Prediction errors drive reinforcement learning and organize episodic memory into distinct contexts, but do these effects interact? Here, we review the roles of midbrain dopamine, the locus coeruleus, and the hippocampus in event cognition to propose and simulate the theoretical influence of two prediction error signals in integrating versus segmenting events in memory. We suggest that signed reward prediction errors can build mental models of reward environments, increasing the contextual similarity (integration) of experiences with stronger, more stable reward expectations. On the other hand, unsigned reward prediction errors can signal a new model of the environment, generating a contextual shift (segmentation) between experiences that crossed them. We moreover predicted that these differences in contextual similarity give rise to distinct patterns of temporal-order memory. We combined these ideas in a computational model to account for a seemingly paradoxical pattern of temporal-order memory where greater representational distance helps order memory within context but impairs it across contexts. We found that simulating signed reward prediction error integration and unsigned reward prediction error segmentation differentially enabled the model to perform associative chaining, which involved reactivating items between two tested probes to assist with sequential retrieval. In summary, our simulations provide a unifying explanation for the varied ways that neuromodulatory systems may alter event cognition and memory.
{"title":"Building and Breaking the Chain: A Model of Reward Prediction Error Integration and Segmentation of Memory","authors":"Nina Rouhani;David Clewett;James W. Antony","doi":"10.1162/jocn_a_02215","DOIUrl":"10.1162/jocn_a_02215","url":null,"abstract":"Prediction errors drive reinforcement learning and organize episodic memory into distinct contexts, but do these effects interact? Here, we review the roles of midbrain dopamine, the locus coeruleus, and the hippocampus in event cognition to propose and simulate the theoretical influence of two prediction error signals in integrating versus segmenting events in memory. We suggest that signed reward prediction errors can build mental models of reward environments, increasing the contextual similarity (integration) of experiences with stronger, more stable reward expectations. On the other hand, unsigned reward prediction errors can signal a new model of the environment, generating a contextual shift (segmentation) between experiences that crossed them. We moreover predicted that these differences in contextual similarity give rise to distinct patterns of temporal-order memory. We combined these ideas in a computational model to account for a seemingly paradoxical pattern of temporal-order memory where greater representational distance helps order memory within context but impairs it across contexts. We found that simulating signed reward prediction error integration and unsigned reward prediction error segmentation differentially enabled the model to perform associative chaining, which involved reactivating items between two tested probes to assist with sequential retrieval. In summary, our simulations provide a unifying explanation for the varied ways that neuromodulatory systems may alter event cognition and memory.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2401-2414"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
James Antony;Angelo Lozano;Pahul Dhoat;Janice Chen;Kelly Bennion
While recounting an experience, one can employ multiple strategies to transition from one part to the next. For instance, if the event was learned out of linear order, one can recall events according to the time they were learned (temporal), similar events (semantic), events occurring nearby in time (chronological), or events produced by the current event (causal). To disentangle the importance of these factors, we had participants watch the nonlinear narrative, Memento, under different task instructions and presentation orders. For each scene of the film, we also separately computed semantic and causal networks. We then contrasted the evidence for temporal, semantic, chronological, or causal strategies during recall. Critically, there was stronger evidence for the causal and chronological strategies than semantic or temporal strategies. Moreover, the causal and chronological strategies outperformed the temporal one even when we asked participants to recall the film in the presented order, underscoring the fundamental nature of causal structure in scaffolding understanding and organizing recall. Nevertheless, time still marginally predicted recall transitions, suggesting it operates as a weak signal in the presence of more salient forms of structure. In addition, semantic and causal network properties predicted scene memorability, including a stronger role for incoming causes to an event than its outgoing effects. In summary, these findings highlight the importance of accounting for complex, causal networks in knowledge building and memory.
{"title":"Causal and Chronological Relationships Predict Memory Organization for Nonlinear Narratives","authors":"James Antony;Angelo Lozano;Pahul Dhoat;Janice Chen;Kelly Bennion","doi":"10.1162/jocn_a_02216","DOIUrl":"10.1162/jocn_a_02216","url":null,"abstract":"While recounting an experience, one can employ multiple strategies to transition from one part to the next. For instance, if the event was learned out of linear order, one can recall events according to the time they were learned (temporal), similar events (semantic), events occurring nearby in time (chronological), or events produced by the current event (causal). To disentangle the importance of these factors, we had participants watch the nonlinear narrative, Memento, under different task instructions and presentation orders. For each scene of the film, we also separately computed semantic and causal networks. We then contrasted the evidence for temporal, semantic, chronological, or causal strategies during recall. Critically, there was stronger evidence for the causal and chronological strategies than semantic or temporal strategies. Moreover, the causal and chronological strategies outperformed the temporal one even when we asked participants to recall the film in the presented order, underscoring the fundamental nature of causal structure in scaffolding understanding and organizing recall. Nevertheless, time still marginally predicted recall transitions, suggesting it operates as a weak signal in the presence of more salient forms of structure. In addition, semantic and causal network properties predicted scene memorability, including a stronger role for incoming causes to an event than its outgoing effects. In summary, these findings highlight the importance of accounting for complex, causal networks in knowledge building and memory.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2368-2385"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141591989","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Endogenous shifts of spatial attention toward an upcoming stimulus are associated with improvements in behavioral responses to the stimulus, preparatory retinotopic shifts in alpha power, and changes in ERPs. Although attentional modulation of several early sensory ERPs is well established, there is still debate about under what circumstances attention affects the earliest cortical visual evoked response—the C1 ERP component—which is putatively generated from afferent input into primary visual cortex. Moreover, the effects of spatial attention on the recently discovered ERP signature of evidence accumulation—the central parietal positivity (CPP)—have not been fully characterized. The present study assessed the effect of spatial attention on the C1 and CPP components through a spatially cued contrast discrimination task using stimuli that were specifically designed to produce large-amplitude C1 responses and that varied in sensory evidence strength to characterize the CPP. Participants responded according to which of two checkerboard stimuli had greater contrast following an 80% valid cue toward the upper or lower visual field. Prestimulus alpha power changed topographically based on the cue, suggesting participants shifted attention to prepare for the upcoming stimuli. Despite these attentional shifts in alpha power and the fact that the stimuli reliably elicited C1 responses several times greater than many prior studies, there was no evidence of an attention effect on the C1. The CPP, however, showed a clear increase in build-up rate on valid trials. Our findings suggest that endogenous attention may not affect the early C1 ERP component but may improve behavior at a decision stage, as reflected in brain signals related to evidence accumulation (the CPP).
{"title":"Endogenous Attention Affects Decision-related Neural Activity but Not Afferent Visual Responses","authors":"Audrey Morrow;April Pilipenko;Elise Turkovich;Soorya Sankaran;Jason Samaha","doi":"10.1162/jocn_a_02239","DOIUrl":"10.1162/jocn_a_02239","url":null,"abstract":"Endogenous shifts of spatial attention toward an upcoming stimulus are associated with improvements in behavioral responses to the stimulus, preparatory retinotopic shifts in alpha power, and changes in ERPs. Although attentional modulation of several early sensory ERPs is well established, there is still debate about under what circumstances attention affects the earliest cortical visual evoked response—the C1 ERP component—which is putatively generated from afferent input into primary visual cortex. Moreover, the effects of spatial attention on the recently discovered ERP signature of evidence accumulation—the central parietal positivity (CPP)—have not been fully characterized. The present study assessed the effect of spatial attention on the C1 and CPP components through a spatially cued contrast discrimination task using stimuli that were specifically designed to produce large-amplitude C1 responses and that varied in sensory evidence strength to characterize the CPP. Participants responded according to which of two checkerboard stimuli had greater contrast following an 80% valid cue toward the upper or lower visual field. Prestimulus alpha power changed topographically based on the cue, suggesting participants shifted attention to prepare for the upcoming stimuli. Despite these attentional shifts in alpha power and the fact that the stimuli reliably elicited C1 responses several times greater than many prior studies, there was no evidence of an attention effect on the C1. The CPP, however, showed a clear increase in build-up rate on valid trials. Our findings suggest that endogenous attention may not affect the early C1 ERP component but may improve behavior at a decision stage, as reflected in brain signals related to evidence accumulation (the CPP).","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2481-2494"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141983858","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sarah DuBrow;Brynn E. Sherman;Michael R. Meager;Lila Davachi
Although the role of the medial temporal lobe (MTL) and the hippocampus in episodic memory is well established, there is emerging evidence that these regions play a broader role in cognition, specifically in temporal processing. However, despite strong evidence that the hippocampus plays a critical role in sequential processing, the involvement of the MTL in timing per se is poorly understood. In the present study, we investigated whether patients with MTL damage exhibit differential performance on a temporal distance memory task. Critically, we manipulated context shifts, or boundaries, which have been shown to interfere with associative binding, leading to increases in subjective temporal distance. We predicted that patients with MTL damage would show impaired binding across boundaries and thus fail to show temporal expansion. Consistent with this hypothesis, unilateral patients failed to show a temporal expansion effect, and bilateral patients actually exhibited the reverse effect, suggesting a critical role for the MTL in binding temporal information across boundaries. Furthermore, patients were impaired overall on both the temporal distance memory task and recognition memory, but not on an independent, short-timescale temporal perception task. Interestingly, temporal distance performance could be independently predicted by performance on recognition memory and the short temporal perception task. Together, these data suggest that distinct mnemonic and temporal processes may influence long interval temporal memory and that damage to the MTL may impair the ability to integrate episodic and temporal information in memory.
{"title":"Medial Temporal Lobe Damage Impairs Temporal Integration in Episodic Memory","authors":"Sarah DuBrow;Brynn E. Sherman;Michael R. Meager;Lila Davachi","doi":"10.1162/jocn_a_02222","DOIUrl":"10.1162/jocn_a_02222","url":null,"abstract":"Although the role of the medial temporal lobe (MTL) and the hippocampus in episodic memory is well established, there is emerging evidence that these regions play a broader role in cognition, specifically in temporal processing. However, despite strong evidence that the hippocampus plays a critical role in sequential processing, the involvement of the MTL in timing per se is poorly understood. In the present study, we investigated whether patients with MTL damage exhibit differential performance on a temporal distance memory task. Critically, we manipulated context shifts, or boundaries, which have been shown to interfere with associative binding, leading to increases in subjective temporal distance. We predicted that patients with MTL damage would show impaired binding across boundaries and thus fail to show temporal expansion. Consistent with this hypothesis, unilateral patients failed to show a temporal expansion effect, and bilateral patients actually exhibited the reverse effect, suggesting a critical role for the MTL in binding temporal information across boundaries. Furthermore, patients were impaired overall on both the temporal distance memory task and recognition memory, but not on an independent, short-timescale temporal perception task. Interestingly, temporal distance performance could be independently predicted by performance on recognition memory and the short temporal perception task. Together, these data suggest that distinct mnemonic and temporal processes may influence long interval temporal memory and that damage to the MTL may impair the ability to integrate episodic and temporal information in memory.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2302-2316"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635634","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
We experience the present as a continuous stream of information, but often experience the past in parcels of unique events or episodes. Decades of research have helped to articulate how we perform this event segmentation in the moment, as well as how events and their boundaries influence what we later remember. More recently, neuroscientific research has suggested that the hippocampus plays a role at critical moments during event formation alongside its established role in enabling subsequent recall. Here, we review and explore the relationship between event processing and recall with the perspective that it can be uniquely characterized by the contributions of the hippocampus and its interactions with the rest of the brain. Specifically, we highlight a growing number of empirical studies suggesting that the hippocampus is important for processing events that have just ended, bridging the gap between the prior and current event, and influencing the contents and trajectories of recalled information. We also catalogue and summarize the multifaceted sets of findings concerning how recall is influenced by event structure. Lastly, we discuss several exciting directions for future research and how our understanding of events might be enriched by characterizing them in terms of the operations of different regions of the brain.
{"title":"Recall as a Window into Hippocampally Defined Events","authors":"Lindsay I. Rait;J. Benjamin Hutchinson","doi":"10.1162/jocn_a_02198","DOIUrl":"10.1162/jocn_a_02198","url":null,"abstract":"We experience the present as a continuous stream of information, but often experience the past in parcels of unique events or episodes. Decades of research have helped to articulate how we perform this event segmentation in the moment, as well as how events and their boundaries influence what we later remember. More recently, neuroscientific research has suggested that the hippocampus plays a role at critical moments during event formation alongside its established role in enabling subsequent recall. Here, we review and explore the relationship between event processing and recall with the perspective that it can be uniquely characterized by the contributions of the hippocampus and its interactions with the rest of the brain. Specifically, we highlight a growing number of empirical studies suggesting that the hippocampus is important for processing events that have just ended, bridging the gap between the prior and current event, and influencing the contents and trajectories of recalled information. We also catalogue and summarize the multifaceted sets of findings concerning how recall is influenced by event structure. Lastly, we discuss several exciting directions for future research and how our understanding of events might be enriched by characterizing them in terms of the operations of different regions of the brain.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2386-2400"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141184727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Introduction to the Special Focus: Remembering Sarah DuBrow","authors":"Lila Davachi;Vishnu P. Murty","doi":"10.1162/jocn_a_02246","DOIUrl":"10.1162/jocn_a_02246","url":null,"abstract":"","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2299-2301"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142331903","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Remembering when events occur in time is fundamental to episodic memory. Yet, many experiences repeat over time creating the potential for interference when attempting to recall temporally specific memories. Here, we argue that temporal memories are protected, in part, by reinstatement of temporal context information that is triggered by stimulus repetitions. We motivate this argument by integrating seminal findings across several distinct literatures and methodologies. Specifically, we consider key insights from foundational behavioral studies of temporal memory, recent electrophysiological and neuroimaging approaches to measuring memory reinstatement, and computational models that describe how temporal context representations shape memory processes. We also note several open questions concerning how temporal context reinstatement might influence subsequent temporal memory, including potential mediating effects of event spacing and event boundaries. These ideas and questions have the potential to guide future research and, ultimately, to advance theoretical accounts of how we preserve temporal memories.
{"title":"Time after Time: Preserving Temporal Memories When Experiences Repeat","authors":"Futing Zou;Brice A. Kuhl","doi":"10.1162/jocn_a_02212","DOIUrl":"10.1162/jocn_a_02212","url":null,"abstract":"Remembering when events occur in time is fundamental to episodic memory. Yet, many experiences repeat over time creating the potential for interference when attempting to recall temporally specific memories. Here, we argue that temporal memories are protected, in part, by reinstatement of temporal context information that is triggered by stimulus repetitions. We motivate this argument by integrating seminal findings across several distinct literatures and methodologies. Specifically, we consider key insights from foundational behavioral studies of temporal memory, recent electrophysiological and neuroimaging approaches to measuring memory reinstatement, and computational models that describe how temporal context representations shape memory processes. We also note several open questions concerning how temporal context reinstatement might influence subsequent temporal memory, including potential mediating effects of event spacing and event boundaries. These ideas and questions have the potential to guide future research and, ultimately, to advance theoretical accounts of how we preserve temporal memories.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2357-2367"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141472356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Humans have an outstanding ability to generalize from past experiences, which requires parsing continuously experienced events into discrete, coherent units, and relating them to similar past experiences. Time is a key element in this process; however, how temporal information is used in generalization remains unclear. Latent-cause inference provides a Bayesian framework for clustering experiences, by building a world model in which related experiences are generated by a shared cause. Here, we examine how temporal information is used in latent-cause inference, using a novel task in which participants see “microbe” stimuli and explicitly report the latent cause (“strain”) they infer for each microbe. We show that humans incorporate time in their inference of latent causes, such that recently inferred latent causes are more likely to be inferred again. In particular, a “persistent” model, in which the latent cause inferred for one observation has a fixed probability of continuing to cause the next observation, explains the data significantly better than two other time-sensitive models, although extensive individual differences exist. We show that our task and this model have good psychometric properties, highlighting their potential use for quantifying individual differences in computational psychiatry or in neuroimaging studies.
{"title":"The Ubiquity of Time in Latent-cause Inference","authors":"Dan-Mircea Mirea;Yeon Soon Shin;Sarah DuBrow;Yael Niv","doi":"10.1162/jocn_a_02231","DOIUrl":"10.1162/jocn_a_02231","url":null,"abstract":"Humans have an outstanding ability to generalize from past experiences, which requires parsing continuously experienced events into discrete, coherent units, and relating them to similar past experiences. Time is a key element in this process; however, how temporal information is used in generalization remains unclear. Latent-cause inference provides a Bayesian framework for clustering experiences, by building a world model in which related experiences are generated by a shared cause. Here, we examine how temporal information is used in latent-cause inference, using a novel task in which participants see “microbe” stimuli and explicitly report the latent cause (“strain”) they infer for each microbe. We show that humans incorporate time in their inference of latent causes, such that recently inferred latent causes are more likely to be inferred again. In particular, a “persistent” model, in which the latent cause inferred for one observation has a fixed probability of continuing to cause the next observation, explains the data significantly better than two other time-sensitive models, although extensive individual differences exist. We show that our task and this model have good psychometric properties, highlighting their potential use for quantifying individual differences in computational psychiatry or in neuroimaging studies.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2442-2454"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141972314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Elizabeth A. Horwath;Brandon S. Katerman;Meryl Biju;Sarah DuBrow;Vishnu P. Murty
Previous work highlighted a critical role for top–down goals in shifting memory organization, namely, through studying the downstream influences of event segmentation and task switching on free recall. Here, we extend these frameworks into the realm of motivation, by comparing how threat motivation influences memory organization by capturing free recall dynamics. In Study 1, we manipulated individuals' motivation to successfully encode information by the threat of exposure to aversive sounds for forgetting. In Study 2, we conducted a parallel study manipulating motivation via instruction rather than threat, allowing us to examine changes directly related to threat motivation. Our findings showed that motivation to avoid threat broadly enhances memory for items presented within a threatening context, regardless of whether items were directly associated with the threat or not. Concurrently, these memory enhancements coincide with a decrease in the organization of memory around motivationally relevant features. These results highlight the importance of considering motivational valence when conceptualizing memory organization within adaptive memory frameworks.
{"title":"Threat Impairs the Organization of Memory Around Motivational Context","authors":"Elizabeth A. Horwath;Brandon S. Katerman;Meryl Biju;Sarah DuBrow;Vishnu P. Murty","doi":"10.1162/jocn_a_02242","DOIUrl":"10.1162/jocn_a_02242","url":null,"abstract":"Previous work highlighted a critical role for top–down goals in shifting memory organization, namely, through studying the downstream influences of event segmentation and task switching on free recall. Here, we extend these frameworks into the realm of motivation, by comparing how threat motivation influences memory organization by capturing free recall dynamics. In Study 1, we manipulated individuals' motivation to successfully encode information by the threat of exposure to aversive sounds for forgetting. In Study 2, we conducted a parallel study manipulating motivation via instruction rather than threat, allowing us to examine changes directly related to threat motivation. Our findings showed that motivation to avoid threat broadly enhances memory for items presented within a threatening context, regardless of whether items were directly associated with the threat or not. Concurrently, these memory enhancements coincide with a decrease in the organization of memory around motivationally relevant features. These results highlight the importance of considering motivational valence when conceptualizing memory organization within adaptive memory frameworks.","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":"36 11","pages":"2432-2441"},"PeriodicalIF":3.1,"publicationDate":"2024-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142134392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Announcing the Journal of Cognitive Neuroscience Discussion Forum.","authors":"Bradley R Postle","doi":"10.1162/jocn_e_02259","DOIUrl":"https://doi.org/10.1162/jocn_e_02259","url":null,"abstract":"","PeriodicalId":51081,"journal":{"name":"Journal of Cognitive Neuroscience","volume":" ","pages":"1"},"PeriodicalIF":3.1,"publicationDate":"2024-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142523625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}