Pub Date : 2024-11-26DOI: 10.1016/j.gde.2024.102279
Anushka Katikaneni , Craig B Lowe
It is not currently understood how much of human evolution is due to modifying existing functional elements in the genome versus forging novel elements from nonfunctional DNA. Many early experiments that aimed to assign genetic changes on the human lineage to their resulting phenotypic change have focused on mutations that modify existing elements. However, a number of recent studies have highlighted the potential ease and importance of forging novel gene regulatory elements from nonfunctional sequences on the human lineage. In this review, we distinguish gene regulatory element novelty from innovation. We propose definitions for these terms and emphasize their importance in studying the genetic basis of human uniqueness. We discuss why the forging of novel regulatory elements may have been less emphasized during the previous decades, and why novel regulatory elements are likely to play a significant role in both human adaptation and disease.
目前还不清楚人类的进化在多大程度上是由于修改了基因组中现有的功能元素,而不是从无功能的 DNA 中伪造出新的元素。许多旨在将人类血统中的基因变化归因于其导致的表型变化的早期实验,都集中在改变现有元素的突变上。然而,最近的一些研究强调了从人类血统的非功能序列中伪造新基因调控元件的潜在难度和重要性。在这篇综述中,我们将基因调控元件的新颖性与创新性区分开来。我们提出了这些术语的定义,并强调了它们在研究人类独特性遗传基础中的重要性。我们讨论了为什么新型调控元件的形成在过去几十年中可能不太受重视,以及为什么新型调控元件可能在人类适应和疾病中发挥重要作用。
{"title":"Novelty versus innovation of gene regulatory elements in human evolution and disease","authors":"Anushka Katikaneni , Craig B Lowe","doi":"10.1016/j.gde.2024.102279","DOIUrl":"10.1016/j.gde.2024.102279","url":null,"abstract":"<div><div>It is not currently understood how much of human evolution is due to modifying existing functional elements in the genome versus forging novel elements from nonfunctional DNA. Many early experiments that aimed to assign genetic changes on the human lineage to their resulting phenotypic change have focused on mutations that modify existing elements. However, a number of recent studies have highlighted the potential ease and importance of forging novel gene regulatory elements from nonfunctional sequences on the human lineage. In this review, we distinguish gene regulatory element novelty from innovation. We propose definitions for these terms and emphasize their importance in studying the genetic basis of human uniqueness. We discuss why the forging of novel regulatory elements may have been less emphasized during the previous decades, and why novel regulatory elements are likely to play a significant role in both human adaptation and disease.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"90 ","pages":"Article 102279"},"PeriodicalIF":3.7,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1016/j.gde.2024.102225
Qiang Yuan , Su-Chun Zhang
Transplantation-based cell therapy holds the potential to offer sustained and physiological repair for neurological diseases and injuries, which requires the integration of transplanted neurons into the neural circuits of the human brain. Recent studies involving transplantation of human pluripotent stem cell–derived neural progenitors into the brain of model animals reveal the remarkable capacity of grafted immature human neurons to mature, project axons in a long distance, and form both pre- and postsynaptic connections with host neurons, corresponding to functional recovery. Strikingly, this circuit integration depends largely on the identity of the transplanted cells and may be modified by external stimuli. This realization begs for enriched authentic target cells for transplantation and combination with rehabilitation for better therapeutic outcomes.
{"title":"Circuit integration by transplanted human neurons","authors":"Qiang Yuan , Su-Chun Zhang","doi":"10.1016/j.gde.2024.102225","DOIUrl":"10.1016/j.gde.2024.102225","url":null,"abstract":"<div><div>Transplantation-based cell therapy holds the potential to offer sustained and physiological repair for neurological diseases and injuries, which requires the integration of transplanted neurons into the neural circuits of the human brain. Recent studies involving transplantation of human pluripotent stem cell–derived neural progenitors into the brain of model animals reveal the remarkable capacity of grafted immature human neurons to mature, project axons in a long distance, and form both pre- and postsynaptic connections with host neurons, corresponding to functional recovery. Strikingly, this circuit integration depends largely on the identity of the transplanted cells and may be modified by external stimuli. This realization begs for enriched authentic target cells for transplantation and combination with rehabilitation for better therapeutic outcomes.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"89 ","pages":"Article 102225"},"PeriodicalIF":3.7,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699886","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1016/j.gde.2024.102227
Dongchang Xiao , Shuting Liu , Mengqing Xiang
Organoids have a wide range of potential applications in areas such as organ development, precision medicine, regenerative medicine, drug screening, disease modeling, and gene editing. Currently, most organoids are generated through three-dimensional (3D) in vitro culture of adult stem cells or pluripotent stem cells. However, this method of generating organoids still has several limitations and challenges, including complex manipulations, costly culturing materials, extended time requirements, and certain heterogeneity. Recently, we have found that fibroblasts, when overexpressing several key regulatory transcription factors, are able to directly and rapidly generate two types of ganglion organoids: sensory ganglion (SG) and autonomic ganglion (AG) organoids. They have structures and electrophysiological properties similar to those of endogenous organs in the body. Here, we provide a brief overview of organoid development, focusing on direct reprogramming of SG and AG organoids and their transplantation and regeneration. Finally, the advantages and prospects of direct reprogramming of organoids are discussed.
器官组织在器官发育、精准医学、再生医学、药物筛选、疾病建模和基因编辑等领域有着广泛的潜在应用。目前,大多数器官组织是通过成体干细胞或多能干细胞的三维体外培养生成的。然而,这种生成器官组织的方法仍存在一些局限性和挑战,包括操作复杂、培养材料昂贵、时间要求长以及一定的异质性。最近,我们发现成纤维细胞在过表达几种关键调控转录因子时,能够直接快速生成两种神经节类器官:感觉神经节(SG)和自主神经节(AG)类器官。它们具有与人体内生器官相似的结构和电生理特性。在此,我们将简要概述类器官的发展,重点介绍 SG 和 AG 类器官的直接重编程及其移植和再生。最后,我们讨论了类器官直接重编程的优势和前景。
{"title":"Unveiling the potential: implications of successful somatic cell-to-ganglion organoid reprogramming","authors":"Dongchang Xiao , Shuting Liu , Mengqing Xiang","doi":"10.1016/j.gde.2024.102227","DOIUrl":"10.1016/j.gde.2024.102227","url":null,"abstract":"<div><div>Organoids have a wide range of potential applications in areas such as organ development, precision medicine, regenerative medicine, drug screening, disease modeling, and gene editing. Currently, most organoids are generated through three-dimensional (3D) <em>in vitro</em> culture of adult stem cells or pluripotent stem cells. However, this method of generating organoids still has several limitations and challenges, including complex manipulations, costly culturing materials, extended time requirements, and certain heterogeneity. Recently, we have found that fibroblasts, when overexpressing several key regulatory transcription factors, are able to directly and rapidly generate two types of ganglion organoids: sensory ganglion (SG) and autonomic ganglion (AG) organoids. They have structures and electrophysiological properties similar to those of endogenous organs in the body. Here, we provide a brief overview of organoid development, focusing on direct reprogramming of SG and AG organoids and their transplantation and regeneration. Finally, the advantages and prospects of direct reprogramming of organoids are discussed.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"89 ","pages":"Article 102227"},"PeriodicalIF":3.7,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699889","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-23DOI: 10.1016/j.gde.2024.102226
Huitong Shi , Brian M Spurlock , Jiandong Liu , Li Qian
Adult mammals are susceptible to substantial cardiomyocyte (CM) loss following various cardiac diseases due to the limited capacity of CM proliferation and regeneration. Recently, direct cardiac reprogramming, converting fibroblasts into induced CMs, has been achieved both in vitro and in vivo through forced expression of transcription factors (TFs). This review encapsulates the advancements made in enhancing reprogramming efficiency and underlying molecular mechanisms. It covers the optimization of TF-based reprogramming cocktails and in vivo delivery platform and recently identified regulators in enhancing reprogramming efficiency. In addition, we discuss recent insights into the molecular mechanisms of direct cardiac reprogramming from single-cell omics analyses. Finally, we briefly touch on remaining challenges and prospective direction of this field.
{"title":"Control of cell fate upon transcription factor–driven cardiac reprogramming","authors":"Huitong Shi , Brian M Spurlock , Jiandong Liu , Li Qian","doi":"10.1016/j.gde.2024.102226","DOIUrl":"10.1016/j.gde.2024.102226","url":null,"abstract":"<div><div>Adult mammals are susceptible to substantial cardiomyocyte (CM) loss following various cardiac diseases due to the limited capacity of CM proliferation and regeneration. Recently, direct cardiac reprogramming, converting fibroblasts into induced CMs, has been achieved both <em>in vitro</em> and <em>in vivo</em> through forced expression of transcription factors (TFs). This review encapsulates the advancements made in enhancing reprogramming efficiency and underlying molecular mechanisms. It covers the optimization of TF-based reprogramming cocktails and <em>in vivo</em> delivery platform and recently identified regulators in enhancing reprogramming efficiency. In addition, we discuss recent insights into the molecular mechanisms of direct cardiac reprogramming from single-cell omics analyses. Finally, we briefly touch on remaining challenges and prospective direction of this field.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"89 ","pages":"Article 102226"},"PeriodicalIF":3.7,"publicationDate":"2024-11-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142699887","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-22DOI: 10.1016/j.gde.2024.102282
Grace Bower, Evgeny Z Kvon
Enhancers are remotely located noncoding DNA sequences that regulate gene expression in response to developmental, homeostatic, and environmental cues. Canonical short-range enhancers located <50 kb from their cognate promoters function by binding transcription factors, coactivators, and chromatin modifiers. In this review, we discuss recent evidence that medium-range (50–400 kb) and long-range (>400 kb) enhancers rely on additional mechanisms, including cohesin, CCCTC-binding factor, and high-affinity protein–protein interactions. These mechanisms are crucial for establishing the physical proximity and interaction between enhancers and their target promoters over extended genomic distances and ensuring robust gene activation during mammalian development. Future studies will be critical to unravel their prevalence and evolutionary significance across various genomic loci, cell types, and species.
增强子是位置偏远的非编码 DNA 序列,可调节基因表达,对发育、同源性和环境线索做出反应。典型的短程增强子位于 400 kb)增强子依赖于其他机制,包括凝聚素、CCCTC 结合因子和高亲和性蛋白-蛋白相互作用。这些机制对于在较长的基因组距离内建立增强子与其目标启动子之间的物理邻近性和相互作用以及确保哺乳动物发育过程中基因的稳健激活至关重要。未来的研究对于揭示它们在不同基因组位点、细胞类型和物种中的普遍性和进化意义至关重要。
{"title":"Genetic factors mediating long-range enhancer–promoter communication in mammalian development","authors":"Grace Bower, Evgeny Z Kvon","doi":"10.1016/j.gde.2024.102282","DOIUrl":"10.1016/j.gde.2024.102282","url":null,"abstract":"<div><div>Enhancers are remotely located noncoding DNA sequences that regulate gene expression in response to developmental, homeostatic, and environmental cues. Canonical short-range enhancers located <50 kb from their cognate promoters function by binding transcription factors, coactivators, and chromatin modifiers. In this review, we discuss recent evidence that medium-range (50–400 kb) and long-range (>400 kb) enhancers rely on additional mechanisms, including cohesin, CCCTC-binding factor, and high-affinity protein–protein interactions. These mechanisms are crucial for establishing the physical proximity and interaction between enhancers and their target promoters over extended genomic distances and ensuring robust gene activation during mammalian development. Future studies will be critical to unravel their prevalence and evolutionary significance across various genomic loci, cell types, and species.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"90 ","pages":"Article 102282"},"PeriodicalIF":3.7,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142696046","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-21DOI: 10.1016/j.gde.2024.102280
Debashree Tagore, Joshua M Akey
As anatomically modern humans dispersed out of Africa, they encountered and mated with now extinct hominins, including Neanderthals and Denisovans. It is now well established that all non-African individuals derive approximately 2% of their genome from Neanderthal ancestors and individuals of Melanesian and Australian aboriginal ancestry inherited an additional 2%–5% of their genomes from Denisovan ancestors. Attention has started to shift from documenting amounts of archaic admixture and identifying introgressed segments to understanding their molecular, phenotypic, and evolutionary consequences and refining models of human history. Here, we review recent insights into admixture between modern and archaic humans, emphasizing methodological innovations and the functional and phenotypic effects Neanderthal and Denisovan sequences have in contemporary individuals.
{"title":"Archaic hominin admixture and its consequences for modern humans","authors":"Debashree Tagore, Joshua M Akey","doi":"10.1016/j.gde.2024.102280","DOIUrl":"10.1016/j.gde.2024.102280","url":null,"abstract":"<div><div>As anatomically modern humans dispersed out of Africa, they encountered and mated with now extinct hominins, including Neanderthals and Denisovans. It is now well established that all non-African individuals derive approximately 2% of their genome from Neanderthal ancestors and individuals of Melanesian and Australian aboriginal ancestry inherited an additional 2%–5% of their genomes from Denisovan ancestors. Attention has started to shift from documenting amounts of archaic admixture and identifying introgressed segments to understanding their molecular, phenotypic, and evolutionary consequences and refining models of human history. Here, we review recent insights into admixture between modern and archaic humans, emphasizing methodological innovations and the functional and phenotypic effects Neanderthal and Denisovan sequences have in contemporary individuals.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"90 ","pages":"Article 102280"},"PeriodicalIF":3.7,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142693792","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.gde.2024.102277
Patrick O Nnoromele , McKaily Adams , Annabelle Pan , Ying V Liu , Joyce Wang , Mandeep S Singh
The transplantation of human organoid-derived retinal cells is being studied as a potentially viable strategy to treat vision loss due to retinal degeneration. Experiments in animal models have demonstrated the feasibility of organoid-derived photoreceptor transplantation in various recipient contexts. In some cases, vision repair has been shown. However, recipient–donor cell–cell interactions are incompletely understood. This review briefly summarizes these interactions, categorizing them as synaptic structure formation, cellular component transfer, glial activation, immune cell infiltration, and cellular migration. Each of these interactions may affect the survival and functionality of the donor cells and, ultimately, their efficacy as a treatment substrate. Additionally, recipient characteristics, such as the cytoarchitecture of the retina and immune status, may also impact the type and frequency of cell–cell interactions. Despite the procedural challenges associated with culturing human retinal organoids and the technical difficulties in transplanting donor cells into the delicate recipient retina, transplantation of retinal organoid-derived cells is a promising tool for degenerative retinal disease treatment.
{"title":"Cell–cell interactions between transplanted retinal organoid cells and recipient tissues","authors":"Patrick O Nnoromele , McKaily Adams , Annabelle Pan , Ying V Liu , Joyce Wang , Mandeep S Singh","doi":"10.1016/j.gde.2024.102277","DOIUrl":"10.1016/j.gde.2024.102277","url":null,"abstract":"<div><div>The transplantation of human organoid-derived retinal cells is being studied as a potentially viable strategy to treat vision loss due to retinal degeneration. Experiments in animal models have demonstrated the feasibility of organoid-derived photoreceptor transplantation in various recipient contexts. In some cases, vision repair has been shown. However, recipient–donor cell–cell interactions are incompletely understood. This review briefly summarizes these interactions, categorizing them as synaptic structure formation, cellular component transfer, glial activation, immune cell infiltration, and cellular migration. Each of these interactions may affect the survival and functionality of the donor cells and, ultimately, their efficacy as a treatment substrate. Additionally, recipient characteristics, such as the cytoarchitecture of the retina and immune status, may also impact the type and frequency of cell–cell interactions. Despite the procedural challenges associated with culturing human retinal organoids and the technical difficulties in transplanting donor cells into the delicate recipient retina, transplantation of retinal organoid-derived cells is a promising tool for degenerative retinal disease treatment.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"89 ","pages":"Article 102277"},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644932","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-15DOI: 10.1016/j.gde.2024.102278
Nicole D Moss , Davoneshia Lollis , Debra L Silver
Understanding what makes us uniquely human is a long-standing question permeating fields from genomics, neuroscience, and developmental biology to medicine. The discovery of human-specific genomic sequences has enabled a new understanding of the molecular features of human brain evolution. Advances in sequencing, computational, and in vitro screening approaches collectively reveal new roles of uniquely human sequences in regulating gene expression. Here, we review the landscape of human-specific loci and describe how emerging technologies are being used to understand their molecular functions and impact on brain development. We describe current challenges in the field and the potential of integrating new hypotheses and approaches to propel our understanding of the human brain.
{"title":"How our brains are built: emerging approaches to understand human-specific features","authors":"Nicole D Moss , Davoneshia Lollis , Debra L Silver","doi":"10.1016/j.gde.2024.102278","DOIUrl":"10.1016/j.gde.2024.102278","url":null,"abstract":"<div><div>Understanding what makes us uniquely human is a long-standing question permeating fields from genomics, neuroscience, and developmental biology to medicine. The discovery of human-specific genomic sequences has enabled a new understanding of the molecular features of human brain evolution. Advances in sequencing, computational, and <em>in vitro</em> screening approaches collectively reveal new roles of uniquely human sequences in regulating gene expression. Here, we review the landscape of human-specific loci and describe how emerging technologies are being used to understand their molecular functions and impact on brain development. We describe current challenges in the field and the potential of integrating new hypotheses and approaches to propel our understanding of the human brain.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"89 ","pages":"Article 102278"},"PeriodicalIF":3.7,"publicationDate":"2024-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644934","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-12DOI: 10.1016/j.gde.2024.102275
Yunlong Y Jia , Scott X Atwood
Recently, significant strides have been made in the development of high-fidelity skin organoids, encompassing techniques such as 3D bioprinting, skin-on-a-chip systems, and models derived from pluripotent stem cells (PSCs), replicating appendage structures and diverse skin cell types. Despite the emergence of these state-of-the-art skin engineering models, human organotypic cultures (OTCs), initially proposed in the 1970s, continue to reign as the predominant in vitro cultured three-dimensional skin model in the field of tissue engineering. This enduring prevalence is owed to their cost-effectiveness, straight forward setup, time efficiency, and faithful representation of native human skin. In this review, we systematically delineate recent advances in skin OTC models, aiming to inform future efforts to enhance in vitro skin model fidelity and reproducibility.
{"title":"Diversity of human skin three-dimensional organotypic cultures","authors":"Yunlong Y Jia , Scott X Atwood","doi":"10.1016/j.gde.2024.102275","DOIUrl":"10.1016/j.gde.2024.102275","url":null,"abstract":"<div><div>Recently, significant strides have been made in the development of high-fidelity skin organoids, encompassing techniques such as 3D bioprinting, skin-on-a-chip systems, and models derived from pluripotent stem cells (PSCs), replicating appendage structures and diverse skin cell types. Despite the emergence of these state-of-the-art skin engineering models, human organotypic cultures (OTCs), initially proposed in the 1970s, continue to reign as the predominant <em>in vitro</em> cultured three-dimensional skin model in the field of tissue engineering. This enduring prevalence is owed to their cost-effectiveness, straight forward setup, time efficiency, and faithful representation of native human skin. In this review, we systematically delineate recent advances in skin OTC models, aiming to inform future efforts to enhance <em>in vitro</em> skin model fidelity and reproducibility.</div></div>","PeriodicalId":50606,"journal":{"name":"Current Opinion in Genetics & Development","volume":"89 ","pages":"Article 102275"},"PeriodicalIF":3.7,"publicationDate":"2024-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632085","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}