Pub Date : 2023-11-07DOI: 10.1016/j.matpur.2023.10.005
Domènec Ruiz-Balet , Enrique Zuazua
Inspired by normalising flows, we analyse the bilinear control of neural transport equations by means of time-dependent velocity fields restricted to fulfil, at any time instance, a simple neural network ansatz. The approximate controllability property is proved, showing that any probability density can be driven arbitrarily close to any other one in any time horizon. The control vector fields are built explicitly and inductively and this provides quantitative estimates on their complexity and amplitude. This also leads to statistical error bounds when only random samples of the target probability density are available.
受归一化流的启发,我们利用时间相关的速度场来分析神经传递方程的双线性控制,这些速度场被限制在任何时间实例上,以满足一个简单的神经网络分析。证明了L1近似可控性,表明任意概率密度都可以在任意时间范围内被驱动到任意另一个概率密度附近。控制向量场是显式地和归纳地建立的,这提供了对它们的复杂性和幅度的定量估计。当只有目标概率密度的随机样本可用时,这也会导致统计误差界限。inspirs samsams par flux normalisaturs, nous分析为contrôle bilinsamaire des samsamas de transport neuron或moyen de champs de vitesse dsampendant du temps and limites samsamas vsamrifier, chaque instance temporelle,简单分析为samsamseau neuron。仲裁解决办法:固有的薪金薪金,固有的薪金薪金,固有的薪金薪金,的薪金薪金,或然的薪金,的薪金,的薪金,的薪金,的薪金,的薪金,的薪金,的薪金。Les champs de vecteurs de contrôle sont construcits de maniires explicit et归纳,ce qui permet d'obtenir des estimations de leur complex itures de leur amplitude。从统计数据上看,所有的数据都有可能是不可靠的,因为所有的数据都可能是不可靠的。
{"title":"Control of neural transport for normalising flows","authors":"Domènec Ruiz-Balet , Enrique Zuazua","doi":"10.1016/j.matpur.2023.10.005","DOIUrl":"10.1016/j.matpur.2023.10.005","url":null,"abstract":"<div><p><span>Inspired by normalising flows, we analyse the bilinear control of neural transport equations by means of time-dependent velocity fields<span> restricted to fulfil, at any time instance, a simple neural network ansatz. The </span></span><span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>1</mn></mrow></msup></math></span><span> approximate controllability property is proved, showing that any probability density can be driven arbitrarily close to any other one in any time horizon. The control vector fields are built explicitly and inductively and this provides quantitative estimates on their complexity and amplitude. This also leads to statistical error bounds when only random samples of the target probability density are available.</span></p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135510213","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-07DOI: 10.1016/j.matpur.2023.10.010
Gianmarco Caldini , Andrea Marchese , Andrea Merlo , Simone Steinbrüchel
Given a complete Riemannian manifold which is a Lipschitz neighborhood retract of dimension , of class and an oriented, closed submanifold of dimension , which is a boundary in integral homology, we construct a complete metric space of -perturbations of Γ inside , with , enjoying the following property. For the typical element , in the sense of Baire categories, there exists a unique m-dimensional integral current in which solves the corresponding Plateau problem and it has multiplicity one.
莫德a complete Riemannian流形M⊂Rd - which is a李普希茨邻里retract of of class M + n维度,Ch,通过面向βand an,关闭submanifoldΓ⊂of维度M in integral homology−1,which is a号边界,we建筑B a complete规space of Ch,α-perturbations ofΓinside M, with the <β、α,他会请property。对于典型元素b∈b,在贝尔范畴的意义上,存在一个独特的M维积分流,它解决了对应的平台问题,它有一个多重性。一双(M),有人认为Γ⊂Rd),其中M是M + n维度全面品种和班级Ch、β是邻里rétract李普希茨、和Γ⊂M是sous-variété封闭和导向,即整整一个已知的边缘。正在建一个完整metrique扰动Ch,αBΓ在β、α< M,满足如下:对于任何所有权B∈通用在Baire sense有整整一个独一无二的潮流中M, m-dimensionnelle和多样性,这是解决塞浦路斯问题和相应的高原。
{"title":"Generic uniqueness for the Plateau problem","authors":"Gianmarco Caldini , Andrea Marchese , Andrea Merlo , Simone Steinbrüchel","doi":"10.1016/j.matpur.2023.10.010","DOIUrl":"10.1016/j.matpur.2023.10.010","url":null,"abstract":"<div><p>Given a complete Riemannian manifold <span><math><mi>M</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>d</mi></mrow></msup></math></span> which is a Lipschitz neighborhood retract of dimension <span><math><mi>m</mi><mo>+</mo><mi>n</mi></math></span>, of class <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>h</mi><mo>,</mo><mi>β</mi></mrow></msup></math></span> and an oriented, closed submanifold <span><math><mi>Γ</mi><mo>⊂</mo><mi>M</mi></math></span> of dimension <span><math><mi>m</mi><mo>−</mo><mn>1</mn></math></span>, which is a boundary in integral homology, we construct a complete metric space <span><math><mi>B</mi></math></span> of <span><math><msup><mrow><mi>C</mi></mrow><mrow><mi>h</mi><mo>,</mo><mi>α</mi></mrow></msup></math></span>-perturbations of Γ inside <span><math><mi>M</mi></math></span>, with <span><math><mi>α</mi><mo><</mo><mi>β</mi></math></span>, enjoying the following property. For the typical element <span><math><mi>b</mi><mo>∈</mo><mi>B</mi></math></span>, in the sense of Baire categories, there exists a unique <em>m</em>-dimensional integral current in <span><math><mi>M</mi></math></span> which solves the corresponding Plateau problem and it has multiplicity one.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0021782423001514/pdfft?md5=3ea9206021feeebc508e67ce882752fd&pid=1-s2.0-S0021782423001514-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135510542","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Let and be two martingales related to the probability space equipped with the filtration . Assume that f is in the martingale Hardy space and g is in its dual space, namely the martingale BMO. Then the semi-martingale may be written as the sum Here with for any , where
设f:=(fn)n∈Z+, g:=(gn)n∈Z+是与过滤(fn)n∈Z+的概率空间(Ω, f,P)相关的两个鞅。设f在鞅Hardy空间H1中,g在它的对偶空间中,即鞅BMO中。则半鞅f⋅g:=(fngn)n∈Z+可以写成sumf⋅g= g (f,g)+L(f,g)。L (f, g): = (L (f, g) n) n∈Z + L (f, g) n: n =∑k = 0(颗−颗−1)(gk−gk−1)对于任何n∈Z + f−1:= 0 =:g−1。作者证明了L(f,g)是一个在L1中有界变分和极限的过程,而g (f,g)属于与Orlicz functionΦ(t):=tlog (e+t),∀t∈[0,∞)相关的鞅Hardy-Orlicz空间Hlog。上面的双线性分解L1+Hlog在某种意义上是尖锐的,对于特定的鞅,空间L1+Hlog不能被具有较大对偶的较小空间所取代。作为应用,作者刻画了H1的最大子空间,用b∈BMO表示为H1b,使得具有经典次线性算子T的换向子[T,b]从H1b有界到L1。换向子的端点有界性允许作者给出更多的应用。一方面,在鞅条件下,得到了鞅变换和鞅分数阶积分对易子的端点估计。另一方面,在调和分析中,作者建立了沃尔什-傅里叶级数的超越倍测度的并矢希尔伯特变换和Cesàro均值的极大算子的对易子端点估计。
{"title":"Products and commutators of martingales in H1 and BMO","authors":"Aline Bonami , Yong Jiao , Guangheng Xie , Dachun Yang , Dejian Zhou","doi":"10.1016/j.matpur.2023.10.001","DOIUrl":"10.1016/j.matpur.2023.10.001","url":null,"abstract":"<div><p>Let <span><math><mi>f</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> and <span><math><mi>g</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> be two martingales related to the probability space <span><math><mo>(</mo><mi>Ω</mi><mo>,</mo><mi>F</mi><mo>,</mo><mi>P</mi><mo>)</mo></math></span> equipped with the filtration <span><math><msub><mrow><mo>(</mo><msub><mrow><mi>F</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span>. Assume that <em>f</em><span> is in the martingale Hardy space </span><span><math><msub><mrow><mi>H</mi></mrow><mrow><mn>1</mn></mrow></msub></math></span> and <em>g</em> is in its dual space, namely the martingale BMO. Then the semi-martingale <span><math><mi>f</mi><mo>⋅</mo><mi>g</mi><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>n</mi></mrow></msub><msub><mrow><mi>g</mi></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> may be written as the sum<span><span><span><math><mi>f</mi><mo>⋅</mo><mi>g</mi><mo>=</mo><mi>G</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>+</mo><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>.</mo></math></span></span></span> Here <span><math><mi>L</mi><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo><mo>:</mo><mo>=</mo><msub><mrow><mo>(</mo><mi>L</mi><msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>)</mo></mrow><mrow><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></mrow></msub></math></span> with <span><math><mi>L</mi><msub><mrow><mo>(</mo><mi>f</mi><mo>,</mo><mi>g</mi><mo>)</mo></mrow><mrow><mi>n</mi></mrow></msub><mo>:</mo><mo>=</mo><msubsup><mrow><mo>∑</mo></mrow><mrow><mi>k</mi><mo>=</mo><mn>0</mn></mrow><mrow><mi>n</mi></mrow></msubsup><mo>(</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>f</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo><mo>(</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi></mrow></msub><mo>−</mo><msub><mrow><mi>g</mi></mrow><mrow><mi>k</mi><mo>−</mo><mn>1</mn></mrow></msub><mo>)</mo></math></span> for any <span><math><mi>n</mi><mo>∈</mo><msub><mrow><mi>Z</mi></mrow><mrow><mo>+</mo></mrow></msub></math></span>, where <span><math><msub><mrow><mi>f</mi></mrow><mrow><mo>−</mo><mn>1</mn></mrow></msub><mo>:</mo><mo>=</mo><mn>0</mn><mo>=</mo><mo>:</mo><msub><mrow><mi>g</mi>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136153009","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1016/j.matpur.2023.07.005
Ciprian G. Gal , Andrea Giorgini , Maurizio Grasselli , Andrea Poiatti
We investigate the nonlocal version of the Abels-Garcke-Grün (AGG) system, which describes the motion of a mixture of two viscous incompressible fluids. This consists of the incompressible Navier-Stokes-Cahn-Hilliard system characterized by concentration-dependent density and viscosity, and an additional flux term due to interface diffusion. In particular, the Cahn-Hilliard dynamics of the concentration (phase-field) is governed by the aggregation/diffusion competition of the nonlocal Helmholtz free energy with singular (logarithmic) potential and constant mobility. We first prove the existence of global strong solutions in general two-dimensional bounded domains and their uniqueness when the initial datum is strictly separated from the pure phases. The key points are a novel well-posedness result of strong solutions to the nonlocal convective Cahn-Hilliard equation with singular potential and constant mobility under minimal integral assumption on the incompressible velocity field, and a new two-dimensional interpolation estimate for the control of the pressure in the stationary Stokes problem. Secondly, we show that any weak solution, whose existence was already known, is globally defined, enjoys the propagation of regularity and converges towards an equilibrium (i.e., a stationary solution) as . Furthermore, we demonstrate the uniqueness of strong solutions and their continuous dependence with respect to general (not necessarily separated) initial data in the case of matched densities and unmatched viscosities (i.e., the nonlocal model H with variable viscosity, singular potential and constant mobility). Finally, we provide a stability estimate between the strong solutions to the nonlocal AGG model and the nonlocal Model H in terms of the difference of densities.
{"title":"Global well-posedness and convergence to equilibrium for the Abels-Garcke-Grün model with nonlocal free energy","authors":"Ciprian G. Gal , Andrea Giorgini , Maurizio Grasselli , Andrea Poiatti","doi":"10.1016/j.matpur.2023.07.005","DOIUrl":"https://doi.org/10.1016/j.matpur.2023.07.005","url":null,"abstract":"<div><p>We investigate the nonlocal version of the Abels-Garcke-Grün (AGG) system, which describes the motion of a mixture of two viscous incompressible fluids. This consists of the incompressible Navier-Stokes-Cahn-Hilliard system characterized by concentration-dependent density and viscosity, and an additional flux term due to interface diffusion. In particular, the Cahn-Hilliard dynamics of the concentration (phase-field) is governed by the aggregation/diffusion competition of the nonlocal Helmholtz free energy with singular (logarithmic) potential and constant mobility. We first prove the existence of global <em>strong</em> solutions in general two-dimensional bounded domains and their uniqueness when the initial datum is strictly separated from the pure phases. The key points are a novel well-posedness result of strong solutions to the nonlocal convective Cahn-Hilliard equation with singular potential and constant mobility under minimal integral assumption on the incompressible velocity field, and a new two-dimensional interpolation estimate for the <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>4</mn></mrow></msup><mo>(</mo><mi>Ω</mi><mo>)</mo></math></span> control of the pressure in the stationary Stokes problem. Secondly, we show that any weak solution, whose existence was already known, is globally defined, enjoys the propagation of regularity and converges towards an equilibrium (i.e., a stationary solution) as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>. Furthermore, we demonstrate the uniqueness of strong solutions and their continuous dependence with respect to general (not necessarily separated) initial data in the case of matched densities and unmatched viscosities (i.e., the nonlocal model H with variable viscosity, singular potential and constant mobility). Finally, we provide a stability estimate between the strong solutions to the nonlocal AGG model and the nonlocal Model H in terms of the difference of densities.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49800742","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1016/j.matpur.2023.07.008
Vincenzo Ambrosio
We investigate the following class of -Laplacian problems: where is a small parameter, , , , with , is the s-Laplacian operator, is a continuous potential such that and for some bounded open set , and
{"title":"The nonlinear (p,q)-Schrödinger equation with a general nonlinearity: Existence and concentration","authors":"Vincenzo Ambrosio","doi":"10.1016/j.matpur.2023.07.008","DOIUrl":"https://doi.org/10.1016/j.matpur.2023.07.008","url":null,"abstract":"<div><p>We investigate the following class of <span><math><mo>(</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>)</mo></math></span>-Laplacian problems:<span><span><span><math><mrow><mo>{</mo><mtable><mtr><mtd><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mi>p</mi></mrow></msup><mspace></mspace><msub><mrow><mi>Δ</mi></mrow><mrow><mi>p</mi></mrow></msub><mi>v</mi><mo>−</mo><msup><mrow><mi>ε</mi></mrow><mrow><mi>q</mi></mrow></msup><mspace></mspace><msub><mrow><mi>Δ</mi></mrow><mrow><mi>q</mi></mrow></msub><mi>v</mi><mo>+</mo><mi>V</mi><mo>(</mo><mi>x</mi><mo>)</mo><mo>(</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>p</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mo>+</mo><mo>|</mo><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>q</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>v</mi><mo>)</mo><mo>=</mo><mi>f</mi><mo>(</mo><mi>v</mi><mo>)</mo><mspace></mspace><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr><mtr><mtd><mi>v</mi><mo>∈</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>p</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>∩</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>1</mn><mo>,</mo><mi>q</mi></mrow></msup><mo>(</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>)</mo><mo>,</mo><mspace></mspace><mi>v</mi><mo>></mo><mn>0</mn><mtext> in </mtext><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>,</mo></mtd></mtr></mtable></mrow></math></span></span></span> where <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span> is a small parameter, <span><math><mi>N</mi><mo>≥</mo><mn>3</mn></math></span>, <span><math><mn>1</mn><mo><</mo><mi>p</mi><mo><</mo><mi>q</mi><mo><</mo><mi>N</mi></math></span>, <span><math><msub><mrow><mi>Δ</mi></mrow><mrow><mi>s</mi></mrow></msub><mi>v</mi><mo>:</mo><mo>=</mo><mi>div</mi><mo>(</mo><mo>|</mo><mi>∇</mi><mi>v</mi><msup><mrow><mo>|</mo></mrow><mrow><mi>s</mi><mo>−</mo><mn>2</mn></mrow></msup><mi>∇</mi><mi>v</mi><mo>)</mo></math></span>, with <span><math><mi>s</mi><mo>∈</mo><mo>{</mo><mi>p</mi><mo>,</mo><mi>q</mi><mo>}</mo></math></span>, is the <em>s</em>-Laplacian operator, <span><math><mi>V</mi><mo>:</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup><mo>→</mo><mi>R</mi></math></span> is a continuous potential such that <span><math><msub><mrow><mi>inf</mi></mrow><mrow><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></mrow></msub><mo></mo><mi>V</mi><mo>></mo><mn>0</mn></math></span> and <span><math><msub><mrow><mi>V</mi></mrow><mrow><mn>0</mn></mrow></msub><mo>:</mo><mo>=</mo><msub><mrow><mi>inf</mi></mrow><mrow><mi>Λ</mi></mrow></msub><mo></mo><mi>V</mi><mo><</mo><msub><mrow><mi>min</mi></mrow><mrow><mo>∂</mo><mi>Λ</mi></mrow></msub><mo></mo><mi>V</mi></math></span> for some bounded open set <span><math><mi>Λ</mi><mo>⊂</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>, and <span><math><mi>f<","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49800733","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1016/j.matpur.2023.07.004
Yuki Kaneko , Hiroshi Matsuzawa , Yoshio Yamada
This paper is a continuation of our previous paper (Kaneko-Matsuzawa-Yamada, Discrete Contin. Dyn. Syst., 2022), where we have classified all large-time behaviors of radially symmetric solutions to a free boundary problem of reaction diffusion equation with positive bistable nonlinearity f in high space dimensions. The positive bistable nonlinearity means that has exactly two positive stable equilibria. Among the classified solutions, we are interested in a spreading solution, that is a solution for with free boundary such that, as , expands to the whole space and converges to a positive stable equilibrium for uniformly in any compact set of . When we discuss whole asymptotic profiles of spreading solutions, it has been known that they are generally described with use of a semi-wave obtained from the corresponding semi-wave problem.
Our main purpose is to study precise asymptotic estimates for any spreading solution whose profile accompanies a propagating terrace with two different types of propagating speeds. Such a spreading phenomenon occurs when converges to the largest equilibrium of f and the related semi-wave problem does not have a solution. We will prove that the propagating terrace consists of two functions; one is a semi-wave corresponding to a smaller positive equilibrium of f and the other is a traveling wave connecting two positive equilibria of f. In order to give sharp estimates for a radial terrace solution with the above properties, we need so called logarithmic shiftings, which are revealed by Uchiyama (1983) and Du-Matsuzawa-Zhou (2015) in higher
{"title":"A free boundary problem of nonlinear diffusion equation with positive bistable nonlinearity in high space dimensions II: Asymptotic profiles of solutions and radial terrace solution","authors":"Yuki Kaneko , Hiroshi Matsuzawa , Yoshio Yamada","doi":"10.1016/j.matpur.2023.07.004","DOIUrl":"https://doi.org/10.1016/j.matpur.2023.07.004","url":null,"abstract":"<div><p><span>This paper is a continuation of our previous paper (Kaneko-Matsuzawa-Yamada, Discrete Contin. Dyn. Syst., 2022), where we have classified all large-time behaviors of radially symmetric solutions to a free boundary problem<span> of reaction diffusion equation </span></span><span><math><msub><mrow><mi>u</mi></mrow><mrow><mi>t</mi></mrow></msub><mo>=</mo><mi>Δ</mi><mi>u</mi><mo>+</mo><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> with positive bistable nonlinearity <em>f</em> in high space dimensions. The positive bistable nonlinearity means that <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo><mo>=</mo><mn>0</mn></math></span><span> has exactly two positive stable equilibria. Among the classified solutions, we are interested in a spreading solution, that is a solution </span><span><math><mo>(</mo><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mo>|</mo><mi>x</mi><mo>|</mo><mo>)</mo><mo>,</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo><mo>)</mo></math></span> for <span><math><mi>x</mi><mo>∈</mo><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> with free boundary <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>=</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> such that, as <span><math><mi>t</mi><mo>→</mo><mo>∞</mo></math></span>, <span><math><mo>|</mo><mi>x</mi><mo>|</mo><mo>≤</mo><mi>h</mi><mo>(</mo><mi>t</mi><mo>)</mo></math></span> expands to the whole space <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span> and <span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mspace></mspace><mo>⋅</mo><mspace></mspace><mo>)</mo></math></span> converges to a positive stable equilibrium for <span><math><mi>f</mi><mo>(</mo><mi>u</mi><mo>)</mo></math></span> uniformly in any compact set of <span><math><msup><mrow><mi>R</mi></mrow><mrow><mi>N</mi></mrow></msup></math></span>. When we discuss whole asymptotic profiles of spreading solutions, it has been known that they are generally described with use of a semi-wave obtained from the corresponding semi-wave problem.</p><p><span>Our main purpose is to study precise asymptotic estimates for any spreading solution whose profile accompanies a propagating terrace with two different types of propagating speeds. Such a spreading phenomenon occurs when </span><span><math><mi>u</mi><mo>(</mo><mi>t</mi><mo>,</mo><mspace></mspace><mo>⋅</mo><mspace></mspace><mo>)</mo></math></span> converges to the largest equilibrium of <em>f</em> and the related semi-wave problem does not have a solution. We will prove that the propagating terrace consists of two functions; one is a semi-wave corresponding to a smaller positive equilibrium of <em>f</em><span> and the other is a traveling wave connecting two positive equilibria of </span><em>f</em><span>. In order to give sharp estimates for a radial terrace solution with the above properties, we need so called logarithmic shiftings, which are revealed by Uchiyama (1983) and Du-Matsuzawa-Zhou (2015) in higher ","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49843597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1016/j.matpur.2023.07.007
Alexandre Arias Junior , Alessia Ascanelli , Marco Cappiello
We prove well-posedness of the Cauchy problem for a class of third order quasilinear evolution equations with variable coefficients in projective Gevrey spaces. The class considered is connected with several equations in Mathematical Physics as the KdV and KdVB equation and some of their many generalizations.
{"title":"KdV-type equations in projective Gevrey spaces","authors":"Alexandre Arias Junior , Alessia Ascanelli , Marco Cappiello","doi":"10.1016/j.matpur.2023.07.007","DOIUrl":"https://doi.org/10.1016/j.matpur.2023.07.007","url":null,"abstract":"<div><p>We prove well-posedness of the Cauchy problem for a class of third order quasilinear evolution equations with variable coefficients in projective Gevrey spaces. The class considered is connected with several equations in Mathematical Physics as the KdV and KdVB equation and some of their many generalizations.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49800812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-25DOI: 10.1016/j.matpur.2023.09.002
János Flesch , Eilon Solan
We show that every two-player stochastic game with finite state and action sets, and bounded, Borel-measurable, and shift-invariant payoffs, admits an ε-equilibrium for all .
{"title":"Equilibrium in two-player stochastic games with shift-invariant payoffs","authors":"János Flesch , Eilon Solan","doi":"10.1016/j.matpur.2023.09.002","DOIUrl":"https://doi.org/10.1016/j.matpur.2023.09.002","url":null,"abstract":"<div><p><span>We show that every two-player stochastic game with finite state and action sets, and bounded, Borel-measurable, and shift-invariant payoffs, admits an </span><em>ε</em>-equilibrium for all <span><math><mi>ε</mi><mo>></mo><mn>0</mn></math></span>.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67740003","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-25DOI: 10.1016/j.matpur.2023.09.004
Théophile Chaumont-Frelet , Andrea Moiola , Euan A. Spence
We consider the time-harmonic Maxwell equations posed in . We prove a priori bounds on the solution for coefficients ϵ and μ satisfying certain monotonicity properties, with these bounds valid for arbitrarily-large frequency, and explicit in the frequency and properties of ϵ and μ. The class of coefficients covered includes (i) certain ϵ and μ for which well-posedness of the time-harmonic Maxwell equations had not previously been proved, and (ii) scattering by a penetrable star-shaped obstacle where ϵ and μ are smaller inside the obstacle than outside. In this latter setting, the bounds are uniform across all such obstacles, and the first sharp frequency-explicit bounds for this problem at high-frequency.
{"title":"Explicit bounds for the high-frequency time-harmonic Maxwell equations in heterogeneous media","authors":"Théophile Chaumont-Frelet , Andrea Moiola , Euan A. Spence","doi":"10.1016/j.matpur.2023.09.004","DOIUrl":"https://doi.org/10.1016/j.matpur.2023.09.004","url":null,"abstract":"<div><p>We consider the time-harmonic Maxwell equations posed in <span><math><msup><mrow><mi>R</mi></mrow><mrow><mn>3</mn></mrow></msup></math></span>. We prove a priori bounds on the solution for <span><math><msup><mrow><mi>L</mi></mrow><mrow><mo>∞</mo></mrow></msup></math></span> coefficients <em>ϵ</em> and <em>μ</em> satisfying certain monotonicity properties, with these bounds valid for arbitrarily-large frequency, and explicit in the frequency and properties of <em>ϵ</em> and <em>μ</em>. The class of coefficients covered includes (i) certain <em>ϵ</em> and <em>μ</em> for which well-posedness of the time-harmonic Maxwell equations had not previously been proved, and (ii) scattering by a penetrable <span><math><msup><mrow><mi>C</mi></mrow><mrow><mn>0</mn></mrow></msup></math></span> star-shaped obstacle where <em>ϵ</em> and <em>μ</em> are smaller inside the obstacle than outside. In this latter setting, the bounds are uniform across all such obstacles, and the first sharp frequency-explicit bounds for this problem at high-frequency.</p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67738623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-21DOI: 10.1016/j.matpur.2023.09.012
Ke Chen , Ly Kim Ha , Ruilin Hu , Quoc-Hung Nguyen
In this paper, we study the global well-posedness problem for the 1d compressible Navier–Stokes systems (cNSE) in gas dynamics with rough initial data. First, Liu and Yu (2022) [30] established the global well-posedness theory for the 1d isentropic cNSE with initial velocity data in BV space. Then, it was extended to the 1d full cNSE with initial velocity and temperature data in BV space by Wang et al. (2022) [31]. We improve the global well-posedness result of Liu and Yu with initial velocity data in space; and of Wang–Yu–Zhang with initial velocity data in space and initial data of temperature in for any arbitrarily small. Our essential ideas are based on establishing various “end-point” smoothing estimates for the 1d parabolic equation.
{"title":"Global well-posedness of the 1d compressible Navier–Stokes system with rough data","authors":"Ke Chen , Ly Kim Ha , Ruilin Hu , Quoc-Hung Nguyen","doi":"10.1016/j.matpur.2023.09.012","DOIUrl":"https://doi.org/10.1016/j.matpur.2023.09.012","url":null,"abstract":"<div><p><span>In this paper, we study the global well-posedness problem for the 1d compressible Navier–Stokes systems (cNSE) in gas dynamics with rough initial data. First, Liu and Yu (2022) </span><span>[30]</span><span> established the global well-posedness theory for the 1d isentropic cNSE with initial velocity data in BV space. Then, it was extended to the 1d full cNSE with initial velocity and temperature data in BV space by Wang et al. (2022) </span><span>[31]</span>. We improve the global well-posedness result of Liu and Yu with initial velocity data in <span><math><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space; and of Wang–Yu–Zhang with initial velocity data in <span><math><msup><mrow><mi>L</mi></mrow><mrow><mn>2</mn></mrow></msup><mo>∩</mo><msup><mrow><mi>W</mi></mrow><mrow><mn>2</mn><mi>γ</mi><mo>,</mo><mn>1</mn></mrow></msup></math></span> space and initial data of temperature in <span><math><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mo>−</mo><mfrac><mrow><mn>2</mn></mrow><mrow><mn>3</mn></mrow></mfrac><mo>,</mo><mfrac><mrow><mn>6</mn></mrow><mrow><mn>5</mn></mrow></mfrac></mrow></msup><mo>∩</mo><msup><mrow><mover><mrow><mi>W</mi></mrow><mrow><mo>˙</mo></mrow></mover></mrow><mrow><mn>2</mn><mi>γ</mi><mo>−</mo><mn>1</mn><mo>,</mo><mn>1</mn></mrow></msup></math></span> for any <span><math><mi>γ</mi><mo>></mo><mn>0</mn></math></span> <em>arbitrarily small</em><span>. Our essential ideas are based on establishing various “end-point” smoothing estimates for the 1d parabolic equation.</span></p></div>","PeriodicalId":51071,"journal":{"name":"Journal de Mathematiques Pures et Appliquees","volume":null,"pages":null},"PeriodicalIF":2.3,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"67740008","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}