首页 > 最新文献

Discrete Applied Mathematics最新文献

英文 中文
Cycles and trees in randomly perturbed sparse digraphs 随机扰动稀疏有向图中的圈和树
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-12-01 DOI: 10.1016/j.dam.2025.11.046
Yulin Chang , Jichang Wu , Zhiwei Zhang
We study the existence of directed Hamilton cycles and oriented spanning trees of bounded degree in randomly perturbed sparse digraphs. Let Dα be a digraph on n vertices with minimum semi-degree δ0(Dα)αn, where 0<α<1, and let D(n,p) be the binomial random digraph on n vertices in which each of n(n1) possible ordered pairs forms an arc independently with probability p. We prove that, for any α=α(n):N(0,1), if β=(6+o(1))log1α, then DαD(n,β/n) contains a directed Hamilton cycle with high probability. Moreover, if α=ω(n1/8), and β=β(n)=6log1α, then DαD(n,β/n) is vertex-pancyclic with high probability. Finally, we also prove a similar result for oriented spanning trees in this model.
研究了随机摄动稀疏有向图中有向Hamilton环和有界度有向生成树的存在性。设Dα是n个顶点上最小半度δ0(Dα)≥αn的有向图,其中0<;α<1;设D(n,p)是n个顶点上的二项随机有向图,其中n(n−1)个可能的有序对中的每一个都以概率p独立形成一个弧。我们证明了对于任意α=α(n): n =(0,1),若β=(6+o(1))log1α,则Dα∪D(n,β/n)包含一个高概率的有向Hamilton环。如果α=ω(n−1/8),β=β(n)=6log1α,则Dα∪D(n,β/n)是高概率顶点泛环。最后,我们也证明了该模型中有向生成树的类似结果。
{"title":"Cycles and trees in randomly perturbed sparse digraphs","authors":"Yulin Chang ,&nbsp;Jichang Wu ,&nbsp;Zhiwei Zhang","doi":"10.1016/j.dam.2025.11.046","DOIUrl":"10.1016/j.dam.2025.11.046","url":null,"abstract":"<div><div>We study the existence of directed Hamilton cycles and oriented spanning trees of bounded degree in randomly perturbed sparse digraphs. Let <span><math><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub></math></span> be a digraph on <span><math><mi>n</mi></math></span> vertices with minimum semi-degree <span><math><mrow><msup><mrow><mi>δ</mi></mrow><mrow><mn>0</mn></mrow></msup><mrow><mo>(</mo><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>)</mo></mrow><mo>≥</mo><mi>α</mi><mi>n</mi></mrow></math></span>, where <span><math><mrow><mn>0</mn><mo>&lt;</mo><mi>α</mi><mo>&lt;</mo><mn>1</mn></mrow></math></span>, and let <span><math><mrow><mi>D</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>p</mi><mo>)</mo></mrow></mrow></math></span> be the binomial random digraph on <span><math><mi>n</mi></math></span> vertices in which each of <span><math><mrow><mi>n</mi><mrow><mo>(</mo><mi>n</mi><mo>−</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span> possible ordered pairs forms an arc independently with probability <span><math><mi>p</mi></math></span>. We prove that, for any <span><math><mrow><mi>α</mi><mo>=</mo><mi>α</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>:</mo><mi>N</mi><mo>↦</mo><mrow><mo>(</mo><mn>0</mn><mo>,</mo><mn>1</mn><mo>)</mo></mrow></mrow></math></span>, if <span><math><mrow><mi>β</mi><mo>=</mo><mrow><mo>(</mo><mn>6</mn><mo>+</mo><mi>o</mi><mrow><mo>(</mo><mn>1</mn><mo>)</mo></mrow><mo>)</mo></mrow><mo>log</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>α</mi></mrow></mfrac></mrow></math></span>, then <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>∪</mo><mi>D</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>β</mi><mo>/</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> contains a directed Hamilton cycle with high probability. Moreover, if <span><math><mrow><mi>α</mi><mo>=</mo><mi>ω</mi><mrow><mo>(</mo><msup><mrow><mi>n</mi></mrow><mrow><mo>−</mo><mn>1</mn><mo>/</mo><mn>8</mn></mrow></msup><mo>)</mo></mrow></mrow></math></span>, and <span><math><mrow><mi>β</mi><mo>=</mo><mi>β</mi><mrow><mo>(</mo><mi>n</mi><mo>)</mo></mrow><mo>=</mo><mn>6</mn><mo>log</mo><mfrac><mrow><mn>1</mn></mrow><mrow><mi>α</mi></mrow></mfrac></mrow></math></span>, then <span><math><mrow><msub><mrow><mi>D</mi></mrow><mrow><mi>α</mi></mrow></msub><mo>∪</mo><mi>D</mi><mrow><mo>(</mo><mi>n</mi><mo>,</mo><mi>β</mi><mo>/</mo><mi>n</mi><mo>)</mo></mrow></mrow></math></span> is vertex-pancyclic with high probability. Finally, we also prove a similar result for oriented spanning trees in this model.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 176-182"},"PeriodicalIF":1.0,"publicationDate":"2025-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145685321","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The lower bounds of 4-tree connectivity of Cartesian product graphs 笛卡尔积图的四树连通性下界
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-11-29 DOI: 10.1016/j.dam.2025.11.050
Lin Li , Rong-Xia Hao , Yan-Quan Feng , Jaeun Lee , Eddie Cheng
<div><div>Let <span><math><mi>G</mi></math></span> be a graph with vertex set <span><math><mrow><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> and edge set <span><math><mrow><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>. Two trees <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub></math></span> and <span><math><msub><mrow><mi>T</mi></mrow><mrow><mi>j</mi></mrow></msub></math></span> of <span><math><mi>G</mi></math></span> are <em>internally disjoint</em> <span><math><mi>S</mi></math></span><em>-tree</em> for <span><math><mrow><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> if <span><math><mrow><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>E</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mo>0̸</mo></mrow></math></span> and <span><math><mrow><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>i</mi></mrow></msub><mo>)</mo></mrow><mo>∩</mo><mi>V</mi><mrow><mo>(</mo><msub><mrow><mi>T</mi></mrow><mrow><mi>j</mi></mrow></msub><mo>)</mo></mrow><mo>=</mo><mi>S</mi></mrow></math></span>. The <span><math><mi>r</mi></math></span><em>-tree connectivity</em> <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>r</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is <span><math><mrow><mo>min</mo><mrow><mo>{</mo><msub><mrow><mi>κ</mi></mrow><mrow><mi>S</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>|</mo><mi>S</mi><mo>⊆</mo><mi>V</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>,</mo><mo>|</mo><mi>S</mi><mo>|</mo><mo>=</mo><mi>r</mi><mo>}</mo></mrow></mrow></math></span>, where <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mi>S</mi></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> denotes the maximum number of internally pairwise disjoint <span><math><mi>S</mi></math></span>-trees in <span><math><mi>G</mi></math></span>. The lower bound of <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mn>3</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>□</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> for Cartesian product graph <span><math><mrow><mi>G</mi><mo>□</mo><mi>H</mi></mrow></math></span> of connected graphs <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span> is characterized in Gao et al. (2018). In this paper, we obtained a lower bound of <span><math><mrow><msub><mrow><mi>κ</mi></mrow><mrow><mn>4</mn></mrow></msub><mrow><mo>(</mo><mi>G</mi><mo>□</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> which depends only on the <span><math><mi>k</mi></math></span>-tree connectivity of <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span> with <span><math><mrow><mi>k</mi><mo>≤</mo><mn>4</mn></mrow></math></span>. Fur
设G是一个顶点集V(G),边集E(G)的图。如果E(Ti)∩E(Tj)=0,且V(Ti)∩V(Tj)=S,则G的两棵树Ti和Tj是S≤V(G)的S树。G的r树连通性κr(G)为min{κS(G)|S≤V(G),|S|=r},其中κS(G)表示G中最大内部两两不相交S树数。高等(2018)描述了连通图G和H的笛卡尔积图G□H的κ3(G□H)下界。在本文中,我们得到了一个κ4(G□H)的下界,它只依赖于G和H在k≤4时的k树连通性。进一步,对该界的紧性进行了分析。
{"title":"The lower bounds of 4-tree connectivity of Cartesian product graphs","authors":"Lin Li ,&nbsp;Rong-Xia Hao ,&nbsp;Yan-Quan Feng ,&nbsp;Jaeun Lee ,&nbsp;Eddie Cheng","doi":"10.1016/j.dam.2025.11.050","DOIUrl":"10.1016/j.dam.2025.11.050","url":null,"abstract":"&lt;div&gt;&lt;div&gt;Let &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; be a graph with vertex set &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and edge set &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Two trees &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; are &lt;em&gt;internally disjoint&lt;/em&gt; &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;em&gt;-tree&lt;/em&gt; for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; if &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mi&gt;E&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mo&gt;0̸&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;∩&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;T&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;j&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;&lt;em&gt;-tree connectivity&lt;/em&gt; &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;min&lt;/mo&gt;&lt;mrow&gt;&lt;mo&gt;{&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;⊆&lt;/mo&gt;&lt;mi&gt;V&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;}&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; denotes the maximum number of internally pairwise disjoint &lt;span&gt;&lt;math&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-trees in &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. The lower bound of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;□&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for Cartesian product graph &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;□&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; of connected graphs &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; is characterized in Gao et al. (2018). In this paper, we obtained a lower bound of &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;κ&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;□&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; which depends only on the &lt;span&gt;&lt;math&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-tree connectivity of &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. Fur","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 155-165"},"PeriodicalIF":1.0,"publicationDate":"2025-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145618502","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Two extremal problems for 4-cycles in 4-partite graphs 四部图中4环的两个极值问题
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-11-28 DOI: 10.1016/j.dam.2025.11.048
Zemin Jin, Huifang Liu, Qing Jie
<div><div>In this paper, we consider two extremal problems about 4-cycles in multipartite graphs. Denote by <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow><mrow><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></msubsup></math></span> the 4-cycle in a multipartite graph whose vertices come from exactly four different partite sets. We call a 4-cycle in a multipartite graph <em>multipartite</em>, denoted by <span><math><msubsup><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow><mrow><mi>m</mi><mi>u</mi><mi>l</mi><mi>t</mi><mi>i</mi></mrow></msubsup></math></span>, if its vertices come from at least three different partite sets. An edge-colored graph is called <em>rainbow</em> if any two edges of it have different colors. For given graphs <span><math><mi>G</mi></math></span> and <span><math><mi>H</mi></math></span>, the anti-Ramsey number <span><math><mrow><mi>A</mi><mi>R</mi><mrow><mo>(</mo><mi>G</mi><mo>,</mo><mi>H</mi><mo>)</mo></mrow></mrow></math></span> is the maximum number of colors in an edge-colored <span><math><mi>G</mi></math></span> with no rainbow <span><math><mi>H</mi></math></span>. This graph parameter is closely related to the Turán number. These two parameters on 3-cycles in general complete multipartite graphs have been well determined. The anti-Ramsey number on 4-cycles was solved in general complete <span><math><mi>r</mi></math></span>-partite graphs, while the number on multipartite 4-cycle was only determined for <span><math><mrow><mi>r</mi><mo>=</mo><mn>3</mn></mrow></math></span>. The Turán number on (multipartite) 4-cycles in complete <span><math><mi>r</mi></math></span>-partite graphs was proved only for <span><math><mrow><mi>r</mi><mo>≤</mo><mn>3</mn></mrow></math></span>. In this paper, we show that <span><math><mrow><mi>e</mi><mi>x</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>,</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msub></mrow></msub><mo>,</mo><msubsup><mrow><mi>C</mi></mrow><mrow><mn>4</mn></mrow><mrow><mrow><mo>(</mo><mn>4</mn><mo>)</mo></mrow></mrow></msubsup><mo>)</mo></mrow><mo>=</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><msub><mrow><mi>n</mi></mrow><mrow><mn>4</mn></mrow></msub><mo>+</mo><msub><mrow><mi>n</mi></mrow><mrow><mn>2</mn></mrow></msub><msub><mrow><mi>n</mi></mrow><mrow><mn>3</mn></mrow></msub></mrow></math></span> and <span><math><mrow><mi>A</mi><mi>R</mi><mrow><mo>(</mo><msub><mrow><mi>K</mi></mrow><mrow><msub><mrow><mi>n</mi></mrow><mrow><mn>1</mn></mrow></msub><mo>,</mo><msub><mrow><m
本文研究了多部图中关于4环的两个极值问题。用C4(4)表示顶点恰好来自四个不同部集的多部图的4环。我们称多部图中的一个4环为多部图,用C4multi表示,如果它的顶点至少来自三个不同的部集。如果任意两条边的颜色不同,则称为彩虹。对于给定的图G和图H,反拉姆齐数AR(G,H)是没有彩虹H的边色图G的最大颜色数。该图参数与Turán数密切相关。这两个参数在一般完全多部图的3环上已经得到了很好的确定。4环上的反拉姆齐数在一般完全r部图中都能求出,而多部4环上的反拉姆齐数只有在r=3时才能确定。完全r部图中(多部)4环的Turán个数仅在r≤3时得到证明。在本文中,我们证明了ex(Kn1,n2,n3,n4,C4(4))=n1n2+n1n3+n1n4+n2n3和AR(Kn1,n2,n3,n4,C4multi)=n1n2+n3n4+2,其中n1≥n2≥n3≥n4≥1。
{"title":"Two extremal problems for 4-cycles in 4-partite graphs","authors":"Zemin Jin,&nbsp;Huifang Liu,&nbsp;Qing Jie","doi":"10.1016/j.dam.2025.11.048","DOIUrl":"10.1016/j.dam.2025.11.048","url":null,"abstract":"&lt;div&gt;&lt;div&gt;In this paper, we consider two extremal problems about 4-cycles in multipartite graphs. Denote by &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt; the 4-cycle in a multipartite graph whose vertices come from exactly four different partite sets. We call a 4-cycle in a multipartite graph &lt;em&gt;multipartite&lt;/em&gt;, denoted by &lt;span&gt;&lt;math&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;m&lt;/mi&gt;&lt;mi&gt;u&lt;/mi&gt;&lt;mi&gt;l&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mi&gt;i&lt;/mi&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;/math&gt;&lt;/span&gt;, if its vertices come from at least three different partite sets. An edge-colored graph is called &lt;em&gt;rainbow&lt;/em&gt; if any two edges of it have different colors. For given graphs &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;, the anti-Ramsey number &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; is the maximum number of colors in an edge-colored &lt;span&gt;&lt;math&gt;&lt;mi&gt;G&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt; with no rainbow &lt;span&gt;&lt;math&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;. This graph parameter is closely related to the Turán number. These two parameters on 3-cycles in general complete multipartite graphs have been well determined. The anti-Ramsey number on 4-cycles was solved in general complete &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-partite graphs, while the number on multipartite 4-cycle was only determined for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. The Turán number on (multipartite) 4-cycles in complete &lt;span&gt;&lt;math&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;/math&gt;&lt;/span&gt;-partite graphs was proved only for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;r&lt;/mi&gt;&lt;mo&gt;≤&lt;/mo&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. In this paper, we show that &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;e&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msubsup&gt;&lt;mrow&gt;&lt;mi&gt;C&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/msubsup&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;+&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;3&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; and &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;A&lt;/mi&gt;&lt;mi&gt;R&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;K&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;n&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;msub&gt;&lt;mrow&gt;&lt;m","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 166-175"},"PeriodicalIF":1.0,"publicationDate":"2025-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145618505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A multivariate complexity analysis of the Generalized Noah’s Ark Problem 广义诺亚方舟问题的多元复杂性分析
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-11-27 DOI: 10.1016/j.dam.2025.11.037
Christian Komusiewicz , Jannik Schestag
In the Generalized Noah’s Ark Problem, one is given a phylogenetic tree on a set of species X and a set of conservation projects for each species. Each project comes with a cost and raises the survival probability of the corresponding species. The aim is to select a conservation project for each species such that the total cost of the selected projects does not exceed some given threshold and the expected phylogenetic diversity is as large as possible. We study the complexity of Generalized Noah’s Ark Problem and some of its special cases with respect to several parameters related to the input structure, such as the number of different costs, the number of different survival probabilities, or the number of species, |X|.
在广义诺亚方舟问题中,给定一组物种X的系统发育树和每个物种的保护计划。每个项目都有成本,并提高了相应物种的生存概率。其目的是为每个物种选择一个保护项目,使所选项目的总成本不超过某个给定的阈值,并使预期的系统发育多样性尽可能大。本文研究了广义诺亚方舟问题的复杂性及其一些特殊情况,这些问题涉及到与输入结构相关的几个参数,如不同成本的数量、不同生存概率的数量或物种的数量,|X|。
{"title":"A multivariate complexity analysis of the Generalized Noah’s Ark Problem","authors":"Christian Komusiewicz ,&nbsp;Jannik Schestag","doi":"10.1016/j.dam.2025.11.037","DOIUrl":"10.1016/j.dam.2025.11.037","url":null,"abstract":"<div><div>In the <span>Generalized Noah’s Ark Problem</span>, one is given a phylogenetic tree on a set of species <span><math><mi>X</mi></math></span> and a set of conservation projects for each species. Each project comes with a cost and raises the survival probability of the corresponding species. The aim is to select a conservation project for each species such that the total cost of the selected projects does not exceed some given threshold and the expected phylogenetic diversity is as large as possible. We study the complexity of <span>Generalized Noah’s Ark Problem</span> and some of its special cases with respect to several parameters related to the input structure, such as the number of different costs, the number of different survival probabilities, or the number of species, <span><math><mrow><mo>|</mo><mi>X</mi><mo>|</mo></mrow></math></span>.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 137-154"},"PeriodicalIF":1.0,"publicationDate":"2025-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145618567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The σ-irregularity of trees with maximum degree 5 最大度为5的树的σ-不规则度
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-11-25 DOI: 10.1016/j.dam.2025.11.045
Darko Dimitrov , Žana Kovijanić Vukićević , Goran Popivoda , Jelena Sedlar , Riste Škrekovski , Saša Vujošević
The σ-irregularity, a variant of the well-established Albertson irregularity, is a topological invariant defined for a graph G=(V,E) as σ(G)=uvE(d(u)d(v))2, where d(u) and d(v) denote the degrees of vertices u and v, respectively. Recent research has successfully characterized chemical trees with the maximum σ-irregularity. In this paper, we expand upon this research by establishing several structural properties of maximal trees with prescribed maximum degree Δ. Application of these properties enables us to characterize maximal trees with Δ=5. We establish that extremal trees contain only vertices of degrees 1, 2 and Δ. Moreover, the number of edges with both end-vertices having the degree 2 or Δ is very small, so almost all edges have the (second) maximum possible contribution to σ-irregularity. We believe this property or similar should extend to maximal trees for any value of Δ, so this is an interesting direction for further research.
σ-不规则性是已建立的Albertson不规则性的一个变体,它是对图G=(V,E)定义为σ(G)=∑uv∈E(d(u) - d(V))2的拓扑不变量,其中d(u)和d(V)分别表示顶点u和V的度数。最近的研究成功地描述了具有最大σ-不规则性的化学树。在本文中,我们通过建立具有规定最大度的极大树Δ的几个结构性质来扩展这一研究。这些性质的应用使我们能够表征Δ=5的极大树。我们建立了极值树只包含度为1、2和Δ的顶点。此外,两端顶点都为2度或Δ的边的数量非常少,所以几乎所有的边对σ-不规则度的贡献都是第二大的。我们相信这个性质或类似的性质可以推广到任何值Δ的极大树,所以这是一个有趣的进一步研究方向。
{"title":"The σ-irregularity of trees with maximum degree 5","authors":"Darko Dimitrov ,&nbsp;Žana Kovijanić Vukićević ,&nbsp;Goran Popivoda ,&nbsp;Jelena Sedlar ,&nbsp;Riste Škrekovski ,&nbsp;Saša Vujošević","doi":"10.1016/j.dam.2025.11.045","DOIUrl":"10.1016/j.dam.2025.11.045","url":null,"abstract":"<div><div>The <span><math><mi>σ</mi></math></span>-irregularity, a variant of the well-established Albertson irregularity, is a topological invariant defined for a graph <span><math><mrow><mi>G</mi><mo>=</mo><mrow><mo>(</mo><mi>V</mi><mo>,</mo><mi>E</mi><mo>)</mo></mrow></mrow></math></span> as <span><math><mrow><mi>σ</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>=</mo><msub><mrow><mo>∑</mo></mrow><mrow><mi>u</mi><mi>v</mi><mo>∈</mo><mi>E</mi></mrow></msub><msup><mrow><mrow><mo>(</mo><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow><mo>−</mo><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow><mo>)</mo></mrow></mrow><mrow><mn>2</mn></mrow></msup></mrow></math></span>, where <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>u</mi><mo>)</mo></mrow></mrow></math></span> and <span><math><mrow><mi>d</mi><mrow><mo>(</mo><mi>v</mi><mo>)</mo></mrow></mrow></math></span> denote the degrees of vertices <span><math><mi>u</mi></math></span> and <span><math><mi>v</mi></math></span>, respectively. Recent research has successfully characterized chemical trees with the maximum <span><math><mi>σ</mi></math></span>-irregularity. In this paper, we expand upon this research by establishing several structural properties of maximal trees with prescribed maximum degree <span><math><mi>Δ</mi></math></span>. Application of these properties enables us to characterize maximal trees with <span><math><mrow><mi>Δ</mi><mo>=</mo><mn>5</mn><mo>.</mo></mrow></math></span> We establish that extremal trees contain only vertices of degrees <span><math><mrow><mn>1</mn><mo>,</mo></mrow></math></span> 2 and <span><math><mi>Δ</mi></math></span>. Moreover, the number of edges with both end-vertices having the degree 2 or <span><math><mi>Δ</mi></math></span> is very small, so almost all edges have the (second) maximum possible contribution to <span><math><mi>σ</mi></math></span>-irregularity. We believe this property or similar should extend to maximal trees for any value of <span><math><mi>Δ</mi></math></span>, so this is an interesting direction for further research.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 124-136"},"PeriodicalIF":1.0,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145618503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial: Graphs and Combinatorial Optimization 编辑:图与组合优化
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-11-25 DOI: 10.1016/j.dam.2025.11.043
Andreas Brieden (The Guest editors), Stefan Pickl, Markus Siegle
{"title":"Editorial: Graphs and Combinatorial Optimization","authors":"Andreas Brieden (The Guest editors),&nbsp;Stefan Pickl,&nbsp;Markus Siegle","doi":"10.1016/j.dam.2025.11.043","DOIUrl":"10.1016/j.dam.2025.11.043","url":null,"abstract":"","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"380 ","pages":"Pages 684-685"},"PeriodicalIF":1.0,"publicationDate":"2025-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145684233","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On injective edge coloring for a class of graphs with maximum degree 5 一类最大次为5的图的内射边着色
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-11-24 DOI: 10.1016/j.dam.2025.11.034
Yanqing Wu
A k-injective-edge coloring of a graph G is an edge coloring c:E(G){1,2,,k} such that any two edges at distance 2 or in the same triangle are assigned different colors. The injective chromatic index of a graph G, denoted by χi(G), is the smallest integer k for which G has a k-injective-edge coloring. Additionally, the maximum average degree of a graph G, denoted by mad(G), is defined as the largest average degree among all subgraphs H of G. In this paper, we prove that if G is a graph with maximum degree 5 and mad(G)<72, then χi(G)17. This result improves upon the previous bound χi(G)19 for a graph G with maximum degree 5 and mad(G)<72 established by Zhu et al. (2024).
图G的k-内射边着色是c:E(G)→{1,2,…,k}的边着色,使得距离为2的任意两条边或同一三角形中的任意两条边被赋予不同的颜色。图G的内射着色指数,用χi ' (G)表示,是使G具有k-内射边着色的最小整数k。另外,图G的最大平均度用mad(G)定义为图G的所有子图H (G)中最大的平均度。本文证明了如果G是最大度为5且mad(G)<;72的图,则χi ' (G)≤17。该结果改进了之前由Zhu et al.(2024)建立的最大度为5和mad(G)<;72的图G的界χi ' (G)≤19。
{"title":"On injective edge coloring for a class of graphs with maximum degree 5","authors":"Yanqing Wu","doi":"10.1016/j.dam.2025.11.034","DOIUrl":"10.1016/j.dam.2025.11.034","url":null,"abstract":"<div><div>A <span><math><mi>k</mi></math></span>-injective-edge coloring of a graph <span><math><mi>G</mi></math></span> is an edge coloring <span><math><mrow><mi>c</mi><mo>:</mo><mi>E</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>→</mo><mrow><mo>{</mo><mn>1</mn><mo>,</mo><mn>2</mn><mo>,</mo><mo>…</mo><mo>,</mo><mi>k</mi><mo>}</mo></mrow></mrow></math></span> such that any two edges at distance 2 or in the same triangle are assigned different colors. The injective chromatic index of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is the smallest integer <span><math><mi>k</mi></math></span> for which <span><math><mi>G</mi></math></span> has a <span><math><mi>k</mi></math></span>-injective-edge coloring. Additionally, the maximum average degree of a graph <span><math><mi>G</mi></math></span>, denoted by <span><math><mrow><mtext>mad</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span>, is defined as the largest average degree among all subgraphs <span><math><mi>H</mi></math></span> of <span><math><mi>G</mi></math></span>. In this paper, we prove that if <span><math><mi>G</mi></math></span> is a graph with maximum degree 5 and <span><math><mrow><mtext>mad</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&lt;</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span>, then <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>17</mn></mrow></math></span>. This result improves upon the previous bound <span><math><mrow><msubsup><mrow><mi>χ</mi></mrow><mrow><mi>i</mi></mrow><mrow><mo>′</mo></mrow></msubsup><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mn>19</mn></mrow></math></span> for a graph <span><math><mi>G</mi></math></span> with maximum degree 5 and <span><math><mrow><mtext>mad</mtext><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>&lt;</mo><mfrac><mrow><mn>7</mn></mrow><mrow><mn>2</mn></mrow></mfrac></mrow></math></span> established by Zhu et al. (2024).</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"381 ","pages":"Pages 313-320"},"PeriodicalIF":1.0,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145624763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Selected topics from the theory of intersections of balls 选自球的交点理论的题目
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-11-24 DOI: 10.1016/j.dam.2025.11.040
Károly Bezdek , Zsolt Lángi , Márton Naszódi
In this survey, we discuss volumetric and combinatorial results concerning (mostly finite) intersections or unions of balls (mostly of equal radii) in the d-dimensional real vector space, mostly equipped with the Euclidean norm. Our first topic is the Kneser–Poulsen Conjecture, according to which if a finite number of balls are rearranged so that the pairwise distances of the centers increase, then the volume of the union (resp., intersection) increases (resp., decreases).
Next, we discuss Blaschke–Santaló-type inequalities, and reverse isoperimetric inequalities for convex sets in Euclidean d-space obtained as intersections of (possibly infinitely many) balls of radius r, which we call r-ball bodies. We present some results on 1-ball bodies (also called ball-bodies or spindle convex sets) in the plane, with special attention paid to their approximation by the spindle convex hull of a finite subset.
A ball-polyhedron is a ball-body obtained as the intersection of finitely many unit balls in Euclidean d-space. We consider the combinatorial structure of their faces, and volumetric properties of ball-polyhedra obtained from choosing the centers of the balls randomly.
在这个调查中,我们讨论了在d维实向量空间中(大多数是有限的)球(大多数是半径相等的)的相交或并集的体积和组合结果,大多数配备欧几里得范数。我们的第一个主题是克尼泽-波尔森猜想,根据该猜想,如果将有限数量的球重新排列,使中心的成对距离增加,则联合的体积(见第2节)。,交叉)增加。减少)。接下来,我们讨论了Blaschke-Santaló-type不等式,以及欧几里得d空间中凸集的逆等周不等式,这些凸集是由半径为r的球(可能有无限多个)的交点得到的,我们称之为r球体。我们给出了平面上的1球体(也称为球体或主轴凸集)的一些结果,特别注意了它们由有限子集的主轴凸包逼近的问题。球多面体是由有限个单位球在欧几里得d空间中的交点得到的球体。我们考虑了它们表面的组合结构,以及随机选择球的中心得到的球多面体的体积特性。
{"title":"Selected topics from the theory of intersections of balls","authors":"Károly Bezdek ,&nbsp;Zsolt Lángi ,&nbsp;Márton Naszódi","doi":"10.1016/j.dam.2025.11.040","DOIUrl":"10.1016/j.dam.2025.11.040","url":null,"abstract":"<div><div>In this survey, we discuss volumetric and combinatorial results concerning (mostly finite) intersections or unions of balls (mostly of equal radii) in the <span><math><mi>d</mi></math></span>-dimensional real vector space, mostly equipped with the Euclidean norm. Our first topic is the <em>Kneser–Poulsen Conjecture</em>, according to which if a finite number of balls are rearranged so that the pairwise distances of the centers increase, then the volume of the union (resp., intersection) increases (resp., decreases).</div><div>Next, we discuss Blaschke–Santaló-type inequalities, and reverse isoperimetric inequalities for convex sets in Euclidean <span><math><mi>d</mi></math></span>-space obtained as intersections of (possibly infinitely many) balls of radius <span><math><mi>r</mi></math></span>, which we call <span><math><mi>r</mi></math></span>-<em>ball bodies</em>. We present some results on 1-ball bodies (also called <em>ball-bodies</em> or <em>spindle convex sets</em>) in the plane, with special attention paid to their approximation by the spindle convex hull of a finite subset.</div><div>A <em>ball-polyhedron</em> is a ball-body obtained as the intersection of finitely many unit balls in Euclidean <span><math><mi>d</mi></math></span>-space. We consider the combinatorial structure of their faces, and volumetric properties of ball-polyhedra obtained from choosing the centers of the balls randomly.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 60-82"},"PeriodicalIF":1.0,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145618506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bounds on broadcast time in well-connected graphs 良好连通图中广播时间的边界
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-11-24 DOI: 10.1016/j.dam.2025.11.013
Ararat Harutyunyan , Hovhannes A. Harutyunyan , Aram Khanlari
Given a graph G, the broadcast time b(G) of G is the least number of time units required to disseminate one piece of information starting at an arbitrary originating vertex in G, where each transmission takes one time unit and each informed vertex can transmit the message to one of its neighbors at any time. We initiate the study of finding upper bounds on broadcast time b(G) in highly connected graphs. In particular, we give upper bounds on b(G) for k-connected graphs and graphs with a large minimum degree. We prove that b(G)logk+nk1 for all k-connected graphs. For many families of graphs this bound is tight. We also show that if the minimum degree of G is at least n/2, then b(G)logn+3, and derive various similar upper bounds on graphs with large minimum degree. Finally, we discuss an open problem that relates the broadcast time of a graph with its minimum degree, when the latter is small.
给定图G, G的广播时间b(G)是从G中的任意起始点开始传播一条信息所需的最少时间单位,其中每次传输需要一个时间单位,每个被告知的顶点可以在任何时候将消息发送给它的一个邻居。我们开始了在高连通图中寻找广播时间b(G)上界的研究。特别地,我们给出了k连通图和具有较大最小度图的b(G)的上界。我们证明了对于所有k连通图,b(G)≤≤≤lgk²+≤nk²−1。对于许多图族,这个界是紧的。我们还证明了如果G的最小度至少为n/2,则b(G)≤≤lgn²+3,并在具有较大最小度的图上导出了各种相似的上界。最后,我们讨论了图的最小度很小时,图的广播时间与其最小度的关系的开放问题。
{"title":"Bounds on broadcast time in well-connected graphs","authors":"Ararat Harutyunyan ,&nbsp;Hovhannes A. Harutyunyan ,&nbsp;Aram Khanlari","doi":"10.1016/j.dam.2025.11.013","DOIUrl":"10.1016/j.dam.2025.11.013","url":null,"abstract":"<div><div>Given a graph <span><math><mi>G</mi></math></span>, the <em>broadcast time</em> <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> of <span><math><mi>G</mi></math></span> is the least number of time units required to disseminate one piece of information starting at an arbitrary originating vertex in <span><math><mi>G</mi></math></span>, where each transmission takes one time unit and each informed vertex can transmit the message to one of its neighbors at any time. We initiate the study of finding upper bounds on broadcast time <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> in highly connected graphs. In particular, we give upper bounds on <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow></mrow></math></span> for <span><math><mi>k</mi></math></span>-connected graphs and graphs with a large minimum degree. We prove that <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌈</mo><mo>log</mo><mi>k</mi><mo>⌉</mo></mrow><mo>+</mo><mrow><mo>⌈</mo><mfrac><mrow><mi>n</mi></mrow><mrow><mi>k</mi></mrow></mfrac><mo>⌉</mo></mrow><mo>−</mo><mn>1</mn></mrow></math></span> for all <span><math><mi>k</mi></math></span>-connected graphs. For many families of graphs this bound is tight. We also show that if the minimum degree of <span><math><mi>G</mi></math></span> is at least <span><math><mrow><mi>n</mi><mo>/</mo><mn>2</mn></mrow></math></span>, then <span><math><mrow><mi>b</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>≤</mo><mrow><mo>⌈</mo><mo>log</mo><mi>n</mi><mo>⌉</mo></mrow><mo>+</mo><mn>3</mn></mrow></math></span>, and derive various similar upper bounds on graphs with large minimum degree. Finally, we discuss an open problem that relates the broadcast time of a graph with its minimum degree, when the latter is small.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 83-90"},"PeriodicalIF":1.0,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145618509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximizing the number of requests in oriented trees with a grooming factor 使用修饰因子最大化定向树中的请求数量
IF 1 3区 数学 Q3 MATHEMATICS, APPLIED Pub Date : 2025-11-24 DOI: 10.1016/j.dam.2025.11.019
Jean-Claude Bermond, Michel Cosnard
The Maximum All Request Path Grooming (MARPG) problem consists in finding the maximum number of requests (connections) which can be established in a network, where each arc has a given capacity or bandwidth C (grooming factor). The Maximum Path Coloring problem consists for a given number of colors (wavelengths) W in finding the maximum number of requests that can be established so that two requests sharing an arc have different colors. These problems are part of the more general RWA (Routing and Wavelength Assignment) problem and have been studied for various classes of networks like paths, dipaths, undirected trees and symmetric directed trees. Here we consider the case where the network is an oriented tree (tree in which each edge has a unique orientation) where the two problems are equivalent. We give the value of the maximum number of requests for various families of oriented trees like Fig-Trees. To do that we revisit the problem when the network is a directed path by giving the structure of a maximum set of requests and determining bounds on the maximum load of an arc of the dipath. These bounds can be used for computing the cutwidth of a graph.
最大所有请求路径梳理(MARPG)问题包括找到可以在网络中建立的最大请求(连接)数量,其中每个弧线具有给定的容量或带宽C(梳理因子)。最大路径着色问题包括对于给定数量的颜色(波长)W,找到可以建立的最大请求数,以便共享一条弧的两个请求具有不同的颜色。这些问题是更一般的RWA(路由和波长分配)问题的一部分,并且已经研究了各种类型的网络,如路径,通道,无向树和对称有向树。这里我们考虑的情况是,网络是一个有向树(树中的每条边都有一个唯一的方向),其中两个问题是等价的。我们给出了各种定向树(如无花果树)的最大请求数的值。为了做到这一点,我们通过给出最大请求集的结构并确定dipath弧线的最大负载界限来重新审视网络是有向路径时的问题。这些边界可以用来计算图的宽度。
{"title":"Maximizing the number of requests in oriented trees with a grooming factor","authors":"Jean-Claude Bermond,&nbsp;Michel Cosnard","doi":"10.1016/j.dam.2025.11.019","DOIUrl":"10.1016/j.dam.2025.11.019","url":null,"abstract":"<div><div>The Maximum All Request Path Grooming (MARPG) problem consists in finding the maximum number of requests (connections) which can be established in a network, where each arc has a given capacity or bandwidth <span><math><mi>C</mi></math></span> (grooming factor). The Maximum Path Coloring problem consists for a given number of colors (wavelengths) <span><math><mi>W</mi></math></span> in finding the maximum number of requests that can be established so that two requests sharing an arc have different colors. These problems are part of the more general RWA (Routing and Wavelength Assignment) problem and have been studied for various classes of networks like paths, dipaths, undirected trees and symmetric directed trees. Here we consider the case where the network is an oriented tree (tree in which each edge has a unique orientation) where the two problems are equivalent. We give the value of the maximum number of requests for various families of oriented trees like Fig-Trees. To do that we revisit the problem when the network is a directed path by giving the structure of a maximum set of requests and determining bounds on the maximum load of an arc of the dipath. These bounds can be used for computing the cutwidth of a graph.</div></div>","PeriodicalId":50573,"journal":{"name":"Discrete Applied Mathematics","volume":"382 ","pages":"Pages 91-107"},"PeriodicalIF":1.0,"publicationDate":"2025-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145618565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Discrete Applied Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1