Pub Date : 2025-12-18DOI: 10.1016/j.disc.2025.114957
Laura Pierson
<div><div>The <em><strong>chromatic symmetric function</strong></em> <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> is a symmetric function generalization of the chromatic polynomial of a graph, introduced by Stanley <span><span>[7]</span></span>. Stanley <span><span>[7]</span></span> gave an expansion formula for <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> in terms of the <em><strong>power sum symmetric functions</strong></em> <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> using the principle of inclusion-exclusion, and Bernardi and Nadeau <span><span>[1]</span></span> gave an alternate <em>p</em>-expansion for <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> in terms of acyclic orientations. Crew, Pechenik, and Spirkl <span><span>[3]</span></span> defined the <em><strong>Kromatic symmetric function</strong></em> <span><math><msub><mrow><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>G</mi></mrow></msub></math></span> as a <em>K</em>-theoretic analogue of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>, constructed in the same way except that each vertex is assigned a nonempty set of colors such that adjacent vertices have nonoverlapping color sets. They defined a <em>K</em>-analogue <span><math><msub><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>λ</mi></mrow></msub></math></span> of the power sum basis and computed the first few coefficients of the <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover></math></span>-expansion of <span><math><msub><mrow><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>G</mi></mrow></msub></math></span> for some small graphs <em>G</em>. They conjectured that the <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover></math></span>-expansion always has integer coefficients and asked whether there is an explicit formula for these coefficients. In this note, we give a formula for the <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover></math></span>-expansion of <span><math><msub><mrow><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>G</mi></mrow></msub></math></span>, show two ways to compute the coefficients recursively (along with examples), and prove that the coefficients are indeed always integers. In a more recent paper <span><span>[6]</span></span>, we use our formula from this note to give a combinatorial description of the <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover></math></span>-coefficients <span><math><mo>[</mo><msub><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>λ</mi></mrow></msub><mo>]</mo><msub><mrow><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>G</mi></mrow></msub></math></span> and a simple characterization of their signs in the case of unweighted graphs.</
{"title":"A power sum expansion for the Kromatic symmetric function","authors":"Laura Pierson","doi":"10.1016/j.disc.2025.114957","DOIUrl":"10.1016/j.disc.2025.114957","url":null,"abstract":"<div><div>The <em><strong>chromatic symmetric function</strong></em> <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> is a symmetric function generalization of the chromatic polynomial of a graph, introduced by Stanley <span><span>[7]</span></span>. Stanley <span><span>[7]</span></span> gave an expansion formula for <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> in terms of the <em><strong>power sum symmetric functions</strong></em> <span><math><msub><mrow><mi>p</mi></mrow><mrow><mi>λ</mi></mrow></msub></math></span> using the principle of inclusion-exclusion, and Bernardi and Nadeau <span><span>[1]</span></span> gave an alternate <em>p</em>-expansion for <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span> in terms of acyclic orientations. Crew, Pechenik, and Spirkl <span><span>[3]</span></span> defined the <em><strong>Kromatic symmetric function</strong></em> <span><math><msub><mrow><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>G</mi></mrow></msub></math></span> as a <em>K</em>-theoretic analogue of <span><math><msub><mrow><mi>X</mi></mrow><mrow><mi>G</mi></mrow></msub></math></span>, constructed in the same way except that each vertex is assigned a nonempty set of colors such that adjacent vertices have nonoverlapping color sets. They defined a <em>K</em>-analogue <span><math><msub><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>λ</mi></mrow></msub></math></span> of the power sum basis and computed the first few coefficients of the <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover></math></span>-expansion of <span><math><msub><mrow><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>G</mi></mrow></msub></math></span> for some small graphs <em>G</em>. They conjectured that the <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover></math></span>-expansion always has integer coefficients and asked whether there is an explicit formula for these coefficients. In this note, we give a formula for the <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover></math></span>-expansion of <span><math><msub><mrow><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>G</mi></mrow></msub></math></span>, show two ways to compute the coefficients recursively (along with examples), and prove that the coefficients are indeed always integers. In a more recent paper <span><span>[6]</span></span>, we use our formula from this note to give a combinatorial description of the <span><math><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover></math></span>-coefficients <span><math><mo>[</mo><msub><mrow><mover><mrow><mi>p</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>λ</mi></mrow></msub><mo>]</mo><msub><mrow><mover><mrow><mi>X</mi></mrow><mo>‾</mo></mover></mrow><mrow><mi>G</mi></mrow></msub></math></span> and a simple characterization of their signs in the case of unweighted graphs.</","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114957"},"PeriodicalIF":0.7,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145798324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-18DOI: 10.1016/j.disc.2025.114956
Julien Bensmail , Clara Marcille
For every graph G with size m and no connected component isomorphic to , we prove that, for , we can assign labels of L to the edges of G in an injective way so that no two adjacent vertices of G are incident to the same sum of labels. This implies that every such graph with size m can be labelled in an equitable and proper way with labels from , which improves on a result proved by Haslegrave, and Szabo Lyngsie and Zhong, implying this can be achieved with labels from .
{"title":"An improved bound for equitable proper labellings","authors":"Julien Bensmail , Clara Marcille","doi":"10.1016/j.disc.2025.114956","DOIUrl":"10.1016/j.disc.2025.114956","url":null,"abstract":"<div><div>For every graph <em>G</em> with size <em>m</em> and no connected component isomorphic to <span><math><msub><mrow><mi>K</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, we prove that, for <span><math><mi>L</mi><mo>=</mo><mo>(</mo><mn>1</mn><mo>,</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mo>⌊</mo><mi>m</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>2</mn><mo>,</mo><mo>⌊</mo><mi>m</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>2</mn><mo>)</mo></math></span>, we can assign labels of <em>L</em> to the edges of <em>G</em> in an injective way so that no two adjacent vertices of <em>G</em> are incident to the same sum of labels. This implies that every such graph with size <em>m</em> can be labelled in an equitable and proper way with labels from <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mo>⌊</mo><mi>m</mi><mo>/</mo><mn>2</mn><mo>⌋</mo><mo>+</mo><mn>2</mn><mo>}</mo></math></span>, which improves on a result proved by Haslegrave, and Szabo Lyngsie and Zhong, implying this can be achieved with labels from <span><math><mo>{</mo><mn>1</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>m</mi><mo>}</mo></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114956"},"PeriodicalIF":0.7,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145798383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-18DOI: 10.1016/j.disc.2025.114951
Cristina G. Fernandes , Carla N. Lintzmayer , Juan P. Peña , Giovanne Santos , Ana Trujillo-Negrete , Jose Zamora
For a digraph D of order n and an integer , the k-token digraph of D is the digraph whose vertices are all k-subsets of vertices of D and, given two such k-subsets A and B, is an arc in the k-token digraph whenever , , and there is an arc in D. Token digraphs are a generalization of token graphs. In this paper, we study some properties of token digraphs, including strong and unilateral connectivity, kernels, girth, circumference, and Eulerianity. We also extend some known results on the clique and chromatic numbers of k-token graphs, addressing the bidirected clique number and dichromatic number of k-token digraphs. Additionally, we prove that determining whether 2-token digraphs have a kernel is NP-complete.
{"title":"A study on token digraphs","authors":"Cristina G. Fernandes , Carla N. Lintzmayer , Juan P. Peña , Giovanne Santos , Ana Trujillo-Negrete , Jose Zamora","doi":"10.1016/j.disc.2025.114951","DOIUrl":"10.1016/j.disc.2025.114951","url":null,"abstract":"<div><div>For a digraph <em>D</em> of order <em>n</em> and an integer <span><math><mn>1</mn><mo>≤</mo><mi>k</mi><mo>≤</mo><mi>n</mi><mo>−</mo><mn>1</mn></math></span>, the <em>k-token digraph</em> of <em>D</em> is the digraph whose vertices are all <em>k</em>-subsets of vertices of <em>D</em> and, given two such <em>k</em>-subsets <em>A</em> and <em>B</em>, <span><math><mo>(</mo><mi>A</mi><mo>,</mo><mi>B</mi><mo>)</mo></math></span> is an arc in the <em>k</em>-token digraph whenever <span><math><mo>{</mo><mi>a</mi><mo>}</mo><mo>=</mo><mi>A</mi><mo>∖</mo><mi>B</mi></math></span>, <span><math><mo>{</mo><mi>b</mi><mo>}</mo><mo>=</mo><mi>B</mi><mo>∖</mo><mi>A</mi></math></span>, and there is an arc <span><math><mo>(</mo><mi>a</mi><mo>,</mo><mi>b</mi><mo>)</mo></math></span> in <em>D</em>. Token digraphs are a generalization of token graphs. In this paper, we study some properties of token digraphs, including strong and unilateral connectivity, kernels, girth, circumference, and Eulerianity. We also extend some known results on the clique and chromatic numbers of <em>k</em>-token graphs, addressing the bidirected clique number and dichromatic number of <em>k</em>-token digraphs. Additionally, we prove that determining whether 2-token digraphs have a kernel is <span>NP</span>-complete.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114951"},"PeriodicalIF":0.7,"publicationDate":"2025-12-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145798256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-17DOI: 10.1016/j.disc.2025.114948
Erfei Yue
<div><div>A family of disjoint pairs of finite sets <span><math><mi>P</mi><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>|</mo><mi>i</mi><mo>∈</mo><mo>[</mo><mi>m</mi><mo>]</mo><mo>}</mo></math></span> is called a Bollobás system if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mo>∅</mo></math></span> for every <span><math><mi>i</mi><mo>≠</mo><mi>j</mi></math></span>, and a skew Bollobás system if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mo>∅</mo></math></span> for every <span><math><mi>i</mi><mo><</mo><mi>j</mi></math></span>. Bollobás proved that for a Bollobás system, the inequality<span><span><span><math><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msup><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>+</mo><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>⩽</mo><mn>1</mn></math></span></span></span> holds. Hegedüs and Frankl proved that for a skew Bollobás system, we have<span><span><span><math><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msup><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>+</mo><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>⩽</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo>,</mo></math></span></span></span> provided <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>⊆</mo><mo>[</mo><mi>n</mi><mo>]</mo></math></span>. In this paper, we improve this inequality to<span><span><span><math><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msup><mrow><mo>(</mo><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>+</mo><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>)</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>+</mo><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi>
{"title":"Some new Bollobás-type inequalities","authors":"Erfei Yue","doi":"10.1016/j.disc.2025.114948","DOIUrl":"10.1016/j.disc.2025.114948","url":null,"abstract":"<div><div>A family of disjoint pairs of finite sets <span><math><mi>P</mi><mo>=</mo><mo>{</mo><mo>(</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo><mo>|</mo><mi>i</mi><mo>∈</mo><mo>[</mo><mi>m</mi><mo>]</mo><mo>}</mo></math></span> is called a Bollobás system if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mo>∅</mo></math></span> for every <span><math><mi>i</mi><mo>≠</mo><mi>j</mi></math></span>, and a skew Bollobás system if <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>∩</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>≠</mo><mo>∅</mo></math></span> for every <span><math><mi>i</mi><mo><</mo><mi>j</mi></math></span>. Bollobás proved that for a Bollobás system, the inequality<span><span><span><math><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msup><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>+</mo><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>⩽</mo><mn>1</mn></math></span></span></span> holds. Hegedüs and Frankl proved that for a skew Bollobás system, we have<span><span><span><math><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msup><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>+</mo><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mtd></mtr><mtr><mtd><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo></mrow></mtd></mtr></mtable><mo>)</mo></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msup><mo>⩽</mo><mn>1</mn><mo>+</mo><mi>n</mi><mo>,</mo></math></span></span></span> provided <span><math><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>,</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>⊆</mo><mo>[</mo><mi>n</mi><mo>]</mo></math></span>. In this paper, we improve this inequality to<span><span><span><math><munderover><mo>∑</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mrow><mi>m</mi></mrow></munderover><msup><mrow><mo>(</mo><mo>(</mo><mn>1</mn><mo>+</mo><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>+</mo><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>)</mo><mrow><mo>(</mo><mtable><mtr><mtd><mrow><mo>|</mo><msub><mrow><mi>A</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>|</mo><mo>+</mo><mo>|</mo><msub><mrow><mi>B</mi></mrow><mrow><mi>i</mi>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114948"},"PeriodicalIF":0.7,"publicationDate":"2025-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145798255","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-17DOI: 10.1016/j.disc.2025.114950
Vladimir P. Korzhik
The vertex-face chromatic number of a nonorientable surface of genus q is the minimum integer m such that the vertices and faces of any map on the surface can be colored by m colors in such a way that adjacent or incident elements receive distinct colors. The known upper bound on differs from Ringel's upper bound on the 1-chromatic number of nonorientable surfaces.
The results are as follows:
(i)
There is a constant such that for any , .
Let x be an integer and let be the number of values of q in the interval such that . Then .
不可定向曲面Nq的顶点面色数χvf(Nq)是最小整数m,使得曲面上任何地图的顶点和面都可以用m种颜色着色,从而使相邻或相关元素获得不同的颜色。已知的χvf(Nq)上界Φ(Nq)不同于不可定向曲面1色数上的Ringel上界。结果如下:(i)存在一个常数A>;0,使得对于任意q≥a, Φ(Nq)−1≤χvf(Nq)≤Φ(Nq)。(ii)设x为整数,设P(x)为区间[1,x]中使χvf(Nq)=Φ(Nq)的q值的个数。然后limx→∞P (x) / x = 1。
{"title":"The vertex-face chromatic number of almost all nonorientable surfaces","authors":"Vladimir P. Korzhik","doi":"10.1016/j.disc.2025.114950","DOIUrl":"10.1016/j.disc.2025.114950","url":null,"abstract":"<div><div>The vertex-face chromatic number <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>v</mi><mi>f</mi></mrow></msub><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> of a nonorientable surface <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>q</mi></mrow></msub></math></span> of genus <em>q</em> is the minimum integer <em>m</em> such that the vertices and faces of any map on the surface can be colored by <em>m</em> colors in such a way that adjacent or incident elements receive distinct colors. The known upper bound <span><math><mi>Φ</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> on <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>v</mi><mi>f</mi></mrow></msub><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span> differs from Ringel's upper bound on the 1-chromatic number of nonorientable surfaces.</div><div>The results are as follows:<ul><li><span>(<em>i</em>)</span><span><div>There is a constant <span><math><mi>A</mi><mo>></mo><mn>0</mn></math></span> such that for any <span><math><mi>q</mi><mo>≥</mo><mi>A</mi></math></span>, <span><math><mi>Φ</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo><mo>−</mo><mn>1</mn><mo>≤</mo><msub><mrow><mi>χ</mi></mrow><mrow><mi>v</mi><mi>f</mi></mrow></msub><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo><mo>≤</mo><mi>Φ</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>.</div></span></li><li><span><span><math><mo>(</mo><mi>i</mi><mi>i</mi><mo>)</mo></math></span></span><span><div>Let <em>x</em> be an integer and let <span><math><mi>P</mi><mo>(</mo><mi>x</mi><mo>)</mo></math></span> be the number of values of <em>q</em> in the interval <span><math><mo>[</mo><mn>1</mn><mo>,</mo><mi>x</mi><mo>]</mo></math></span> such that <span><math><msub><mrow><mi>χ</mi></mrow><mrow><mi>v</mi><mi>f</mi></mrow></msub><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo><mo>=</mo><mi>Φ</mi><mo>(</mo><msub><mrow><mi>N</mi></mrow><mrow><mi>q</mi></mrow></msub><mo>)</mo></math></span>. Then <span><math><msub><mrow><mi>lim</mi></mrow><mrow><mi>x</mi><mo>→</mo><mo>∞</mo></mrow></msub><mo></mo><mi>P</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>/</mo><mi>x</mi><mo>=</mo><mn>1</mn></math></span>.</div></span></li></ul></div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114950"},"PeriodicalIF":0.7,"publicationDate":"2025-12-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-15DOI: 10.1016/j.disc.2025.114945
Mateusz Kamyczura, Jakub Przybyło
Let G be a graph of maximum degree Δ which does not contain isolated vertices. An edge coloring c of G is called conflict-free if each edge's closed neighborhood includes a uniquely colored element. The least number of colors admitting such c is called the conflict-free chromatic index of G and denoted . It is known that in general , while there is a family of graphs, e.g. the complete graphs, for which . In the present paper we provide the asymptotically tight upper bound for regular and nearly regular graphs, which in particular implies that the same bound holds a.a.s. for a random graph whenever for any fixed constant . Our proof is probabilistic and exploits classic results of Hall and Berge. This was inspired by our approach utilized in the particular case of complete graphs, for which we give a more specific upper bound.
{"title":"On asymptotically tight bound for the conflict-free chromatic index of nearly regular graphs","authors":"Mateusz Kamyczura, Jakub Przybyło","doi":"10.1016/j.disc.2025.114945","DOIUrl":"10.1016/j.disc.2025.114945","url":null,"abstract":"<div><div>Let <em>G</em> be a graph of maximum degree Δ which does not contain isolated vertices. An edge coloring <em>c</em> of <em>G</em> is called <em>conflict-free</em> if each edge's closed neighborhood includes a uniquely colored element. The least number of colors admitting such <em>c</em> is called the <em>conflict-free chromatic index</em> of <em>G</em> and denoted <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>CF</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. It is known that in general <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>CF</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩽</mo><mn>3</mn><mo>⌈</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo></mo><mi>Δ</mi><mo>⌉</mo><mo>+</mo><mn>1</mn></math></span>, while there is a family of graphs, e.g. the complete graphs, for which <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>CF</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩾</mo><mo>(</mo><mn>1</mn><mo>−</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo></mo><mi>Δ</mi></math></span>. In the present paper we provide the asymptotically tight upper bound <span><math><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>CF</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mo>(</mo><mi>G</mi><mo>)</mo><mo>⩽</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo></mo><mi>Δ</mi><mo>+</mo><mi>O</mi><mo>(</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo></mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo></mo><mi>Δ</mi><mo>)</mo><mo>=</mo><mo>(</mo><mn>1</mn><mo>+</mo><mi>o</mi><mo>(</mo><mn>1</mn><mo>)</mo><mo>)</mo><msub><mrow><mi>log</mi></mrow><mrow><mn>2</mn></mrow></msub><mo></mo><mi>Δ</mi></math></span> for regular and nearly regular graphs, which in particular implies that the same bound holds a.a.s. for a random graph <span><math><mi>G</mi><mo>=</mo><mi>G</mi><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></math></span> whenever <span><math><mi>p</mi><mo>≫</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mi>ε</mi></mrow></msup></math></span> for any fixed constant <span><math><mi>ε</mi><mo>∈</mo><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></math></span>. Our proof is probabilistic and exploits classic results of Hall and Berge. This was inspired by our approach utilized in the particular case of complete graphs, for which we give a more specific upper bound.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 4","pages":"Article 114945"},"PeriodicalIF":0.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145796675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-15DOI: 10.1016/j.disc.2025.114917
J.G. Bradley-Thrush
A one-parameter generalization is obtained for the non-terminating version of Bender's generalized q-Vandermonde sum. This formula includes the summation as a special case. Another special case is interpreted combinatorially and given a bijective proof.
{"title":"A generalization of Bender's q-Vandermonde sum","authors":"J.G. Bradley-Thrush","doi":"10.1016/j.disc.2025.114917","DOIUrl":"10.1016/j.disc.2025.114917","url":null,"abstract":"<div><div>A one-parameter generalization is obtained for the non-terminating version of Bender's generalized <em>q</em>-Vandermonde sum. This formula includes the <span><math><mmultiscripts><mrow><mi>ϕ</mi></mrow><mrow><mn>5</mn></mrow><none></none><mprescripts></mprescripts><mrow><mn>6</mn></mrow><none></none></mmultiscripts></math></span> summation as a special case. Another special case is interpreted combinatorially and given a bijective proof.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114917"},"PeriodicalIF":0.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145798327","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-15DOI: 10.1016/j.disc.2025.114946
Shuaijun Liu, Shangwei Lin, Lin Yang
The k-restricted arc-connectivity of digraphs, as a generalization of the arc-connectivity, is an important index to measure the reliability of directed networks. An arc subset S of a strongly connected digraph D is a k-restricted arc-cut if has a strong component with order at least k such that contains a connected subdigraph with order k. The k-restricted arc-connectivity of the digraph D is the minimum cardinality over all k-restricted arc-cuts of D. In this paper, we present a degree sum condition for a strongly connected digraph to be optimal in terms of 3-restricted arc-connectivity, and give an example to show that the lower bound on the degree sum in this result is sharp.
{"title":"Degree sum conditions for optimal 3-restricted arc-connected digraphs","authors":"Shuaijun Liu, Shangwei Lin, Lin Yang","doi":"10.1016/j.disc.2025.114946","DOIUrl":"10.1016/j.disc.2025.114946","url":null,"abstract":"<div><div>The <em>k</em>-restricted arc-connectivity of digraphs, as a generalization of the arc-connectivity, is an important index to measure the reliability of directed networks. An arc subset <em>S</em> of a strongly connected digraph <em>D</em> is a <em>k</em>-restricted arc-cut if <span><math><mi>D</mi><mo>−</mo><mi>S</mi></math></span> has a strong component <span><math><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> with order at least <em>k</em> such that <span><math><mi>D</mi><mo>−</mo><mi>V</mi><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>)</mo></math></span> contains a connected subdigraph with order <em>k</em>. The <em>k</em>-restricted arc-connectivity <span><math><msup><mrow><mi>λ</mi></mrow><mrow><mi>k</mi></mrow></msup><mo>(</mo><mi>D</mi><mo>)</mo></math></span> of the digraph <em>D</em> is the minimum cardinality over all <em>k</em>-restricted arc-cuts of <em>D</em>. In this paper, we present a degree sum condition for a strongly connected digraph to be optimal in terms of 3-restricted arc-connectivity, and give an example to show that the lower bound on the degree sum in this result is sharp.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114946"},"PeriodicalIF":0.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145798328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-15DOI: 10.1016/j.disc.2025.114943
David S. Herscovici
We imagine a distribution of pebbles on the vertices of a connected graph. Chung defined a pebbling move as the removal of two pebbles from some vertex and the addition of a pebble to an adjacent vertex. Then the pebbling number of a graph G is the smallest number such that every distribution of pebbles allows one pebble to reach any specified, but arbitrary vertex. Graham conjectured that for all connected graphs G and H. We show that the pebbling number of satisfies for any connected graph G that satisfies the odd two-pebbling property. In particular, .
{"title":"Pebbling Cartesian products of C5","authors":"David S. Herscovici","doi":"10.1016/j.disc.2025.114943","DOIUrl":"10.1016/j.disc.2025.114943","url":null,"abstract":"<div><div>We imagine a distribution of pebbles on the vertices of a connected graph. Chung defined a <em>pebbling move</em> as the removal of two pebbles from some vertex and the addition of a pebble to an adjacent vertex. Then the <em>pebbling number</em> of a graph <em>G</em> is the smallest number <span><math><mi>π</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> such that every distribution of <span><math><mi>π</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> pebbles allows one pebble to reach any specified, but arbitrary vertex. Graham conjectured that <span><math><mi>π</mi><mo>(</mo><mi>G</mi><mo>□</mo><mi>H</mi><mo>)</mo><mo>≤</mo><mi>π</mi><mo>(</mo><mi>G</mi><mo>)</mo><mi>π</mi><mo>(</mo><mi>H</mi><mo>)</mo></math></span> for all connected graphs <em>G</em> and <em>H</em>. We show that the pebbling number of <span><math><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>□</mo><mi>G</mi></math></span> satisfies <span><math><mi>π</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>□</mo><mi>G</mi><mo>)</mo><mo>≤</mo><mn>5</mn><mi>π</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> for any connected graph <em>G</em> that satisfies the odd two-pebbling property. In particular, <span><math><mi>π</mi><mo>(</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>□</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>□</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>5</mn></mrow></msub><mo>)</mo><mo>=</mo><mn>125</mn></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114943"},"PeriodicalIF":0.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145798326","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2025-12-15DOI: 10.1016/j.disc.2025.114947
Ilaria Seidel , Nathan Sun
West's stack-sorting map involves a stack which avoids the permutation 21 consecutively. Defant and Zheng extended this to a consecutive-pattern-avoiding stack-sorting map , where the stack avoids a given permutation σ consecutively. We address one of the main conjectures raised by Defant and Zheng in their dynamical approach to . Specifically, we show that the periodic points of are precisely the permutations that consecutively avoid σ and its reverse.
{"title":"Periodic points of consecutive-pattern-avoiding stack-sorting maps","authors":"Ilaria Seidel , Nathan Sun","doi":"10.1016/j.disc.2025.114947","DOIUrl":"10.1016/j.disc.2025.114947","url":null,"abstract":"<div><div>West's stack-sorting map involves a stack which avoids the permutation 21 consecutively. Defant and Zheng extended this to a consecutive-pattern-avoiding stack-sorting map <span><math><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>σ</mi></mrow></msub></math></span>, where the stack avoids a given permutation <em>σ</em> consecutively. We address one of the main conjectures raised by Defant and Zheng in their dynamical approach to <span><math><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>σ</mi></mrow></msub></math></span>. Specifically, we show that the periodic points of <span><math><mi>S</mi><msub><mrow><mi>C</mi></mrow><mrow><mi>σ</mi></mrow></msub></math></span> are precisely the permutations that consecutively avoid <em>σ</em> and its reverse.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"349 5","pages":"Article 114947"},"PeriodicalIF":0.7,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145798257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}