Uniquely human physical traits, such as an expanded cerebral cortex and changes in limb morphology that allow us to use tools and walk upright, are in part due to human-specific genetic changes that altered when, where, and how genes are expressed during development. Over 20 000 putative regulatory elements with potential human-specific functions have been discovered. Understanding how these elements contributed to human evolution requires identifying candidates most likely to have shaped human traits, then studying them in genetically modified animal models. Here, we review the progress and challenges in generating and studying such models and propose a pathway for advancing the field. Finally, we highlight that large-scale collaborations across multiple research domains are essential to decipher what makes us human.
Synapses of the neocortex specialized during human evolution to develop over extended timescales, process vast amounts of information and increase connectivity, which is thought to underlie our advanced social and cognitive abilities. These features reflect species-specific regulations of neuron and synapse cell biology. However, despite growing understanding of the human genome and the brain transcriptome at the single-cell level, linking human-specific genetic changes to the specialization of human synapses has remained experimentally challenging. In this review, we describe recent progress in characterizing divergent morphofunctional and developmental properties of human synapses, and we discuss new insights into the underlying molecular mechanisms. We also highlight intersections between evolutionary innovations and disorder-related dysfunctions at the synapse.
Cholangiocytes are the main cell type lining the epithelium of the biliary tree of the liver. This cell type has been implicated not only in diseases affecting the biliary tree but also in chronic liver diseases targeting other hepatic cells such as hepatocytes. However, the isolation and culture of cholangiocytes have been particularly arduous, thereby limiting the development of new therapies. The emergence of organoids has the potential to address in part this challenge. Indeed, cholangiocyte organoids can be established from both the intra- and extrahepatic regions of the biliary tree, providing an advantageous platform for disease modeling and mechanism investigations. Accordingly, recent studies on cholangiocyte organoids, together with the advent of single-cell -omics, have opened the field to exciting discoveries concerning the plastic nature of these cells and their capability to adapt to different environments and stimuli. This review will focus on describing how these plasticity properties could be exploited in regenerative medicine and cell-based therapy, opening new frontiers for treating disorders affecting the biliary tree and beyond.
The genetic differences underlying unique phenotypes in humans compared to our closest primate relatives have long remained a mystery. Similarly, the genetic basis of adaptations between human groups during our expansion across the globe is poorly characterized. Uncovering the downstream phenotypic consequences of these genetic variants has been difficult, as a substantial portion lies in noncoding regions, such as cis-regulatory elements (CREs). Here, we review recent high-throughput approaches to measure the functions of CREs and the impact of variation within them. CRISPR screens can directly perturb CREs in the genome to understand downstream impacts on gene expression and phenotypes, while massively parallel reporter assays can decipher the regulatory impact of sequence variants. Machine learning has begun to be able to predict regulatory function from sequence alone, further scaling our ability to characterize genome function. Applying these tools across diverse phenotypes, model systems, and ancestries is beginning to revolutionize our understanding of noncoding variation underlying human evolution.