Motivated by Gregor et al. (2023) [7], existence of Hamilton cycles, admitting large rotational symmetry, in certain vertex-transitive graphs is investigated. Given a graph X with a Hamilton cycle C, the compression factorof C is the order of the largest cyclic subgroup of , and the Hamilton compression of X is the maximum compression factor over all of its Hamilton cycles. It is shown that for distinct primes, vertex-primitive graphs of order pq have Hamilton compression equal to p or q. In addition, for each , , a connected vertex-transitive graph of order 3n and Hamilton compression equal to n is constructed. As a consequence Hamilton compressions of vertex-transitive graphs of order 3p, p a prime, are determined. Similarly, Hamilton compressions of vertex-transitive graphs of order 2p, p a prime, are also computed.
{"title":"Hamiltonicity of certain vertex-transitive graphs revisited","authors":"Klavdija Kutnar , Dragan Marušič , Andriaherimanana Sarobidy Razafimahatratra","doi":"10.1016/j.disc.2024.114350","DOIUrl":"10.1016/j.disc.2024.114350","url":null,"abstract":"<div><div>Motivated by Gregor et al. (2023) <span><span>[7]</span></span>, existence of Hamilton cycles, admitting large rotational symmetry, in certain vertex-transitive graphs is investigated. Given a graph <em>X</em> with a Hamilton cycle <em>C</em>, the <em>compression factor</em> <span><math><mi>κ</mi><mo>(</mo><mi>X</mi><mo>,</mo><mi>C</mi><mo>)</mo></math></span> <em>of C</em> is the order of the largest cyclic subgroup of <span><math><mtext>Aut</mtext><mspace></mspace><mo>(</mo><mi>C</mi><mo>)</mo><mo>∩</mo><mtext>Aut</mtext><mspace></mspace><mo>(</mo><mi>X</mi><mo>)</mo></math></span>, and the <em>Hamilton compression</em> <span><math><mi>κ</mi><mo>(</mo><mi>X</mi><mo>)</mo></math></span> of <em>X</em> is the maximum compression factor over all of its Hamilton cycles. It is shown that for <span><math><mi>p</mi><mo>,</mo><mi>q</mi></math></span> distinct primes, vertex-primitive graphs of order <em>pq</em> have Hamilton compression equal to <em>p</em> or <em>q</em>. In addition, for each <span><math><mi>n</mi><mo>=</mo><mn>1</mn><mo>+</mo><msup><mrow><mn>2</mn></mrow><mrow><msup><mrow><mn>2</mn></mrow><mrow><mi>e</mi></mrow></msup></mrow></msup></math></span>, <span><math><mi>e</mi><mo>></mo><mn>1</mn></math></span>, a connected vertex-transitive graph of order 3<em>n</em> and Hamilton compression equal to <em>n</em> is constructed. As a consequence Hamilton compressions of vertex-transitive graphs of order 3<em>p</em>, <em>p</em> a prime, are determined. Similarly, Hamilton compressions of vertex-transitive graphs of order 2<em>p</em>, <em>p</em> a prime, are also computed.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114350"},"PeriodicalIF":0.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171264","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-10DOI: 10.1016/j.disc.2024.114351
Yanni Zhai , Xiying Yuan , Lihua You
A path of order n is denoted by , and a star of order n is denoted by . Recently, Fang and Yuan determined the Turán numbers of , and for n appropriately large. In this paper, we extend the results to the spectral counterpart. The graphs with maximum spectral radii among graphs containing no any copy of these three kinds of star-path forests are completely characterized.
{"title":"Spectral extrema of graphs: Forbidden star-path forests","authors":"Yanni Zhai , Xiying Yuan , Lihua You","doi":"10.1016/j.disc.2024.114351","DOIUrl":"10.1016/j.disc.2024.114351","url":null,"abstract":"<div><div>A path of order <em>n</em> is denoted by <span><math><msub><mrow><mi>P</mi></mrow><mrow><mi>n</mi></mrow></msub></math></span>, and a star of order <em>n</em> is denoted by <span><math><msub><mrow><mi>S</mi></mrow><mrow><mi>n</mi><mo>−</mo><mn>1</mn></mrow></msub></math></span>. Recently, Fang and Yuan determined the Turán numbers of <span><math><mi>k</mi><msub><mrow><mi>S</mi></mrow><mrow><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>P</mi></mrow><mrow><mi>ℓ</mi></mrow></msub></math></span>, <span><math><msub><mrow><mi>k</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>S</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>∪</mo><msub><mrow><mi>k</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>P</mi></mrow><mrow><mn>2</mn><mi>ℓ</mi></mrow></msub></math></span> and <span><math><mi>k</mi><msub><mrow><mi>S</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>∪</mo><mn>2</mn><msub><mrow><mi>P</mi></mrow><mrow><mn>5</mn></mrow></msub></math></span> for <em>n</em> appropriately large. In this paper, we extend the results to the spectral counterpart. The graphs with maximum spectral radii among graphs containing no any copy of these three kinds of star-path forests are completely characterized.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114351"},"PeriodicalIF":0.7,"publicationDate":"2024-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1016/j.disc.2024.114363
Yiran Zhang , Yuejian Peng
<div><div>For graphs <em>G</em>, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, we write <span><math><mi>G</mi><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> if any red-blue edge coloring of <em>G</em> yields a red <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or a blue <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The <em>Ramsey number</em> <span><math><mi>r</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is the minimum number <em>n</em> such that the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. There is an interesting phenomenon that for some graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> there is a number <span><math><mn>0</mn><mo><</mo><mi>c</mi><mo><</mo><mn>1</mn></math></span> such that for any graph <em>G</em> of order <span><math><mi>r</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> with minimum degree <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>></mo><mi>c</mi><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>, <span><math><mi>G</mi><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. When we focus on bipartite graphs, the <em>bipartite Ramsey number</em> <span><math><mi>b</mi><mi>r</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is the minimum number <em>n</em> such that the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Previous known related results on cycles are on the diagonal case (<span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math><
{"title":"Monochromatic cycles in 2-edge-colored bipartite graphs with large minimum degree","authors":"Yiran Zhang , Yuejian Peng","doi":"10.1016/j.disc.2024.114363","DOIUrl":"10.1016/j.disc.2024.114363","url":null,"abstract":"<div><div>For graphs <em>G</em>, <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>, we write <span><math><mi>G</mi><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> if any red-blue edge coloring of <em>G</em> yields a red <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> or a blue <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span>. The <em>Ramsey number</em> <span><math><mi>r</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is the minimum number <em>n</em> such that the complete graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. There is an interesting phenomenon that for some graphs <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> there is a number <span><math><mn>0</mn><mo><</mo><mi>c</mi><mo><</mo><mn>1</mn></math></span> such that for any graph <em>G</em> of order <span><math><mi>r</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> with minimum degree <span><math><mi>δ</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>></mo><mi>c</mi><mo>|</mo><mi>V</mi><mo>(</mo><mi>G</mi><mo>)</mo><mo>|</mo></math></span>, <span><math><mi>G</mi><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. When we focus on bipartite graphs, the <em>bipartite Ramsey number</em> <span><math><mi>b</mi><mi>r</mi><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span> is the minimum number <em>n</em> such that the complete bipartite graph <span><math><msub><mrow><mi>K</mi></mrow><mrow><mi>n</mi><mo>,</mo><mi>n</mi></mrow></msub><mo>⟼</mo><mo>(</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>)</mo></math></span>. Previous known related results on cycles are on the diagonal case (<span><math><msub><mrow><mi>G</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>=</mo><msub><mrow><mi>G</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>=</mo><msub><mrow><mi>C</mi></mrow><mrow><mn>2</mn><mi>n</mi></mrow></msub></math><","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114363"},"PeriodicalIF":0.7,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-09DOI: 10.1016/j.disc.2024.114352
Ian Gossett
We define Z-signable correspondence assignments on multigraphs, which generalize good correspondence assignments as introduced by Kaul and Mudrock. We introduce an auxiliary digraph that allows us to prove an Alon-Tarsi style theorem for DP-colorings from Z-signable correspondence assignments on multigraphs, and apply this theorem to obtain three DP-coloring analogs of the Alon-Tarsi theorem for arbitrary correspondence assignments as corollaries. We illustrate the use of these corollaries for DP-colorings on a restricted class of correspondence assignments on toroidal grids.
{"title":"Some orientation theorems for restricted DP-colorings of graphs","authors":"Ian Gossett","doi":"10.1016/j.disc.2024.114352","DOIUrl":"10.1016/j.disc.2024.114352","url":null,"abstract":"<div><div>We define <em>Z-signable</em> correspondence assignments on multigraphs, which generalize <em>good</em> correspondence assignments as introduced by Kaul and Mudrock. We introduce an auxiliary digraph that allows us to prove an Alon-Tarsi style theorem for DP-colorings from <em>Z</em>-signable correspondence assignments on multigraphs, and apply this theorem to obtain three DP-coloring analogs of the Alon-Tarsi theorem for arbitrary correspondence assignments as corollaries. We illustrate the use of these corollaries for DP-colorings on a restricted class of correspondence assignments on toroidal grids.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114352"},"PeriodicalIF":0.7,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171263","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-05DOI: 10.1016/j.disc.2024.114348
Pallabi Manna , Santanu Mandal , Andrea Lucchini
Let G be a finite group and let be the undirected power graph of G. Recall that the vertices of are labelled by the elements of G, with an edge between and if either or . The subgraph induced by the non-identity elements is called the reduced power graph, denoted by . The main purpose of this paper is to investigate the finite groups whose reduced power graph is claw-free, which means that it has no vertex with three pairwise non-adjacent neighbours. In particular, we prove that if is claw-free, then either G is solvable or G is an almost simple group. In the second case, the socle of G is isomorphic to for suitable choices of q. Finally we prove that if is claw-free, then the order of G is divisible by at most 5 different primes.
{"title":"On finite groups whose power graph is claw-free","authors":"Pallabi Manna , Santanu Mandal , Andrea Lucchini","doi":"10.1016/j.disc.2024.114348","DOIUrl":"10.1016/j.disc.2024.114348","url":null,"abstract":"<div><div>Let <em>G</em> be a finite group and let <span><math><mi>P</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> be the undirected power graph of <em>G</em>. Recall that the vertices of <span><math><mi>P</mi><mo>(</mo><mi>G</mi><mo>)</mo></math></span> are labelled by the elements of <em>G</em>, with an edge between <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub></math></span> if either <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>∈</mo><mo>〈</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>〉</mo></math></span> or <span><math><msub><mrow><mi>g</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>∈</mo><mo>〈</mo><msub><mrow><mi>g</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>〉</mo></math></span>. The subgraph induced by the non-identity elements is called the reduced power graph, denoted by <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span>. The main purpose of this paper is to investigate the finite groups whose reduced power graph is claw-free, which means that it has no vertex with three pairwise non-adjacent neighbours. In particular, we prove that if <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is claw-free, then either <em>G</em> is solvable or <em>G</em> is an almost simple group. In the second case, the socle of <em>G</em> is isomorphic to <span><math><mrow><mi>PSL</mi></mrow><mo>(</mo><mn>2</mn><mo>,</mo><mi>q</mi><mo>)</mo></math></span> for suitable choices of <em>q</em>. Finally we prove that if <span><math><msup><mrow><mi>P</mi></mrow><mrow><mo>⁎</mo></mrow></msup><mo>(</mo><mi>G</mi><mo>)</mo></math></span> is claw-free, then the order of <em>G</em> is divisible by at most 5 different primes.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114348"},"PeriodicalIF":0.7,"publicationDate":"2024-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-04DOI: 10.1016/j.disc.2024.114346
Sarah Allred , Guoli Ding , Bogdan Oporowski
In 1930, Ramsey proved that every infinite graph contains either an infinite clique or an infinite independent set. König proved that every connected infinite graph contains either a ray or a vertex of infinite degree. In this paper, we establish the 2-connected analog of these results.
{"title":"Unavoidable induced subgraphs of infinite 2-connected graphs","authors":"Sarah Allred , Guoli Ding , Bogdan Oporowski","doi":"10.1016/j.disc.2024.114346","DOIUrl":"10.1016/j.disc.2024.114346","url":null,"abstract":"<div><div>In 1930, Ramsey proved that every infinite graph contains either an infinite clique or an infinite independent set. König proved that every connected infinite graph contains either a ray or a vertex of infinite degree. In this paper, we establish the 2-connected analog of these results.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114346"},"PeriodicalIF":0.7,"publicationDate":"2024-12-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143171267","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-12-02DOI: 10.1016/j.disc.2024.114347
Petr Hliněný, Michal Korbela
A recent result of Bokal et al. (2022) [3] proved that the exact minimum value of c such that c-crossing-critical graphs do not have bounded maximum degree is . The key to that result is an inductive construction of a family of 13-crossing-critical graphs with many vertices of arbitrarily high degrees. While the inductive part of the construction is rather easy, it all relies on the fact that a certain 17-vertex base graph has the crossing number 13, which was originally verified only by a machine-readable computer proof. We provide a relatively short self-contained computer-free proof of the latter fact. Furthermore, we subsequently generalize the critical construction in order to provide a definitive answer to another long-standing question of this research area; we prove that for every and integers , there exists a c-crossing-critical graph with more than q vertices of each of the degrees .
{"title":"On 13-crossing-critical graphs with arbitrarily large degrees","authors":"Petr Hliněný, Michal Korbela","doi":"10.1016/j.disc.2024.114347","DOIUrl":"10.1016/j.disc.2024.114347","url":null,"abstract":"<div><div>A recent result of Bokal et al. (2022) <span><span>[3]</span></span> proved that the exact minimum value of <em>c</em> such that <em>c</em>-crossing-critical graphs do <em>not</em> have bounded maximum degree is <span><math><mi>c</mi><mo>=</mo><mn>13</mn></math></span>. The key to that result is an inductive construction of a family of 13-crossing-critical graphs with many vertices of arbitrarily high degrees. While the inductive part of the construction is rather easy, it all relies on the fact that a certain 17-vertex base graph has the crossing number 13, which was originally verified only by a machine-readable computer proof. We provide a relatively short self-contained computer-free proof of the latter fact. Furthermore, we subsequently generalize the critical construction in order to provide a definitive answer to another long-standing question of this research area; we prove that for every <span><math><mi>c</mi><mo>≥</mo><mn>13</mn></math></span> and integers <span><math><mi>d</mi><mo>,</mo><mi>q</mi></math></span>, there exists a <em>c</em>-crossing-critical graph with more than <em>q</em> vertices of <em>each</em> of the degrees <span><math><mn>3</mn><mo>,</mo><mn>4</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>d</mi></math></span>.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 4","pages":"Article 114347"},"PeriodicalIF":0.7,"publicationDate":"2024-12-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143170010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1016/j.disc.2024.114345
Sho Kubota , Hiroto Sekido , Kiyoto Yoshino
The interest of this paper is a characterization of graphs that induce periodic Grover walks with given periods. In previous studies, Yoshie has shown that the only graphs that induce odd periodic Grover walks are cycle graphs. However, this problem is largely unsolved for even periods. In this study, we show that regular graphs that induce 2l-periodic Grover walks are also cycle graphs in most cases, where l is an odd integer. The proof uses Galois theory.
{"title":"Regular graphs to induce even periodic Grover walks","authors":"Sho Kubota , Hiroto Sekido , Kiyoto Yoshino","doi":"10.1016/j.disc.2024.114345","DOIUrl":"10.1016/j.disc.2024.114345","url":null,"abstract":"<div><div>The interest of this paper is a characterization of graphs that induce periodic Grover walks with given periods. In previous studies, Yoshie has shown that the only graphs that induce odd periodic Grover walks are cycle graphs. However, this problem is largely unsolved for even periods. In this study, we show that regular graphs that induce 2<em>l</em>-periodic Grover walks are also cycle graphs in most cases, where <em>l</em> is an odd integer. The proof uses Galois theory.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 3","pages":"Article 114345"},"PeriodicalIF":0.7,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142743702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-28DOI: 10.1016/j.disc.2024.114332
Pierre-Antoine Bernard , Nicolas Crampé , Luc Vinet , Meri Zaimi , Xiaohong Zhang
The bivariate P- and Q-polynomial structures of association schemes based on attenuated spaces are examined using recurrence and difference relations of the bivariate polynomials which form the eigenvalues of the scheme. These bispectral properties are obtained from contiguity relations of univariate dual q-Hahn and affine q-Krawtchouk polynomials. The bispectral algebra associated to the bivariate polynomials is investigated, as well as the subconstituent algebra of the schemes. The properties of the schemes are compared to those of the non-binary Johnson schemes through a limit.
{"title":"Bivariate P- and Q-polynomial structures of the association schemes based on attenuated spaces","authors":"Pierre-Antoine Bernard , Nicolas Crampé , Luc Vinet , Meri Zaimi , Xiaohong Zhang","doi":"10.1016/j.disc.2024.114332","DOIUrl":"10.1016/j.disc.2024.114332","url":null,"abstract":"<div><div>The bivariate <em>P</em>- and <em>Q</em>-polynomial structures of association schemes based on attenuated spaces are examined using recurrence and difference relations of the bivariate polynomials which form the eigenvalues of the scheme. These bispectral properties are obtained from contiguity relations of univariate dual <em>q</em>-Hahn and affine <em>q</em>-Krawtchouk polynomials. The bispectral algebra associated to the bivariate polynomials is investigated, as well as the subconstituent algebra of the schemes. The properties of the schemes are compared to those of the non-binary Johnson schemes through a limit.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 3","pages":"Article 114332"},"PeriodicalIF":0.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142743701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1016/j.disc.2024.114336
Rebecca Bourn , William Q. Erickson
We prove a conjecture of Bourn and Willenbring (2020) regarding the palindromicity and unimodality of a certain family of polynomials . These recursively defined polynomials arise as the numerators of generating functions in the context of the discrete one-dimensional earth mover's distance (EMD). The key to our proof is showing that the defining recursion can be viewed as describing sums of symmetric differences of pairs of Young diagrams; in this setting, palindromicity is equivalent to the preservation of the symmetric difference under the transposition of diagrams. We also observe a connection to recent work by Defant et al. (2024) on the Wiener index of minuscule lattices, which we reinterpret combinatorially to obtain explicit formulas for the coefficients of and for the expected value of the discrete EMD.
{"title":"Palindromicity of the numerator of a statistical generating function","authors":"Rebecca Bourn , William Q. Erickson","doi":"10.1016/j.disc.2024.114336","DOIUrl":"10.1016/j.disc.2024.114336","url":null,"abstract":"<div><div>We prove a conjecture of Bourn and Willenbring (2020) regarding the palindromicity and unimodality of a certain family of polynomials <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span>. These recursively defined polynomials arise as the numerators of generating functions in the context of the discrete one-dimensional earth mover's distance (EMD). The key to our proof is showing that the defining recursion can be viewed as describing sums of symmetric differences of pairs of Young diagrams; in this setting, palindromicity is equivalent to the preservation of the symmetric difference under the transposition of diagrams. We also observe a connection to recent work by Defant et al. (2024) on the Wiener index of minuscule lattices, which we reinterpret combinatorially to obtain explicit formulas for the coefficients of <span><math><msub><mrow><mi>N</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>(</mo><mi>t</mi><mo>)</mo></math></span> and for the expected value of the discrete EMD.</div></div>","PeriodicalId":50572,"journal":{"name":"Discrete Mathematics","volume":"348 3","pages":"Article 114336"},"PeriodicalIF":0.7,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142722856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}