首页 > 最新文献

Computer-Aided Design最新文献

英文 中文
Design of Random and Deterministic Fractal Surfaces from Voronoi Cells 从 Voronoi 单元设计随机和确定性分形表面
IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-01-03 DOI: 10.1016/j.cad.2024.103674
Javier Rodríguez-Cuadrado, Jesús San Martín

We show a fractal surface generation method that, unlike other methods, generates both random and deterministic fractals that model natural and architectural elements. The method starts with a succession of sets of sites, which determine, by means of a metric, a succession of Voronoi tessellations of the region where the fractal is defined. For each element of the tessellation sequence we define a tessellation function which depends on each tile. This generates a succession of tessellation functions that will be the parameter of the same seed function. Finally, the fractal is generated by a weighted sum of the seed function evaluated on each value of the succession of parameters. If the sites used to generate the Voronoi tessellation are random, natural elements such as mountains, craters, lakes, etc. are generated; if they are deterministic, architectural and decorative elements are generated. In addition, the designers can control the morphology of the generated fractal by simply varying the metric.

我们展示了一种分形表面生成方法,与其他方法不同的是,这种方法既能生成随机分形,也能生成确定分形,以自然和建筑元素为模型。该方法从一组连续的点开始,通过一个度量,确定分形所在区域的连续沃罗诺网格。对于细分序列的每个元素,我们都定义了一个细分函数,该函数取决于每个瓦片。这样就产生了一系列的细分函数,它们将成为相同种子函数的参数。最后,分形由种子函数对连续参数的每个值进行评估的加权和生成。如果用于生成 Voronoi 分形的地点是随机的,则会生成山脉、火山口、湖泊等自然元素;如果是确定的,则会生成建筑和装饰元素。此外,设计者还可以通过改变度量来控制生成的分形的形态。
{"title":"Design of Random and Deterministic Fractal Surfaces from Voronoi Cells","authors":"Javier Rodríguez-Cuadrado,&nbsp;Jesús San Martín","doi":"10.1016/j.cad.2024.103674","DOIUrl":"10.1016/j.cad.2024.103674","url":null,"abstract":"<div><p>We show a fractal surface generation method that, unlike other methods, generates both random and deterministic fractals that model natural and architectural elements. The method starts with a succession of sets of sites, which determine, by means of a metric, a succession of Voronoi tessellations of the region where the fractal is defined. For each element of the tessellation sequence we define a tessellation function which depends on each tile. This generates a succession of tessellation functions that will be the parameter of the same seed function. Finally, the fractal is generated by a weighted sum of the seed function evaluated on each value of the succession of parameters. If the sites used to generate the Voronoi tessellation are random, natural elements such as mountains, craters, lakes, etc. are generated; if they are deterministic, architectural and decorative elements are generated. In addition, the designers can control the morphology of the generated fractal by simply varying the metric.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"169 ","pages":"Article 103674"},"PeriodicalIF":4.3,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448524000010/pdfft?md5=ffab08fc7f5875f44d04332eb25e4c63&pid=1-s2.0-S0010448524000010-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139096033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Full-LSPIA: A Least-Squares Progressive-Iterative Approximation Method with Optimization of Weights and Knots for NURBS Curves and Surfaces Full-LSPIA:针对 NURBS 曲线和曲面的权重和节点优化的最小二乘渐进迭代逼近方法
IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2024-01-02 DOI: 10.1016/j.cad.2023.103673
Lin Lan, Ye Ji, Meng-Yun Wang, Chun-Gang Zhu

The Least-Squares Progressive-Iterative Approximation (LSPIA) method offers a powerful and intuitive approach for data fitting. Non-Uniform Rational B-splines (NURBS) are a popular choice for approximation functions in data fitting, due to their robust capabilities in shape representation. However, a restriction of the traditional LSPIA application to NURBS is that it only iteratively adjusts control points to approximate the provided data, with weights and knots remaining static. To enhance fitting precision and overcome this constraint, we present Full-LSPIA, an innovative LSPIA method that jointly optimizes weights and knots alongside control points adjustments for superior NURBS curves and surfaces creation. We achieve this by constructing an objective function that incorporates control points, weights, and knots as variables, and solving the resultant optimization problem. Specifically, control points are adjusted using LSPIA, while weights and knots are optimized through the LBFGS method based on the analytical gradients of the objective function with respect to weights and knots. Additionally, we present a knot removal strategy known as Decremental Full-LSPIA. This strategy reduces the number of knots within a specified error tolerance, and determines optimal knot locations. The proposed Full-LSPIA and Decremental Full-LSPIA maximize the strengths of LSPIA, with numerical examples further highlighting the superior performance and effectiveness of these methods. Compared to the classical LSPIA, Full-LSPIA offers greater fitting accuracy for NURBS curves and surfaces while maintaining the same number of control points, and automatically determines suitable weights and knots. Moreover, Decremental Full-LSPIA yields fitting results with fewer knots while maintaining the same error tolerance.

最小二乘累进迭代逼近法(LSPIA)为数据拟合提供了一种强大而直观的方法。非均匀有理 B-样条曲线 (NURBS) 具有强大的形状表示能力,是数据拟合中近似函数的热门选择。然而,传统的 LSPIA 应用于 NURBS 的一个限制是,它只能迭代调整控制点以逼近所提供的数据,而权重和节点则保持不变。为了提高拟合精度并克服这一限制,我们提出了 Full-LSPIA,这是一种创新的 LSPIA 方法,它能在调整控制点的同时联合优化权重和节点,从而创建出出色的 NURBS 曲线和曲面。为此,我们构建了一个目标函数,将控制点、权重和节点作为变量,并解决由此产生的优化问题。具体来说,控制点通过 LSPIA 进行调整,而权重和节点则根据目标函数与权重和节点相关的分析梯度,通过 LBFGS 方法进行优化。此外,我们还提出了一种称为 "递减全 LSPIA "的节点去除策略。该策略可在指定误差容限内减少结点数量,并确定最佳结点位置。所提出的 Full-LSPIA 和 Decremental Full-LSPIA 最大限度地发挥了 LSPIA 的优势,并通过数值示例进一步突出了这些方法的卓越性能和有效性。与经典的 LSPIA 相比,Full-LSPIA 在保持相同控制点数量的情况下,对 NURBS 曲线和曲面的拟合精度更高,并能自动确定合适的权重和节点。此外,Decremental Full-LSPIA 还能在保持相同误差容限的情况下,用更少的节点获得拟合结果。
{"title":"Full-LSPIA: A Least-Squares Progressive-Iterative Approximation Method with Optimization of Weights and Knots for NURBS Curves and Surfaces","authors":"Lin Lan,&nbsp;Ye Ji,&nbsp;Meng-Yun Wang,&nbsp;Chun-Gang Zhu","doi":"10.1016/j.cad.2023.103673","DOIUrl":"10.1016/j.cad.2023.103673","url":null,"abstract":"<div><p><span>The Least-Squares Progressive-Iterative Approximation<span> (LSPIA) method offers a powerful and intuitive approach for data fitting. Non-Uniform Rational B-splines (NURBS) are a popular choice for approximation functions in data fitting, due to their robust capabilities in shape representation. However, a restriction of the traditional LSPIA application to NURBS is that it only iteratively adjusts control points to approximate the provided data, with weights and knots remaining static. To enhance fitting precision and overcome this constraint, we present Full-LSPIA, an innovative LSPIA method that jointly optimizes weights and knots alongside control points adjustments for superior NURBS curves and surfaces creation. We achieve this by constructing an objective function that incorporates control points, weights, and knots as variables, and solving the resultant optimization problem. Specifically, control points are adjusted using LSPIA, while weights and knots are optimized through the </span></span>LBFGS method based on the analytical gradients of the objective function with respect to weights and knots. Additionally, we present a knot removal strategy known as Decremental Full-LSPIA. This strategy reduces the number of knots within a specified error tolerance, and determines optimal knot locations. The proposed Full-LSPIA and Decremental Full-LSPIA maximize the strengths of LSPIA, with numerical examples further highlighting the superior performance and effectiveness of these methods. Compared to the classical LSPIA, Full-LSPIA offers greater fitting accuracy for NURBS curves and surfaces while maintaining the same number of control points, and automatically determines suitable weights and knots. Moreover, Decremental Full-LSPIA yields fitting results with fewer knots while maintaining the same error tolerance.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"169 ","pages":"Article 103673"},"PeriodicalIF":4.3,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139095897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Automatic Cable Harness Layout Routing in a Customizable 3D Environment 在可定制的 3D 环境中自动进行电缆线束布局布线
IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2023-12-28 DOI: 10.1016/j.cad.2023.103671
T. Karlsson , E. Åblad , T. Hermansson , J.S. Carlson , G. Tenfält

Designing cable harnesses can be time-consuming and complex due to many design and manufacturing aspects and rules. Automating the design process can help to fulfil these rules, speed up the process, and optimize the design. To accommodate this, we formulate a harness routing optimization problem to minimize cable lengths, maximize bundling by rewarding shared paths, and optimize the cables’ spatial location with respect to case-specific information of the routing environment, e.g., zones to avoid. A deterministic and computationally effective cable harness routing algorithm has been developed to solve the routing problem and is used to generate a set of cable harness topology candidates and approximate the Pareto front. Our approach was tested against a stochastic and an exact solver and our routing algorithm generated objective function values better than the stochastic approach and close to the exact solver. Our algorithm was able to find solutions, some of them being proven to be near-optimal, for three industrial-sized 3D cases within reasonable time (in magnitude of seconds to minutes) and the computation times were comparable to those of the stochastic approach.

由于设计和制造方面的许多问题和规则,电缆线束的设计可能既耗时又复杂。设计过程自动化有助于实现这些规则,加快设计过程并优化设计。为此,我们提出了线束布线优化问题,以最小化电缆长度,通过奖励共享路径最大化捆绑,并根据布线环境的具体信息(如需要避免的区域)优化电缆的空间位置。为解决路由问题,我们开发了一种确定性强、计算效率高的电缆束路由算法,用于生成一组电缆束拓扑候选方案,并逼近帕累托前沿。我们的方法与随机求解器和精确求解器进行了测试,我们的路由算法生成的目标函数值优于随机求解器,接近精确求解器。我们的算法能够在合理的时间内(从几秒到几分钟不等)为三个工业规模的三维案例找到解决方案,其中一些已被证明接近最优,计算时间与随机方法相当。
{"title":"Automatic Cable Harness Layout Routing in a Customizable 3D Environment","authors":"T. Karlsson ,&nbsp;E. Åblad ,&nbsp;T. Hermansson ,&nbsp;J.S. Carlson ,&nbsp;G. Tenfält","doi":"10.1016/j.cad.2023.103671","DOIUrl":"10.1016/j.cad.2023.103671","url":null,"abstract":"<div><p>Designing cable harnesses can be time-consuming and complex due to many design and manufacturing aspects and rules. Automating the design process can help to fulfil these rules, speed up the process, and optimize the design. To accommodate this, we formulate a harness routing optimization problem to minimize cable lengths, maximize bundling by rewarding shared paths, and optimize the cables’ spatial location with respect to case-specific information of the routing environment, e.g., zones to avoid. A deterministic and computationally effective cable harness routing algorithm has been developed to solve the routing problem and is used to generate a set of cable harness topology candidates and approximate the Pareto front. Our approach was tested against a stochastic and an exact solver and our routing algorithm generated objective function values better than the stochastic approach and close to the exact solver. Our algorithm was able to find solutions, some of them being proven to be near-optimal, for three industrial-sized 3D cases within reasonable time (in magnitude of seconds to minutes) and the computation times were comparable to those of the stochastic approach.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"169 ","pages":"Article 103671"},"PeriodicalIF":4.3,"publicationDate":"2023-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448523002038/pdfft?md5=da6bdc185fb49f2cc2b9a3f0a384791e&pid=1-s2.0-S0010448523002038-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139065226","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Flexible Kokotsakis Meshes with Skew Faces: Generalization of the Orthodiagonal Involutive Type 具有倾斜面的灵活 Kokotsakis 网格:正对角线渐开线类型的一般化
IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2023-12-23 DOI: 10.1016/j.cad.2023.103669
Alisher Aikyn, Yang Liu, Dmitry A. Lyakhov, Florian Rist, Helmut Pottmann, Dominik L. Michels

In this paper, we introduce and study a remarkable class of mechanisms formed by a 3 × 3 arrangement of rigid quadrilateral faces with revolute joints at the common edges. In contrast to the well-studied Kokotsakis meshes with a quadrangular base, we do not assume the planarity of the quadrilateral faces. Our mechanisms are a generalization of Izmestiev’s orthodiagonal involutive type of Kokotsakis meshes formed by planar quadrilateral faces. The importance of this Izmestiev class is undisputed as it represents the first known flexible discrete surface – T-nets – which has been constructed by Graf and Sauer. Our algebraic approach yields a complete characterization of all flexible 3 × 3 quad meshes of the orthodiagonal involutive type up to some degenerated cases. It is shown that one has a maximum of 8 degrees of freedom to construct such mechanisms. This is illustrated by several examples, including cases which could not be realized using planar faces. We demonstrate the practical realization of the proposed mechanisms by building a physical prototype using stainless steel. In contrast to plastic prototype fabrication, we avoid large tolerances and inherent flexibility.

在本文中,我们介绍并研究了一类由 3 × 3 排列的刚性四边形面构成的非凡机构,这些刚性四边形面的公共边缘具有反转接头。与已被广泛研究的具有四边形底面的 Kokotsakis 网格不同,我们不假定四边形面的平面性。我们的机制是对伊兹梅季耶夫(Izmestiev)提出的由平面四边形面形成的正对角线渐开线型 Kokotsakis 网格的推广。伊兹梅斯特耶夫类的重要性毋庸置疑,因为它代表了格拉夫和绍尔构建的第一个已知柔性离散曲面--T 网。我们的代数方法对正对角渐开线类型的所有柔性 3 × 3 四边形网格进行了完整的描述,包括一些退化情况。结果表明,人们最多有 8 个自由度来构建这种机制。我们通过几个例子来说明这一点,其中包括使用平面面无法实现的情况。我们用不锈钢制作了一个物理原型,展示了如何实际实现所提出的机构。与塑料原型制造相比,我们避免了较大的公差和固有的灵活性。
{"title":"Flexible Kokotsakis Meshes with Skew Faces: Generalization of the Orthodiagonal Involutive Type","authors":"Alisher Aikyn,&nbsp;Yang Liu,&nbsp;Dmitry A. Lyakhov,&nbsp;Florian Rist,&nbsp;Helmut Pottmann,&nbsp;Dominik L. Michels","doi":"10.1016/j.cad.2023.103669","DOIUrl":"10.1016/j.cad.2023.103669","url":null,"abstract":"<div><p>In this paper, we introduce and study a remarkable class of mechanisms formed by a 3 × 3 arrangement of rigid quadrilateral faces<span><span> with revolute joints<span> at the common edges. In contrast to the well-studied Kokotsakis meshes with a quadrangular base, we do not assume the </span></span>planarity<span> of the quadrilateral faces. Our mechanisms are a generalization of Izmestiev’s orthodiagonal involutive type of Kokotsakis meshes formed by planar quadrilateral faces. The importance of this Izmestiev class is undisputed as it represents the first known flexible discrete surface – T-nets – which has been constructed by Graf and Sauer. Our algebraic approach yields a complete characterization of all flexible 3 × 3 quad meshes of the orthodiagonal involutive type up to some degenerated cases. It is shown that one has a maximum of 8 degrees of freedom to construct such mechanisms. This is illustrated by several examples, including cases which could not be realized using planar faces. We demonstrate the practical realization of the proposed mechanisms by building a physical prototype using stainless steel. In contrast to plastic prototype fabrication, we avoid large tolerances and inherent flexibility.</span></span></p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"168 ","pages":"Article 103669"},"PeriodicalIF":4.3,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139036045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bending-Reinforced Grid Shells for Free-form Architectural Surfaces 用于自由形态建筑表面的弯曲加固网格壳体
IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2023-12-23 DOI: 10.1016/j.cad.2023.103670
Francesco Laccone , Nico Pietroni , Paolo Cignoni , Luigi Malomo

We introduce a new method for designing reinforcement for grid shells and improving their resistance to out-of-plane forces inducing bending. The central concept is to support the base network of elements with an additional layer of beams placed at a certain distance from the base surface. We exploit two main techniques to design these structures: first, we derive the orientation of the beam network on a given initial surface forming the grid shell to be reinforced; then, we compute the height of the additional layer that maximizes its overall structural performance. Our method includes a new formulation to derive a smooth direction field that orients the quad remeshing and a novel algorithm that iteratively optimizes the height of the additional layer to minimize the structure’s compliance. We couple our optimization strategy with a set of constraints to improve buildability of the network and, simultaneously, preserve the initial surface. We showcase our method on a significant dataset of shapes to demonstrate its applicability to cases where free-form grid shells do not exhibit adequate structural performance due to their geometry.

我们介绍了一种新方法,用于设计网格壳体的加固结构,提高其抗平面外力引起弯曲的能力。该方法的核心理念是通过在距离基面一定距离处设置额外的梁层来支撑基本单元网络。我们利用两种主要技术来设计这些结构:首先,我们在给定的初始表面上推导出梁网络的方向,形成要加固的网格壳;然后,我们计算出附加层的高度,使其整体结构性能最大化。我们的方法包括一个新的公式,用于推导出平滑的方向场,为四边形重塑定向;以及一个新颖的算法,用于迭代优化附加层的高度,使结构的顺应性最小化。我们将优化策略与一组约束条件相结合,以提高网络的可构建性,同时保留初始表面。我们在一个重要的形状数据集上展示了我们的方法,以证明它适用于自由形式网格壳因其几何形状而无法表现出足够结构性能的情况。
{"title":"Bending-Reinforced Grid Shells for Free-form Architectural Surfaces","authors":"Francesco Laccone ,&nbsp;Nico Pietroni ,&nbsp;Paolo Cignoni ,&nbsp;Luigi Malomo","doi":"10.1016/j.cad.2023.103670","DOIUrl":"10.1016/j.cad.2023.103670","url":null,"abstract":"<div><p>We introduce a new method for designing reinforcement for grid shells and improving their resistance to out-of-plane forces inducing bending. The central concept is to support the base network of elements with an additional layer of beams placed at a certain distance from the base surface. We exploit two main techniques to design these structures: first, we derive the orientation of the beam network on a given initial surface forming the grid shell to be reinforced; then, we compute the height of the additional layer that maximizes its overall structural performance. Our method includes a new formulation to derive a smooth direction field<span> that orients the quad remeshing and a novel algorithm that iteratively optimizes the height of the additional layer to minimize the structure’s compliance. We couple our optimization strategy with a set of constraints to improve buildability of the network and, simultaneously, preserve the initial surface. We showcase our method on a significant dataset of shapes to demonstrate its applicability to cases where free-form grid shells do not exhibit adequate structural performance due to their geometry.</span></p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"168 ","pages":"Article 103670"},"PeriodicalIF":4.3,"publicationDate":"2023-12-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139027290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Defining metric-aware size-shape measures to validate and optimize curved high-order meshes 定义度量感知的尺寸-形状测量方法,以验证和优化曲面高阶网格
IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2023-12-19 DOI: 10.1016/j.cad.2023.103667
Guillermo Aparicio-Estrems, Abel Gargallo-Peiró, Xevi Roca

We define a regularized size-shape distortion (quality) measure for curved high-order elements on a Riemannian space. To this end, we measure the deviation of a given element, straight-sided or curved, from the stretching, alignment, and sizing determined by a target metric. The defined distortion (quality) is suitable to check the validity and the quality of straight-sided and curved elements on Riemannian spaces determined by constant and point-wise varying metrics. The examples illustrate that the distortion can be minimized to curve (deform) the elements of a given high-order (linear) mesh and try to match with curved (linear) elements the point-wise stretching, alignment, and sizing of a discrete target metric tensor. In addition, the resulting meshes simultaneously match the curved features of the target metric and boundary. Finally, to verify if the minimization of the metric-aware size-shape distortion leads to meshes approximating the target metric, we compute the Riemannian measures for the element edges, faces, and cells. The results show that, when compared to anisotropic straight-sided meshes, the Riemannian measures of the curved high-order mesh entities are closer to unit. Furthermore, the optimized meshes illustrate the potential of curved r-adaptation to improve the accuracy of a function representation.

我们为黎曼空间上的弯曲高阶元素定义了正则化尺寸-形状失真(质量)度量。为此,我们测量给定元素(直边或曲线)与目标度量所确定的拉伸、对齐和大小的偏差。所定义的变形(质量)适用于检查由常数和随点变化的度量确定的黎曼空间上的直边和曲线元素的有效性和质量。这些示例说明,可以最小化变形,使给定高阶(线性)网格的元素曲线化(变形),并尝试用曲线(线性)元素匹配离散目标度量张量的点向拉伸、对齐和大小。此外,生成的网格还同时与目标度量和边界的曲线特征相匹配。最后,为了验证度量感知尺寸-形状变形最小化是否会导致网格逼近目标度量,我们计算了元素边、面和单元的黎曼度量。结果表明,与各向异性的直边网格相比,曲面高阶网格实体的黎曼度量更接近单位。此外,优化后的网格说明了曲面 r 适应在提高函数表示精度方面的潜力。
{"title":"Defining metric-aware size-shape measures to validate and optimize curved high-order meshes","authors":"Guillermo Aparicio-Estrems,&nbsp;Abel Gargallo-Peiró,&nbsp;Xevi Roca","doi":"10.1016/j.cad.2023.103667","DOIUrl":"10.1016/j.cad.2023.103667","url":null,"abstract":"<div><p><span>We define a regularized size-shape distortion (quality) measure for curved high-order elements on a Riemannian space<span><span><span>. To this end, we measure the deviation of a given element, straight-sided or curved, from the stretching, alignment, and sizing determined by a target metric. The defined distortion (quality) is suitable to check the validity and the quality of straight-sided and curved elements on Riemannian spaces determined by constant and point-wise varying metrics. The examples illustrate that the distortion can be minimized to curve (deform) the elements of a given high-order (linear) mesh and try to match with curved (linear) elements the point-wise stretching, alignment, and sizing of a discrete target </span>metric tensor. In addition, the resulting meshes simultaneously match the curved features of the target metric and boundary. Finally, to verify if the minimization of the metric-aware size-shape distortion leads to meshes approximating the target metric, we compute the Riemannian measures for the </span>element edges<span>, faces, and cells. The results show that, when compared to anisotropic straight-sided meshes, the Riemannian measures of the curved high-order mesh entities are closer to unit. Furthermore, the optimized meshes illustrate the potential of curved </span></span></span><span><math><mi>r</mi></math></span>-adaptation to improve the accuracy of a function representation.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"168 ","pages":"Article 103667"},"PeriodicalIF":4.3,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138817862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The deep neural network solver for B-spline approximation 用于 B-样条逼近的深度神经网络求解器
IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2023-12-19 DOI: 10.1016/j.cad.2023.103668
Zepeng Wen , Jiaqi Luo , Hongmei Kang

This paper introduces a novel unsupervised deep learning approach to address the knot placement problem in the field of B-spline approximation, called deep neural network solvers (DNN-Solvers). Given discrete points, the DNN acts as a solver for calculating knot positions in the case of a fixed knot number. The input can be any initial knots and the output provides the desirable knots. The loss function is based on the approximation error. The DNN-Solver converts the lower-dimensional knot placement problem, characterized as a nonconvex nonlinear optimization problem, into a search for suitable network parameters within a high-dimensional space. Owing to the over-parameterization nature, DNN-Solvers are less likely to be trapped in local minima and robust against initial knots. Moreover, the unsupervised learning paradigm of DNN-Solvers liberates us from constructing high-quality synthetic datasets with labels. Numerical experiments demonstrate that DNN-Solvers are excellent in both approximation results and efficiency under the premise of an appropriate number of knots.

本文介绍了一种新颖的无监督深度学习方法,用于解决 B-样条近似领域中的节点位置问题,即深度神经网络求解器(DNN-Solvers)。在给定离散点的情况下,DNN 充当解算器,计算固定节点数情况下的节点位置。输入可以是任何初始结点,输出则是理想的结点。损失函数基于近似误差。DNN 求解器将低维绳结位置问题(非凸非线性优化问题)转换为在高维空间内搜索合适的网络参数。由于过度参数化的特性,DNN-求解器不易陷入局部最小值,对初始结点也很稳健。此外,DNN-Solvers 的无监督学习模式使我们无需构建高质量的带标签合成数据集。数值实验证明,在节点数量适当的前提下,DNN求解器的近似结果和效率都非常出色。
{"title":"The deep neural network solver for B-spline approximation","authors":"Zepeng Wen ,&nbsp;Jiaqi Luo ,&nbsp;Hongmei Kang","doi":"10.1016/j.cad.2023.103668","DOIUrl":"10.1016/j.cad.2023.103668","url":null,"abstract":"<div><p><span>This paper introduces a novel unsupervised deep learning<span> approach to address the knot placement problem in the field of B-spline approximation, called </span></span>deep neural network<span><span> solvers (DNN-Solvers). Given discrete points, the DNN acts as a solver for calculating knot positions in the case of a fixed knot number. The input can be any initial knots and the output provides the desirable knots. The loss function is based on the approximation error. The DNN-Solver converts the lower-dimensional knot placement problem, characterized as a nonconvex nonlinear optimization<span> problem, into a search for suitable network parameters within a high-dimensional space. Owing to the over-parameterization nature, DNN-Solvers are less likely to be trapped in local minima and robust against initial knots. Moreover, the unsupervised learning paradigm of DNN-Solvers liberates us from constructing high-quality </span></span>synthetic datasets with labels. Numerical experiments demonstrate that DNN-Solvers are excellent in both approximation results and efficiency under the premise of an appropriate number of knots.</span></p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"169 ","pages":"Article 103668"},"PeriodicalIF":4.3,"publicationDate":"2023-12-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138817855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication-aware strip-decomposable quadrilateral meshes 可制作的带状可分解四边形网格
IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2023-12-16 DOI: 10.1016/j.cad.2023.103666
Ioanna Mitropoulou , Amir Vaxman , Olga Diamanti , Benjamin Dillenburger

Strip-decomposable quadrilateral (SDQ) meshes, i.e., quad meshes that can be decomposed into two transversal strip networks, are vital in numerous fabrication processes; examples include woven structures, surfaces from sheets, custom rebar, or cable-net structures. However, their design is often challenging and includes tedious manual work, and there is a lack of methodologies for editing such meshes while preserving their strip decomposability. We present an interactive methodology to generate and edit SDQ meshes aligned to user-defined directions, while also incorporating desirable properties to the strips for fabrication. Our technique is based on the computation of two coupled transversal tangent direction fields, integrated into two overlapping networks of strips on the surface. As a case study, we consider the fabrication scenario of robotic non-planar 3D printing of free-form surfaces and apply the presented methodology to design and fabricate non-planar print paths.

带状可分解四边形(SDQ)网格,即可以分解成两个横向带状网络的四边形网格,在许多制造过程中都非常重要,例如编织结构、板材表面、定制钢筋或电缆网结构。然而,它们的设计通常具有挑战性,包括乏味的手工作业,而且缺乏在保留条状可分解性的同时编辑此类网格的方法。我们提出了一种交互式方法,用于生成和编辑 SDQ 网格,使其与用户定义的方向保持一致,同时将理想的特性融入条带制造中。我们的技术基于两个耦合横切方向场的计算,并将其整合到表面上两个重叠的条带网络中。作为案例研究,我们考虑了自由形状表面的机器人非平面三维打印的制造方案,并应用所介绍的方法设计和制造非平面打印路径。
{"title":"Fabrication-aware strip-decomposable quadrilateral meshes","authors":"Ioanna Mitropoulou ,&nbsp;Amir Vaxman ,&nbsp;Olga Diamanti ,&nbsp;Benjamin Dillenburger","doi":"10.1016/j.cad.2023.103666","DOIUrl":"10.1016/j.cad.2023.103666","url":null,"abstract":"<div><p>Strip-decomposable quadrilateral (SDQ) meshes, i.e., quad meshes that can be decomposed into two transversal strip networks, are vital in numerous fabrication processes; examples include woven structures, surfaces from sheets, custom rebar, or cable-net structures. However, their design is often challenging and includes tedious manual work, and there is a lack of methodologies for editing such meshes while preserving their strip decomposability. We present an interactive methodology to generate and edit SDQ meshes aligned to user-defined directions, while also incorporating desirable properties to the strips for fabrication. Our technique is based on the computation of two coupled transversal tangent direction fields, integrated into two overlapping networks of strips on the surface. As a case study, we consider the fabrication scenario of robotic non-planar 3D printing of free-form surfaces and apply the presented methodology to design and fabricate non-planar print paths.</p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"168 ","pages":"Article 103666"},"PeriodicalIF":4.3,"publicationDate":"2023-12-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0010448523001987/pdfft?md5=e0df2ba7fb95a50507fc2dba7312452d&pid=1-s2.0-S0010448523001987-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138685830","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Dual Neural Network Approach to Topology Optimization for Thermal-Electromagnetic Device Design 热电磁器件拓扑优化的双神经网络方法
IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2023-12-05 DOI: 10.1016/j.cad.2023.103665
Benjamin A. Jasperson , Michael G. Wood , Harley T. Johnson

Topology optimization for engineering problems often requires multiphysics (dual objective functions) and multi-timescale considerations to be coupled with manufacturing constraints across a range of target values. We present a dual neural network approach to topology optimization to optimize a 3-dimensional thermal-electromagnetic device (optical shutter) for maximum temperature rise across a range of extinction ratios while also considering manufacturing tolerances. One neural network performs the topology optimization, allocating material to each sub-pixel within a repeating unit cell. The size of each sub-pixel is selected with manufacturing considerations in mind. The other neural network is trained to predict performance of the device using extinction ratio and temperature rise over a given time period. Training data is generated using a finite element model for both the electromagnetic wave frequency domain and thermal time domain problems. Optimized designs across a range of targets are shown.

工程问题的拓扑优化通常需要多物理场(双目标函数)和多时间尺度考虑,并结合一系列目标值的制造约束。我们提出了一种双神经网络拓扑优化方法,以优化三维热电磁器件(光学快门)在消光比范围内的最大温升,同时考虑制造公差。一个神经网络执行拓扑优化,将材料分配到重复单元格中的每个子像素。每个子像素的大小是根据制造考虑因素来选择的。另一个神经网络被训练来使用消光比和给定时间段内的温升来预测设备的性能。训练数据是用有限元模型生成的,用于电磁波频域和热时域问题。展示了一系列目标的优化设计。
{"title":"A Dual Neural Network Approach to Topology Optimization for Thermal-Electromagnetic Device Design","authors":"Benjamin A. Jasperson ,&nbsp;Michael G. Wood ,&nbsp;Harley T. Johnson","doi":"10.1016/j.cad.2023.103665","DOIUrl":"10.1016/j.cad.2023.103665","url":null,"abstract":"<div><p><span>Topology optimization<span><span> for engineering problems often requires multiphysics (dual objective functions) and multi-timescale considerations to be coupled with manufacturing constraints across a range of target values. We present a dual neural network<span> approach to topology optimization to optimize a 3-dimensional thermal-electromagnetic device (optical shutter) for maximum temperature rise across a range of extinction ratios while also considering manufacturing tolerances. One neural network performs the topology optimization, allocating material to each sub-pixel within a repeating unit cell. The size of each sub-pixel is selected with manufacturing considerations in mind. The other neural network is trained to predict performance of the device using extinction ratio and temperature rise over a given time period. Training data is generated using a </span></span>finite element model for both the </span></span>electromagnetic wave<span> frequency domain and thermal time domain problems. Optimized designs across a range of targets are shown.</span></p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"168 ","pages":"Article 103665"},"PeriodicalIF":4.3,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515712","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Globalized and Preconditioned Newton-CG Solver for Metric-Aware Curved High-Order Mesh Optimization 面向度量感知曲面高阶网格优化的全球化预条件牛顿- cg求解器
IF 4.3 3区 计算机科学 Q2 COMPUTER SCIENCE, SOFTWARE ENGINEERING Pub Date : 2023-11-30 DOI: 10.1016/j.cad.2023.103651
Guillermo Aparicio-Estrems, Abel Gargallo-Peiró, Xevi Roca

We present a specific-purpose globalized and preconditioned Newton-CG solver to minimize a metric-aware curved high-order mesh distortion. The solver is specially devised to optimize curved high-order meshes for high polynomial degrees with a target metric featuring non-uniform sizing, high stretching ratios, and curved alignment — exactly the features that stiffen the optimization problem. To this end, we consider two ingredients: a specific-purpose globalization and a specific-purpose Jacobi-iLDLT(0) preconditioning with varying accuracy and curvature tolerances (dynamic forcing terms) for the CG method. These improvements are critical in stiff problems because, without them, the large number of non-linear and linear iterations makes curved optimization impractical. First, to enhance the global convergence of the non-linear solver, the globalization strategy modifies Newton’s direction to a feasible step. In particular, our specific-purpose globalization strategy memorizes the length of the feasible step (step-length continuation) between the optimization iterations while ensuring sufficient decrease and progress. Second, to compute Newton’s direction in second-order optimization problems, we consider a conjugate-gradient iterative solver with specific-purpose preconditioning and dynamic forcing terms. To account for the metric stretching and alignment, the preconditioner uses specific orderings for the mesh nodes and the degrees of freedom. We also present a preconditioner switch between Jacobi and iLDLT(0) preconditioners to control the numerical ill-conditioning of the preconditioner. In addition, the dynamic forcing terms determine the required accuracy for the Newton direction approximation. Specifically, they control the residual tolerance and enforce sufficient positive curvature for the conjugate-gradients method. Finally, to analyze the performance of our method, the results compare the specific-purpose solver with standard optimization methods. For this, we measure the matrix–vector products indicating the solver computational cost and the line-search iterations indicating the total amount of objective function evaluations. When we combine the globalization and the linear solver ingredients, we conclude that the specific-purpose Newton-CG solver reduces the total number of matrix–vector products by one order of magnitude. Moreover, the number of non-linear and line-search iterations is mainly smaller but of similar magnitude.

我们提出了一个特定用途的全球化和预置牛顿- cg求解器,以最小化度量感知的曲面高阶网格畸变。该求解器是专门设计来优化高多项式度的曲面高阶网格,其目标度量具有非均匀尺寸,高拉伸比和弯曲对齐-正是这些特征使优化问题变得僵硬。为此,我们考虑了两个组成部分:特定目的全球化和特定目的Jacobi-iLDLT(0)预处理,具有不同的精度和曲率公差(动态强迫项)的CG方法。这些改进对于刚性问题至关重要,因为如果没有它们,大量的非线性和线性迭代将使曲线优化变得不切实际。首先,为了增强非线性求解器的全局收敛性,全球化策略将牛顿方向修正为可行的一步。特别是,我们的特定目的的全球化策略在确保充分减少和进步的同时,记住了优化迭代之间可行步骤的长度(步长延续)。其次,为了计算二阶优化问题中的牛顿方向,我们考虑了具有特定目的预处理和动态强迫项的共轭梯度迭代求解器。为了考虑度量拉伸和对齐,前置条件对网格节点和自由度使用特定的排序。我们还提出了在Jacobi和iLDLT(0)预条件之间的预条件切换,以控制预条件的数值病态。此外,动力强迫项决定了牛顿方向近似所需的精度。具体来说,它们控制了残余公差,并为共轭梯度法提供了足够的正曲率。最后,对本文方法的性能进行了分析,并将该方法与标准优化方法进行了比较。为此,我们测量指示求解器计算成本的矩阵向量积和指示目标函数评估总量的线搜索迭代。当我们结合全球化和线性求解器成分时,我们得出结论,特定用途的牛顿- cg求解器将矩阵-向量乘积的总数减少了一个数量级。此外,非线性和直线搜索迭代的次数主要是较小的,但大小相似。
{"title":"A Globalized and Preconditioned Newton-CG Solver for Metric-Aware Curved High-Order Mesh Optimization","authors":"Guillermo Aparicio-Estrems,&nbsp;Abel Gargallo-Peiró,&nbsp;Xevi Roca","doi":"10.1016/j.cad.2023.103651","DOIUrl":"https://doi.org/10.1016/j.cad.2023.103651","url":null,"abstract":"<div><p><span><span>We present a specific-purpose globalized and preconditioned Newton-CG solver to minimize a metric-aware curved high-order mesh distortion<span>. The solver is specially devised to optimize curved high-order meshes for high </span></span>polynomial degrees<span> with a target metric featuring non-uniform sizing, high stretching ratios, and curved alignment — exactly the features that stiffen the optimization problem. To this end, we consider two ingredients: a specific-purpose globalization and a specific-purpose Jacobi-</span></span><span><math><mrow><msup><mrow><mtext>iLDL</mtext></mrow><mrow><mtext>T</mtext></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span><span><span> preconditioning with varying accuracy and curvature tolerances (dynamic forcing terms) for the CG method. These improvements are critical in stiff problems because, without them, the large number of non-linear and linear iterations makes curved optimization impractical. First, to enhance the global convergence of the non-linear solver, the globalization strategy modifies Newton’s direction to a feasible step. In particular, our specific-purpose globalization strategy memorizes the length of the feasible step (step-length continuation) between the optimization iterations while ensuring sufficient decrease and progress. Second, to compute Newton’s direction in second-order optimization problems, we consider a conjugate-gradient iterative solver with specific-purpose preconditioning and dynamic </span>forcing terms<span>. To account for the metric stretching and alignment, the preconditioner uses specific orderings for the mesh nodes and the degrees of freedom. We also present a preconditioner switch between Jacobi and </span></span><span><math><mrow><msup><mrow><mtext>iLDL</mtext></mrow><mrow><mtext>T</mtext></mrow></msup><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow></mrow></math></span><span><span> preconditioners to control the numerical ill-conditioning of the preconditioner. In addition, the dynamic forcing terms determine the required accuracy for the Newton direction </span>approximation<span>. Specifically, they control the residual tolerance and enforce sufficient positive curvature for the conjugate-gradients method. Finally, to analyze the performance of our method, the results compare the specific-purpose solver with standard optimization methods. For this, we measure the matrix–vector products indicating the solver computational cost and the line-search iterations indicating the total amount of objective function evaluations. When we combine the globalization and the linear solver ingredients, we conclude that the specific-purpose Newton-CG solver reduces the total number of matrix–vector products by one order of magnitude. Moreover, the number of non-linear and line-search iterations is mainly smaller but of similar magnitude.</span></span></p></div>","PeriodicalId":50632,"journal":{"name":"Computer-Aided Design","volume":"168 ","pages":"Article 103651"},"PeriodicalIF":4.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138466074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Computer-Aided Design
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1