workpiece by controlling the flow of arc plasma. When the magnetic flux density is 0.04T, the surface temperature, pressure, and current density of the workpiece exhibit a bimodal distribution. Under the negative pressure of the GTAW arc, the arc plasma on both sides flowed counterclockwise around the center in the spiral upward direction and then counterclockwise downward from 0.9 mm below the tungsten electrode. By controlling the welding current and magnetic flux density, the occurrence of negative surface pressure on the workpiece can be effectively controlled.

二维 GTAW 电弧模型不足以完全解释外部纵向磁场对电弧的影响。因此,我们建立了一个三维 GTAW 电弧模型,以阐明磁控电弧的循环流动和负压电弧特性。外部磁场通过控制电弧等离子体的流动来控制工件的表面温度、压力和电流密度分布。当磁通密度为 0.04T 时,工件表面温度、压力和电流密度呈双峰分布。在 GTAW 电弧的负压作用下,两侧的电弧等离子体围绕中心逆时针螺旋上升流动,然后从钨电极下方 0.9 mm 处逆时针向下流动。通过控制焊接电流和磁通密度,可有效控制工件表面负压的产生。
{"title":"Design and construction for theory and method of magnetic-controlled negative pressure GTAW arc model based on multi-physics simulation","authors":"Kefeng Xu, Jian Luo, Kunyu Cui, Riping Cheng, Lei Ling","doi":"10.1007/s00170-024-13399-w","DOIUrl":"https://doi.org/10.1007/s00170-024-13399-w","url":null,"abstract":"<p>The two-dimensional GTAW arc model is insufficient to fully explain the effects of the external longitudinal magnetic field on the arc. Therefore, a three-dimensional GTAW arc model was established to elucidate the recirculation flow and negative pressure arc characteristic of magnetic-controlled arc. The external magnetic field controls the surface temperature, pressure, and current density distribution of the workpiece by controlling the flow of arc plasma. When the magnetic flux density is 0.04T, the surface temperature, pressure, and current density of the workpiece exhibit a bimodal distribution. Under the negative pressure of the GTAW arc, the arc plasma on both sides flowed counterclockwise around the center in the spiral upward direction and then counterclockwise downward from 0.9 mm below the tungsten electrode. By controlling the welding current and magnetic flux density, the occurrence of negative surface pressure on the workpiece can be effectively controlled.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"30 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140303259","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure and mechanical properties of three-layer composites obtained by magnetic pulse welding of titanium and Zr-based metallic glass 通过磁脉冲焊接钛和锆基金属玻璃获得的三层复合材料的结构和力学性能
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-25 DOI: 10.1007/s00170-024-13484-0
Daria V. Lazurenko, Alexander A. Ivannikov, Alexander G. Anisimov, Nikita S. Popov, Kemal I. Emurlaev, Gleb D. Dovzhenko, Ivan A. Bataev, Ruslan I. Kuzmin, Konstantin E. Kuper

Metallic glass-reinforced metal matrix composites (MMCs) are in the focus of attention of many research groups due to the outstanding properties provided by a combination of ductile crystalline matrix and high-strength glassy phase. To date, many fabrication techniques have been used to form such composites. Most of them are based on pressure-assisted sintering of glassy and crystalline components. However, the selection of the heating temperature and holding time is challenging due to the low thermal stability of the metallic glasses (MGs). In this study, a solid-state magnetic pulse welding (MPW) technique was used for manufacturing laminated Ti-based composites with Zr-based MG reinforcement. The structure of the interfaces between Ti and MG layers was studied using light microscopy (LM), scanning electron microscopy (SEM), and synchrotron X-ray diffraction (SXRD). The experimental study was supplemented with smoothed-particle hydrodynamics (SPH) numerical simulations. The Ti-MG-Ti composite obtained by MPW possessed high quality of joint and had no macroscopic defects such as cracks or lack of fusion. The formation of a firm joint was provided by the plastic flow of titanium. Deformation processes in the titanium plates developed mainly in the interfacial zones, while the MG ribbons subjected to deformation by shear mechanism through the entire thickness. Due to the short-term thermal impact and high cooling rates, MPW retained a disordered structure of MG, despite local melting occurring at the interfaces and in shear bands. Tensile tests of composites containing 5 vol. % and 13 vol. % of MG phase showed that their strength follows the rule of mixtures.

金属玻璃增强金属基复合材料(MMC)具有韧性结晶基体和高强度玻璃相组合的优异性能,是许多研究小组关注的焦点。迄今为止,许多制造技术已被用于形成此类复合材料。其中大多数技术都是基于玻璃相和结晶相的压力辅助烧结。然而,由于金属玻璃(MGs)的热稳定性较低,选择加热温度和保温时间具有挑战性。本研究采用固态磁脉冲焊接 (MPW) 技术制造了带有 Zr 基 MG 增强层的层状 Ti 基复合材料。使用光学显微镜 (LM)、扫描电子显微镜 (SEM) 和同步辐射 X 射线衍射 (SXRD) 研究了钛层和 MG 层之间的界面结构。实验研究还辅以平滑粒子流体力学(SPH)数值模拟。通过 MPW 获得的钛-MG-钛复合材料具有很高的接合质量,没有裂缝或不融合等宏观缺陷。钛的塑性流动为牢固连接的形成提供了条件。钛板的变形过程主要发生在界面区,而 MG 带则通过剪切机制在整个厚度上发生变形。由于短期热影响和高冷却率,尽管在界面和剪切带发生了局部熔化,但 MPW 仍保持了 MG 的无序结构。对含有 5 体积百分比和 13 体积百分比 MG 相的复合材料进行的拉伸测试表明,它们的强度遵循混合物的规则。
{"title":"Structure and mechanical properties of three-layer composites obtained by magnetic pulse welding of titanium and Zr-based metallic glass","authors":"Daria V. Lazurenko, Alexander A. Ivannikov, Alexander G. Anisimov, Nikita S. Popov, Kemal I. Emurlaev, Gleb D. Dovzhenko, Ivan A. Bataev, Ruslan I. Kuzmin, Konstantin E. Kuper","doi":"10.1007/s00170-024-13484-0","DOIUrl":"https://doi.org/10.1007/s00170-024-13484-0","url":null,"abstract":"<p>Metallic glass-reinforced metal matrix composites (MMCs) are in the focus of attention of many research groups due to the outstanding properties provided by a combination of ductile crystalline matrix and high-strength glassy phase. To date, many fabrication techniques have been used to form such composites. Most of them are based on pressure-assisted sintering of glassy and crystalline components. However, the selection of the heating temperature and holding time is challenging due to the low thermal stability of the metallic glasses (MGs). In this study, a solid-state magnetic pulse welding (MPW) technique was used for manufacturing laminated Ti-based composites with Zr-based MG reinforcement. The structure of the interfaces between Ti and MG layers was studied using light microscopy (LM), scanning electron microscopy (SEM), and synchrotron X-ray diffraction (SXRD). The experimental study was supplemented with smoothed-particle hydrodynamics (SPH) numerical simulations. The Ti-MG-Ti composite obtained by MPW possessed high quality of joint and had no macroscopic defects such as cracks or lack of fusion. The formation of a firm joint was provided by the plastic flow of titanium. Deformation processes in the titanium plates developed mainly in the interfacial zones, while the MG ribbons subjected to deformation by shear mechanism through the entire thickness. Due to the short-term thermal impact and high cooling rates, MPW retained a disordered structure of MG, despite local melting occurring at the interfaces and in shear bands. Tensile tests of composites containing 5 vol. % and 13 vol. % of MG phase showed that their strength follows the rule of mixtures.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"11 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of extrusion 4D printing parameters on the thermal shape-morphing behaviors of polylactic acid (PLA) 挤出 4D 印刷参数对聚乳酸(PLA)热形变行为的影响
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-25 DOI: 10.1007/s00170-024-13470-6
Aref Ansaripour, Mohammad Heidari-Rarani, Rasoul Mahshid, Mahdi Bodaghi

A simple and inactive structure is able to transform into a complex and active one via four-dimensional (4D) printing. Controlling bending deformation, activation time, and temperature is crucial in 4D printing. This study aimed to comprehensively evaluate and analyze the effect of different process parameters on the bending deformation of polylactic acid (PLA) shape-morphing produced by material extrusion additive manufacturing. These parameters included layup, layer thickness, printing speed, nozzle temperature, nozzle diameter, and bed temperature. Since the bending deformation is significantly affected by the specimen wall, this study has focused, for the first time, on the simultaneous influence of process parameters and presence of a wall on the deformation. Furthermore, the study examined the influence of printing parameters on activation time and activation temperature. The results indicated that increasing the pre-strain stored in the parts led to a decrease in activation time and activation temperature. Subsequently, the Taguchi design of experiment method was used to optimize the most influential parameters on the bending deformation. The difference between the optimal predicted and the experimental deformations was less than 2%. Layer thickness, layup, nozzle temperature, and printing speed were recognized as the most effective parameters for controlling deformation, respectively.

通过四维(4D)打印,简单的非活性结构可以转变为复杂的活性结构。控制弯曲变形、活化时间和温度对四维打印至关重要。本研究旨在全面评估和分析不同工艺参数对材料挤出增材制造生产的聚乳酸(PLA)成型弯曲变形的影响。这些参数包括层数、层厚、打印速度、喷嘴温度、喷嘴直径和床层温度。由于弯曲变形受试样壁的影响很大,本研究首次关注了工艺参数和试样壁对变形的同时影响。此外,研究还考察了印刷参数对活化时间和活化温度的影响。结果表明,增加部件中储存的预应变会导致活化时间和活化温度的降低。随后,采用田口实验设计法优化了对弯曲变形影响最大的参数。最佳预测变形与实验变形之间的差异小于 2%。层厚、分层、喷嘴温度和印刷速度分别被认为是控制变形最有效的参数。
{"title":"Influence of extrusion 4D printing parameters on the thermal shape-morphing behaviors of polylactic acid (PLA)","authors":"Aref Ansaripour, Mohammad Heidari-Rarani, Rasoul Mahshid, Mahdi Bodaghi","doi":"10.1007/s00170-024-13470-6","DOIUrl":"https://doi.org/10.1007/s00170-024-13470-6","url":null,"abstract":"<p>A simple and inactive structure is able to transform into a complex and active one via four-dimensional (4D) printing. Controlling bending deformation, activation time, and temperature is crucial in 4D printing. This study aimed to comprehensively evaluate and analyze the effect of different process parameters on the bending deformation of polylactic acid (PLA) shape-morphing produced by material extrusion additive manufacturing. These parameters included layup, layer thickness, printing speed, nozzle temperature, nozzle diameter, and bed temperature. Since the bending deformation is significantly affected by the specimen wall, this study has focused, for the first time, on the simultaneous influence of process parameters and presence of a wall on the deformation. Furthermore, the study examined the influence of printing parameters on activation time and activation temperature. The results indicated that increasing the pre-strain stored in the parts led to a decrease in activation time and activation temperature. Subsequently, the Taguchi design of experiment method was used to optimize the most influential parameters on the bending deformation. The difference between the optimal predicted and the experimental deformations was less than 2%. Layer thickness, layup, nozzle temperature, and printing speed were recognized as the most effective parameters for controlling deformation, respectively.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"273 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299498","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptable multi-objective optimization framework: application to metal additive manufacturing 适应性多目标优化框架:应用于金属增材制造
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-25 DOI: 10.1007/s00170-024-13489-9

Abstract

This work presents a novel adaptable framework for multi-objective optimization (MOO) in metal additive manufacturing (AM). The framework offers significant advantages by departing from the traditional design of experiments (DoE) and embracing surrogate-based optimization techniques for enhanced efficiency. It accommodates a wide range of process variables such as laser power, scan speed, hatch distance, and optimization objectives like porosity and surface roughness (SR), leveraging Bayesian optimization for continuous improvement. High-fidelity surrogate models are ensured through the implementation of space-filling design and Gaussian process regression. Sensitivity analysis (SA) is employed to quantify the influence of input parameters, while an evolutionary algorithm drives the MOO process. The efficacy of the framework is demonstrated by applying it to optimize SR and porosity in a case study, achieving a significant reduction in SR and porosity levels using data from existing literature. The Gaussian process model achieves a commendable cross-validation R2 score of 0.79, indicating a strong correlation between the predicted and actual values with minimal relative mean errors. Furthermore, the SA highlights the dominant role of hatch spacing in SR prediction and the balanced contribution of laser speed and power on porosity control. This adaptable framework offers significant potential to surpass existing optimization approaches by enabling a more comprehensive optimization, contributing to notable advancements in AM technology.

摘要 这项工作为金属增材制造(AM)中的多目标优化(MOO)提出了一个新颖的适应性框架。该框架摒弃了传统的实验设计(DoE),采用了基于代理的优化技术以提高效率,因而具有显著优势。它能适应激光功率、扫描速度、舱口距离等多种工艺变量,以及孔隙率和表面粗糙度(SR)等优化目标,并利用贝叶斯优化技术实现持续改进。通过实施空间填充设计和高斯过程回归,确保了高保真代用模型。灵敏度分析(SA)用于量化输入参数的影响,而进化算法则驱动 MOO 过程。通过在案例研究中应用该框架优化 SR 和孔隙度,利用现有文献中的数据显著降低了 SR 和孔隙度水平,从而证明了该框架的功效。高斯过程模型的交叉验证 R2 值为 0.79,值得称赞,这表明预测值和实际值之间具有很强的相关性,相对平均误差极小。此外,SA 突出显示了舱口间距在 SR 预测中的主导作用,以及激光速度和功率对孔隙率控制的均衡贡献。这种适应性强的框架通过实现更全面的优化,为超越现有优化方法提供了巨大潜力,从而推动了 AM 技术的显著进步。
{"title":"Adaptable multi-objective optimization framework: application to metal additive manufacturing","authors":"","doi":"10.1007/s00170-024-13489-9","DOIUrl":"https://doi.org/10.1007/s00170-024-13489-9","url":null,"abstract":"<h3>Abstract</h3> <p>This work presents a novel adaptable framework for multi-objective optimization (MOO) in metal additive manufacturing (AM). The framework offers significant advantages by departing from the traditional design of experiments (DoE) and embracing surrogate-based optimization techniques for enhanced efficiency. It accommodates a wide range of process variables such as laser power, scan speed, hatch distance, and optimization objectives like porosity and surface roughness (SR), leveraging Bayesian optimization for continuous improvement. High-fidelity surrogate models are ensured through the implementation of space-filling design and Gaussian process regression. Sensitivity analysis (SA) is employed to quantify the influence of input parameters, while an evolutionary algorithm drives the MOO process. The efficacy of the framework is demonstrated by applying it to optimize SR and porosity in a case study, achieving a significant reduction in SR and porosity levels using data from existing literature. The Gaussian process model achieves a commendable cross-validation <em>R</em>2 score of 0.79, indicating a strong correlation between the predicted and actual values with minimal relative mean errors. Furthermore, the SA highlights the dominant role of hatch spacing in SR prediction and the balanced contribution of laser speed and power on porosity control. This adaptable framework offers significant potential to surpass existing optimization approaches by enabling a more comprehensive optimization, contributing to notable advancements in AM technology.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"40 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140299553","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Surface roughness optimization of hybrid PBF-LB/M-built Inconel 718 using in situ high-speed milling 利用原位高速铣削优化混合 PBF-LB/M-Bilt Inconel 718 的表面粗糙度
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-23 DOI: 10.1007/s00170-024-13382-5
David Sommer, Simon Hornung, Cemal Esen, Ralf Hellmann

We report on the optimization of the surface roughness of hybrid additive manufactured Ni superalloys, combining a conventional laser powder bed fusion process with in situ high-speed milling. This remarkable hybrid approach has only recently been applied to different steel types and barely to Ni superalloys which opposite to steel appear to be challenging for milling processes, particularly within the powderbed of laser powder bed fusion. Different influencing factors on the surface roughness are varied in this study, following the Taguchi method. Their effect is evaluated with respect to the average surface roughness and the maximum surface roughness. The signal-to-noise ratio for the varied parameters infeed, z-pitch, feed rate, and spindle speed is calculated, determining their relevance on the surface roughness, and defining an optimal parameter combination. As the surface quality is optimized to (varvec{R_a=0.47, mu m}), the definition of the optimal parameter combination is of the highest relevance for the application of this novel manufacturing approach for Inconel. Using linear regression, the resulting surface roughness of these parameters is predicted, getting validated by the experimental evaluation. Due to a further analysis, including EDX analysis and a quantitative element analysis at different positions of the flank of the milling cutter, wear characteristics as well as the dissipation of the coating of the milling cutter are detected. The flank wear and the resulting breakage of the cutting edge are defined as the main reasons of a rising surface roughness.

我们报告了混合添加剂制造镍超合金表面粗糙度的优化,该方法结合了传统的激光粉末床熔融工艺和原位高速铣削工艺。这种非凡的混合方法最近才应用于不同类型的钢材,而且几乎没有应用于镍超合金,因为与钢材相比,镍超合金似乎对铣削工艺具有挑战性,尤其是在激光粉末床熔融的粉末床内。本研究采用田口方法,改变了表面粗糙度的不同影响因素。评估了这些因素对平均表面粗糙度和最大表面粗糙度的影响。通过计算进给、Z 间距、进给率和主轴转速等不同参数的信噪比,确定它们对表面粗糙度的影响,并确定最佳参数组合。由于表面质量的优化目标是 (varvec{R_a=0.47, mu m}),因此定义最佳参数组合对于应用这种用于铬镍铁合金的新型制造方法具有最高的相关性。使用线性回归法预测了这些参数产生的表面粗糙度,并通过实验评估进行了验证。通过进一步的分析,包括对铣刀侧面不同位置的 EDX 分析和定量元素分析,可以检测出铣刀的磨损特征和涂层耗散情况。侧面磨损和由此导致的切削刃断裂被定义为表面粗糙度上升的主要原因。
{"title":"Surface roughness optimization of hybrid PBF-LB/M-built Inconel 718 using in situ high-speed milling","authors":"David Sommer, Simon Hornung, Cemal Esen, Ralf Hellmann","doi":"10.1007/s00170-024-13382-5","DOIUrl":"https://doi.org/10.1007/s00170-024-13382-5","url":null,"abstract":"<p>We report on the optimization of the surface roughness of hybrid additive manufactured Ni superalloys, combining a conventional laser powder bed fusion process with in situ high-speed milling. This remarkable hybrid approach has only recently been applied to different steel types and barely to Ni superalloys which opposite to steel appear to be challenging for milling processes, particularly within the powderbed of laser powder bed fusion. Different influencing factors on the surface roughness are varied in this study, following the Taguchi method. Their effect is evaluated with respect to the average surface roughness and the maximum surface roughness. The signal-to-noise ratio for the varied parameters infeed, z-pitch, feed rate, and spindle speed is calculated, determining their relevance on the surface roughness, and defining an optimal parameter combination. As the surface quality is optimized to <span>(varvec{R_a=0.47, mu m})</span>, the definition of the optimal parameter combination is of the highest relevance for the application of this novel manufacturing approach for Inconel. Using linear regression, the resulting surface roughness of these parameters is predicted, getting validated by the experimental evaluation. Due to a further analysis, including EDX analysis and a quantitative element analysis at different positions of the flank of the milling cutter, wear characteristics as well as the dissipation of the coating of the milling cutter are detected. The flank wear and the resulting breakage of the cutting edge are defined as the main reasons of a rising surface roughness.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"14 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of pulse shaping on coupling efficiency of laser spot welding in AZ31 magnesium alloy 脉冲整形对 AZ31 镁合金激光点焊耦合效率的影响
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-23 DOI: 10.1007/s00170-024-13421-1
Pengfei Zhao, Xiaobin Zhang, Shuwang Bian, Wenlong Zhang, Zhanyi Cao

Energy coupling efficiency has an important effect on welding quality in pulsed laser spot welding. In this paper, laser spot welding experiments are conducted on 3 mm AZ31 magnesium alloy using an AC-500 W Nd:YAG pulsed laser welder. Results show that the rectangular pulse (R) energy coupling is the most efficient when peak power is less than or equal to 3 kW, but the energy coupling of ramp-up pulse (R-U) is the most efficient when peak power is greater than 3 kW. When the peak power is 4 kW, the energy coupling efficiency of laser spot welding under R-U pulse is the highest. At this time, the cross-sectional area of welding spot reaches 1.3 mm2, peak temperature is 1550 ℃, the metal loss of melting pool is 4.4 mg, the depth-to-width ratio of keyhole is 1.06, and the laser absorptance is 0.9. In addition, a numerical model of velocity field of transient keyhole laser spot welding is established by using ANSYS, and the shape and size of keyhole are calculated during laser spot welding. The mechanism of pulse shaping to improve the energy coupling efficiency of deep-melt laser welding of magnesium alloys is revealed.

能量耦合效率对脉冲激光点焊的焊接质量有重要影响。本文使用 AC-500 W Nd:YAG 脉冲激光焊接机对 3 mm AZ31 镁合金进行了激光点焊实验。结果表明,当峰值功率小于或等于 3 kW 时,矩形脉冲(R)的能量耦合效率最高,但当峰值功率大于 3 kW 时,升压脉冲(R-U)的能量耦合效率最高。当峰值功率为 4 kW 时,R-U 脉冲下激光点焊的能量耦合效率最高。此时,焊点横截面积达到 1.3 mm2,峰值温度为 1550 ℃,熔池金属损耗为 4.4 mg,键孔深宽比为 1.06,激光吸收率为 0.9。此外,利用 ANSYS 建立了瞬态键孔激光点焊速度场数值模型,并计算了激光点焊过程中键孔的形状和尺寸。揭示了脉冲整形提高镁合金深熔激光焊接能量耦合效率的机理。
{"title":"Effect of pulse shaping on coupling efficiency of laser spot welding in AZ31 magnesium alloy","authors":"Pengfei Zhao, Xiaobin Zhang, Shuwang Bian, Wenlong Zhang, Zhanyi Cao","doi":"10.1007/s00170-024-13421-1","DOIUrl":"https://doi.org/10.1007/s00170-024-13421-1","url":null,"abstract":"<p>Energy coupling efficiency has an important effect on welding quality in pulsed laser spot welding. In this paper, laser spot welding experiments are conducted on 3 mm AZ31 magnesium alloy using an AC-500 W Nd:YAG pulsed laser welder. Results show that the rectangular pulse (R) energy coupling is the most efficient when peak power is less than or equal to 3 kW, but the energy coupling of ramp-up pulse (R-U) is the most efficient when peak power is greater than 3 kW. When the peak power is 4 kW, the energy coupling efficiency of laser spot welding under R-U pulse is the highest. At this time, the cross-sectional area of welding spot reaches 1.3 mm<sup>2</sup>, peak temperature is 1550 ℃, the metal loss of melting pool is 4.4 mg, the depth-to-width ratio of keyhole is 1.06, and the laser absorptance is 0.9. In addition, a numerical model of velocity field of transient keyhole laser spot welding is established by using ANSYS, and the shape and size of keyhole are calculated during laser spot welding. The mechanism of pulse shaping to improve the energy coupling efficiency of deep-melt laser welding of magnesium alloys is revealed.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"8 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140202995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical analysis of stress & strain and thickness variation in single point incremental forming of tailor welded steel blanks 定制焊接钢坯单点增量成形中应力、应变和厚度变化的数值分析
IF 3.4 3区 工程技术 Q2 AUTOMATION & CONTROL SYSTEMS Pub Date : 2024-03-23 DOI: 10.1007/s00170-024-13422-0
Usman Attique, Shahid Ikramullah Butt, Aamir Mubashar, Liaqat Ali, Ghulam Hussain

Finite element (FE) modeling of tailor welded blanks (TWBs) is a complex phenomenon compared to FE modeling of monolithic sheets due to the change of mechanical properties caused by the welding process. This complexity involves modeling different zones generated due to the heat effect. Research on the formability of steel TWBs with dissimilar thicknesses and strength produced by manual tungsten inert gas (TIG) welding technique and formed by single point incremental forming (SPIF) involving base sheets, weld nugget (WN), and heat affected zone (HAZ) is presented, numerically. The materials selected for the study included deep drawing quality (DDQ) steel (DC06) and stainless steel (SS) (AISI 201). Variable wall angle truncated pyramid was used as test geometry, and FE software Abaqus (dynamic explicit solver) was used for the analysis. Thickness profiles and state of stress and strain in both the cases of thickness and strength differential were analyzed. A decrease in thickness was observed at the corners in both cases. However, this decrease was more prominent in the case of strength differential. The symmetry of the pattern on both sides with minimum and maximum values of stress towards the thinner side was observed in the case of thickness differential. Variation in stress was more prominent towards the side of high-strength material along maximum value in the case of strength differential. Equivalent plastic strain observed was more linear and higher towards the sides of thicker sheet and material having less strength in the case of thickness differential and strength differential, respectively. Research investigations may be applied in a similar fashion for the precise study of formability characteristics of various kinds of TWBs being used in multiple industries including automotive, vessel, and medical.

与整体板材的有限元建模相比,定制焊接坯料(TWBs)的有限元(FE)建模是一种复杂的现象,因为焊接过程会引起机械性能的变化。这种复杂性涉及对热效应产生的不同区域进行建模。本文通过数值方法研究了手工钨极惰性气体(TIG)焊接技术生产的不同厚度和强度的钢 TWB 的成形性,以及通过单点增量成形(SPIF)形成的涉及母材、焊瘤(WN)和热影响区(HAZ)的 TWB 的成形性。研究选择的材料包括深冲质量(DDQ)钢(DC06)和不锈钢(SS)(AISI 201)。试验采用可变壁角的截顶金字塔作为几何形状,并使用 FE 软件 Abaqus(动态显式求解器)进行分析。分析了厚度和强度差两种情况下的厚度曲线以及应力和应变状态。在两种情况下,都观察到边角处的厚度减小。然而,在强度差的情况下,这种减少更为明显。在厚度差的情况下,两侧的图案对称,应力的最小值和最大值都偏向较薄的一侧。在强度差的情况下,应力的变化在沿最大值方向的高强度材料一侧更为明显。在厚度差和强度差的情况下,观察到的等效塑性应变分别向较厚板材和强度较低材料的一侧更线性和更高。研究调查可以类似的方式用于精确研究汽车、船舶和医疗等多个行业使用的各种 TWB 的可成形性特征。
{"title":"Numerical analysis of stress & strain and thickness variation in single point incremental forming of tailor welded steel blanks","authors":"Usman Attique, Shahid Ikramullah Butt, Aamir Mubashar, Liaqat Ali, Ghulam Hussain","doi":"10.1007/s00170-024-13422-0","DOIUrl":"https://doi.org/10.1007/s00170-024-13422-0","url":null,"abstract":"<p>Finite element (FE) modeling of tailor welded blanks (TWBs) is a complex phenomenon compared to FE modeling of monolithic sheets due to the change of mechanical properties caused by the welding process. This complexity involves modeling different zones generated due to the heat effect. Research on the formability of steel TWBs with dissimilar thicknesses and strength produced by manual tungsten inert gas (TIG) welding technique and formed by single point incremental forming (SPIF) involving base sheets, weld nugget (WN), and heat affected zone (HAZ) is presented, numerically. The materials selected for the study included deep drawing quality (DDQ) steel (DC06) and stainless steel (SS) (AISI 201). Variable wall angle truncated pyramid was used as test geometry, and FE software Abaqus (dynamic explicit solver) was used for the analysis. Thickness profiles and state of stress and strain in both the cases of thickness and strength differential were analyzed. A decrease in thickness was observed at the corners in both cases. However, this decrease was more prominent in the case of strength differential. The symmetry of the pattern on both sides with minimum and maximum values of stress towards the thinner side was observed in the case of thickness differential. Variation in stress was more prominent towards the side of high-strength material along maximum value in the case of strength differential. Equivalent plastic strain observed was more linear and higher towards the sides of thicker sheet and material having less strength in the case of thickness differential and strength differential, respectively. Research investigations may be applied in a similar fashion for the precise study of formability characteristics of various kinds of TWBs being used in multiple industries including automotive, vessel, and medical.</p>","PeriodicalId":50345,"journal":{"name":"International Journal of Advanced Manufacturing Technology","volume":"86 1","pages":""},"PeriodicalIF":3.4,"publicationDate":"2024-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140203325","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Advanced Manufacturing Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1