首页 > 最新文献

Physics Essays最新文献

英文 中文
Double-slit interference and single-slit diffraction experiments on electrons 电子的双缝干涉和单缝衍射实验
IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY Pub Date : 2022-09-03 DOI: 10.4006/0836-1398-35.3.313
Huawang Li
De Broglie proposed the matter wave in 1924. The de Broglie wave is neither a mechanical wave nor an electromagnetic wave and has a very short wavelength. The Davisson-Germer electron diffraction experiment performed in 1925 involved bombarding the surface of a nickel crystal with a narrow beam of electrons. When the accelerating voltage V was maintained at 54 V, the wavelength of the incident electron was λ=h/ 2 m e V  = 0.167 nm [Y. S. Chen and Z. Z. Li, College Physics (Tianjin University, Tianjin, 1999)] demonstrating the existence of the matter wave. We introduce a type of electron wave with a very long wavelength in this study that is different from the matter wave. For example, the wavelength of the electron wave can reach 0.43 mm in the double-slit interference of electrons. Experiments demonstrate that this long-wavelength electron wave can produce both double-slit interference and electron diffraction. A comparative analysis of matter and electron waves reveals the physical natures of these waves and wave‐particle duality.
德布罗意在1924年提出了物质波。德布罗意波既不是机械波也不是电磁波,波长很短。1925年进行的戴维森-格默电子衍射实验涉及用窄电子束轰击镍晶体表面。当加速电压V为54 V时,入射电子的波长为λ=h/ 2 m e V = 0.167 nm [Y]。陈生、李振中,大学物理[天津大学,天津,1999],证明物质波的存在。在这项研究中,我们引入了一种波长很长的电子波,它不同于物质波。例如,在电子的双缝干涉中,电子波的波长可以达到0.43 mm。实验证明,这种长波长电子波既能产生双缝干涉,又能产生电子衍射。对物质波和电子波的比较分析揭示了这些波和波粒二象性的物理性质。
{"title":"Double-slit interference and single-slit diffraction experiments on electrons","authors":"Huawang Li","doi":"10.4006/0836-1398-35.3.313","DOIUrl":"https://doi.org/10.4006/0836-1398-35.3.313","url":null,"abstract":"De Broglie proposed the matter wave in 1924. The de Broglie wave is neither a mechanical wave nor an electromagnetic wave and has a very short wavelength. The Davisson-Germer electron diffraction experiment performed in 1925 involved bombarding the surface of a nickel crystal with a\u0000 narrow beam of electrons. When the accelerating voltage V was maintained at 54 V, the wavelength of the incident electron was λ=h/ <mml:math display=\"inline\"> <mml:msqrt> <mml:mn>2</mml:mn> <mml:mi mathvariant=\"normal\">m</mml:mi> <mml:mi\u0000 mathvariant=\"normal\">e</mml:mi> <mml:mi mathvariant=\"normal\">V</mml:mi> </mml:msqrt> </mml:math>  = 0.167 nm [Y. S. Chen and Z. Z. Li, College Physics (Tianjin University, Tianjin, 1999)] demonstrating the existence of the matter\u0000 wave. We introduce a type of electron wave with a very long wavelength in this study that is different from the matter wave. For example, the wavelength of the electron wave can reach 0.43 mm in the double-slit interference of electrons. Experiments demonstrate that this long-wavelength\u0000 electron wave can produce both double-slit interference and electron diffraction. A comparative analysis of matter and electron waves reveals the physical natures of these waves and wave‐particle duality.","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43332526","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
There is no vacuum zero-point energy in our universe for massive particles within the scope of relativistic quantum mechanics 在相对论量子力学范围内,我们的宇宙中没有大质量粒子的真空零点能量
IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY Pub Date : 2022-08-17 DOI: 10.4006/0836-1398-35.3.270
Huai-Yu Wang
Abstract  It was long believed that there is a zero-point energy in the form of ω / 2 for massive particles, which is obtained from Schrödinger equation for the harmonic oscillator model. In this paper, it is shown, by the Dirac oscillator, that there is no such a zero-point energy. It is argued that when a particle's wave function can spread in the whole space, it can be static. This does neither violate wave-particle duality nor uncertainty relationship. Dirac equation correctly describes physical reality, while Schrödinger equation does not when it is not the nonrelativistic approximation of Dirac equation with a certain model. The conclusion that there is no zero-point energy in the form of ω / 2 is applied to solve the famous cosmological constant problem for massive particles.
摘要  长期以来,人们一直认为大质量粒子存在ω/2形式的零点能量,这是从谐振子模型的薛定谔方程中获得的。在本文中,狄拉克振荡器表明,不存在这样的零点能量。有人认为,当粒子的波函数可以在整个空间中传播时,它可以是静态的。这既不违反波粒对偶性,也不违反不确定性关系。Dirac方程正确地描述了物理现实,而Schrödinger方程在不是Dirac方程与某个模型的非相对论近似时则不正确。不存在ω/2形式的零点能量的结论被应用于求解著名的大质量粒子的宇宙学常数问题。
{"title":"There is no vacuum zero-point energy in our universe for massive particles within the scope of relativistic quantum mechanics","authors":"Huai-Yu Wang","doi":"10.4006/0836-1398-35.3.270","DOIUrl":"https://doi.org/10.4006/0836-1398-35.3.270","url":null,"abstract":"Abstract  It was long believed that there is a zero-point energy in the form of <mml:math display=\"inline\"> <mml:mrow> <mml:mo></mml:mo> <mml:mi>ω</mml:mi> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow>\u0000 </mml:math> for massive particles, which is obtained from Schrödinger equation for the harmonic oscillator model. In this paper, it is shown, by the Dirac oscillator, that there is no such a zero-point energy. It is argued that when a particle's wave function can spread in the whole\u0000 space, it can be static. This does neither violate wave-particle duality nor uncertainty relationship. Dirac equation correctly describes physical reality, while Schrödinger equation does not when it is not the nonrelativistic approximation of Dirac equation with a certain model. The\u0000 conclusion that there is no zero-point energy in the form of <mml:math display=\"inline\"> <mml:mrow> <mml:mo></mml:mo> <mml:mi>ω</mml:mi> <mml:mo>/</mml:mo> <mml:mn>2</mml:mn> </mml:mrow> </mml:math> is applied to\u0000 solve the famous cosmological constant problem for massive particles.","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49223669","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Mathematical extension of special relativity into three-dimensional internal acceleration 狭义相对论在三维内加速度中的数学推广
IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY Pub Date : 2022-06-27 DOI: 10.4006/0836-1398-35.2.165
J. Czajko
The special theory of relativity (STR) has already been expanded onto normal and binormal subcomponents of an internal acceleration visible within 3D trihedron moving in Frenet frame (T,N,B) along the trajectory curve, in addition to the constant tangential speed of classical STR. Now the STR is extended into tangential, normal, and binormal subcomponents of total internal acceleration in the (moving, curving, and twisting/torsing) trihedron via the varying total internal speed that is extracted from the external speed, which is allowed to vary now with the extended proper/moving time in the external length-based space within operationally imaginary but physically real internal domain of the elapsing proper/moving time. The temporarily emerging extra internal acceleration also implies temporarily arising extra internal forces that could affect airplanes in flight just as they affect the moving zero-dimensional mathematical point. For even an invisible, i.e., mathematically imaginary, force is still physically real active force.
狭义相对论(STR)已经扩展到在沿着轨迹曲线在Frenet框架(T,N,B)中移动的三维三面体内可见的内部加速度的正态和双正态子分量,以及通过从外部速度中提取的变化的总内部速度在(移动、弯曲和扭曲/扭转)三面体中的总内部加速度的副法线子分量,其现在被允许在经过的适当/移动时间的操作上假想但物理上真实的内部域内的基于外部长度的空间中随着延长的适当/运动时间而变化。暂时出现的额外内加速度也意味着暂时出现的可能影响飞行中的飞机的额外内力,就像它们影响移动的零维数学点一样。即使是看不见的,也就是数学上想象的,力仍然是物理上真实的活动力。
{"title":"Mathematical extension of special relativity into three-dimensional internal acceleration","authors":"J. Czajko","doi":"10.4006/0836-1398-35.2.165","DOIUrl":"https://doi.org/10.4006/0836-1398-35.2.165","url":null,"abstract":"The special theory of relativity (STR) has already been expanded onto normal and binormal subcomponents of an internal acceleration visible within 3D trihedron moving in Frenet frame (T,N,B) along the trajectory curve, in addition to the constant tangential speed of classical\u0000 STR. Now the STR is extended into tangential, normal, and binormal subcomponents of total internal acceleration in the (moving, curving, and twisting/torsing) trihedron via the varying total internal speed that is extracted from the external speed, which is allowed to vary now with the extended\u0000 proper/moving time in the external length-based space within operationally imaginary but physically real internal domain of the elapsing proper/moving time. The temporarily emerging extra internal acceleration also implies temporarily arising extra internal forces that could affect airplanes\u0000 in flight just as they affect the moving zero-dimensional mathematical point. For even an invisible, i.e., mathematically imaginary, force is still physically real active force.","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46994957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On the wave nature of particles 关于粒子的波动性质
IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY Pub Date : 2022-06-27 DOI: 10.4006/0836-1398-35.2.171
Berat Tuğrul Uğurlu
The main goal of the present article is to elucidate the wave-particle duality problem by giving an unambiguous mathematical expression of the origin of the wave nature of particles. It is indicated that the wave nature of particles is originated from the multidimensional universe approach and under the one-dimensional universe assumption the wave nature vanishes. The one-dimensional universe assumption also gives a deterministic explanation for the double-slit experiment and answers how a single electron can interfere with itself. The locality paradox is also discussed. It is demonstrated that the same principle shows how a local measurement can determine the state of a distant system. The theoretical framework presented here may help us to understand various quantum physics phenomena. i.e., the superposition principle, wave function collapse, and entanglement.
本文的主要目的是通过给出粒子波动性质起源的明确数学表达式来阐明波粒二象性问题。指出粒子的波性来源于多维宇宙方法,在一维宇宙假设下,粒子的波性消失。一维宇宙假设也给出了双缝实验的确定性解释,并回答了单个电子如何干扰自身。文中还讨论了局部性悖论。它证明了相同的原理显示如何局部测量可以确定一个遥远的系统的状态。这里提出的理论框架可以帮助我们理解各种量子物理现象。即叠加原理、波函数坍缩和纠缠。
{"title":"On the wave nature of particles","authors":"Berat Tuğrul Uğurlu","doi":"10.4006/0836-1398-35.2.171","DOIUrl":"https://doi.org/10.4006/0836-1398-35.2.171","url":null,"abstract":"The main goal of the present article is to elucidate the wave-particle duality problem by giving an unambiguous mathematical expression of the origin of the wave nature of particles. It is indicated that the wave nature of particles is originated from the multidimensional universe approach\u0000 and under the one-dimensional universe assumption the wave nature vanishes. The one-dimensional universe assumption also gives a deterministic explanation for the double-slit experiment and answers how a single electron can interfere with itself. The locality paradox is also discussed. It\u0000 is demonstrated that the same principle shows how a local measurement can determine the state of a distant system. The theoretical framework presented here may help us to understand various quantum physics phenomena. i.e., the superposition principle, wave function collapse, and entanglement.","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46617314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Mass-area equivalence in classical physics and aspects of mutual shielding of objects 经典物理中的质量-面积等效及物体相互屏蔽的若干方面
IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY Pub Date : 2022-06-27 DOI: 10.4006/0836-1398-35.2.175
T. Radzhabov
The physical and mathematical aspects of the mutual spatial shielding of interacting elements in the framework of classical physics are considered. The mass-area equivalence is introduced for the formal unification of the Newtonian theory of gravity with the kinetic theories of Descartes-Fatio-Le Sage. A mathematical equation describing the dependence of the mutual shielding of objects on their size, number and relative location is proposed. Spatial mutual shielding is considered for mass-forming elements—nucleons in the atomic nucleus and atomic nuclei in ordinary substances. The close shielding is distinguished when the distance between the shielding elements is commensurate with their size, which is typical for nucleons in atomic nuclei and the far shielding, when the distance between the elements is much larger than their size, which is typical for atomic nuclei in ordinary substances. An analytical expression for the binding energy of nucleons in atomic nucleus is obtained. It allows us to estimate the distance between nucleons in the nucleus and consider stability of nuclei as a function of the distance between nucleons, which increases due to an increase in the Coulomb repulsion force with an increase in the number of protons. One of the three ideas of Dirac, presented by him for the further development of the physical theory, is implemented: taking into account the sizes of elementary particles—nucleons.
在经典物理学的框架下,考虑了相互作用元素的相互空间屏蔽的物理和数学方面。介绍了质量-面积等效法,以实现牛顿引力理论与笛卡尔动力学理论的形式统一。提出了一个描述物体相互屏蔽对其大小、数量和相对位置的依赖性的数学方程。质量形成元素——原子核中的核子和普通物质中的原子核——考虑了空间相互屏蔽。当屏蔽元件之间的距离与其大小相称时,近屏蔽被区分开来,这对于原子核中的核子是典型的,而当元件之间的间距远大于它们的大小时,远屏蔽被区分出来,这对于普通物质中的原子核是典型的。得到了核子在原子核中结合能的解析表达式。它使我们能够估计原子核中核子之间的距离,并将原子核的稳定性视为核子之间距离的函数,核子之间距离随着质子数量的增加而增加,这是由于库仑斥力的增加。狄拉克为进一步发展物理理论而提出的三个想法之一得到了实现:考虑基本粒子——核子的大小。
{"title":"Mass-area equivalence in classical physics and aspects of mutual shielding of objects","authors":"T. Radzhabov","doi":"10.4006/0836-1398-35.2.175","DOIUrl":"https://doi.org/10.4006/0836-1398-35.2.175","url":null,"abstract":"The physical and mathematical aspects of the mutual spatial shielding of interacting elements in the framework of classical physics are considered. The mass-area equivalence is introduced for the formal unification of the Newtonian theory of gravity with the kinetic theories of Descartes-Fatio-Le\u0000 Sage. A mathematical equation describing the dependence of the mutual shielding of objects on their size, number and relative location is proposed. Spatial mutual shielding is considered for mass-forming elements—nucleons in the atomic nucleus and atomic nuclei in ordinary substances.\u0000 The close shielding is distinguished when the distance between the shielding elements is commensurate with their size, which is typical for nucleons in atomic nuclei and the far shielding, when the distance between the elements is much larger than their size, which is typical for atomic nuclei\u0000 in ordinary substances. An analytical expression for the binding energy of nucleons in atomic nucleus is obtained. It allows us to estimate the distance between nucleons in the nucleus and consider stability of nuclei as a function of the distance between nucleons, which increases due to an\u0000 increase in the Coulomb repulsion force with an increase in the number of protons. One of the three ideas of Dirac, presented by him for the further development of the physical theory, is implemented: taking into account the sizes of elementary particles—nucleons.","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46748679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
The meanings of the mysterious number 137 137这个神秘数字的含义
IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY Pub Date : 2022-06-26 DOI: 10.4006/0836-1398-35.2.220
A. Bacchieri
The inverse of the fine-structure constant is <mml:math display="inline"> <mml:msup> <mml:mrow> <mml:mi>α</mml:mi> </mml:mrow> <mml:mrow> <mml:mo>−</mml:mo> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> </mml:math>  ≅ 137.036. Both the Nobel Prize winners, Pauli and Feynman, became fascinated with the number 137. However, physicists have not yet been able to find any relationship between this number and a physical law. Here, the integer 137 has several clear meanings, on the basis of the following two premises: (1) Form of light: Longitudinal massive particles (photons) having length <mml:math display="inline"> <mml:mi>λ</mml:mi> <mml:mo>=</mml:mo> <mml:mi>c</mml:mi> <mml:mo>/</mml:mo> <mml:mi>ν</mml:mi> <mml:mo>,</mml:mo> </mml:math> where <mml:math display="inline"> <mml:mi>ν</mml:mi> <mml:mo> </mml:mo> </mml:math> is the frequency, namely, the number of photons in the same ray (continuous succession of photons) crossing a given observer in unit time; 2) electron structure: Its charge is not uniformly distributed, but it can be considered as a point particle fixed on the electron spherical surface and facing the atom nucleus during the electron orbits; the electron charge also corresponds to the photons‐electron impact point, where photons are absorbed and released. On the above bases, for the H atom, we found the following main results: <mml:math display="inline"> <mml:mi>n</mml:mi> <mml:mo> </mml:mo> </mml:math> = 1, 2, …, 137 electron different circular orbits, with n 2 being the admitted photons number along two equal circular orbits; <mml:math display="inline"> <mml:mn>2</mml:mn> <mml:msub> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo>/</mml:mo> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mi>n</mml:mi> </mml:math> , with <mml:math display="inline"> <mml:msub> <mml:mrow> <mml:mi>ν</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:math> being the photons admitted frequency on each circular orbit <mml:math display="inline"> <mml:msub> <mml:mrow> <mml:mi>r</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> </mml:mrow> </mml:msub> </mml:math> with <mml:math display="inline"> <mml:msub> <mml:mrow> <mml:mi>f</mml:mi> </mml:mrow> <mml:mrow> <mml:mi>n</mml:mi> <mml:mo> </mml:mo> </mml:mrow> </mml:msub> </mml:math> being the electron related frequency; <mml:math display="inline"> <mml:msubsup> <mml:mrow> <mml:mi>v</mml:mi> </mml:mrow> <mml:mrow> <mml:mn>0</mml:mn> </mml:mrow> <mml:mrow> <mml:mo> </mml:mo> </mml:mrow> </mml:msubsup> <mml:mo>=</mml:mo> <mml:mi>α</mml:mi> <mml:mi>c</mml:mi> </mml:math> is the electron charge ground-state (g-s) orbital speed; <mml:math display="inline"> <mml:msub> <mml:mrow> <mml:mi>r</mml:mi> </mml:mrow> <mml:mrow> <mml:mi mathvariant="normal">o</mml:mi> </mml:mrow> </mml:msub> <mml:mo>=</mml:mo> <mml:mo> </mml:mo> <mml:mi>α</mml:mi>
精细结构常数的倒数为α−1 ≅ 诺贝尔奖获得者泡利和费曼都对137这个数字着迷。然而,物理学家们还没有能够找到这个数字和物理定律之间的任何关系。在这里,整数137有几个明确的含义,基于以下两个前提:(1)光的形式:长度为λ=c/μ的纵向大质量粒子(光子),其中μ是频率,即单位时间内同一射线(连续光子序列)中穿过给定观察者的光子数;2) 电子结构:其电荷分布不均匀,但可以认为是在电子轨道上固定在电子球面上并面向原子核的点粒子;电子电荷也对应于光子-电子碰撞点,在这里光子被吸收和释放。在上述基础上,对于H原子,我们发现了以下主要结果:n=1,2,…,137个电子不同的圆轨道,其中n2是沿两个相等圆轨道的允许光子数;2μn/f n=n,其中μn是每个圆形轨道上的光子允许频率r n,其中f n是电子相关频率;v0=αc是电子电荷基态(g-s)轨道速度;r o=α/4πr H是电子电荷的g-s轨道,r H是里德伯常数;r1=r o+r e=r o(1+r e/r o)=r o/137α,其中r1为电子g-s轨道,re为电子半径;r 1/r o=1/137α=(1+r e r 0)r e=r 0 1 137α−1,不同于CODATA1值r e=α2 a 0;v1=c/137精确,电子g-s轨道速度;因此,v1/v0=1/137α;λ0 2 2πr1=cΓ0 4πr 1=c 137αγ0 4πr0=c 137α4πr HΓ0 0 4πα=137,允许光子长度与两个电子g-s轨道之比。至于所谓的环绕电子由于其所谓的光子发射而落入其原子核,我们发现电子仅在其向较低轨道的螺旋路径中发射先前吸收的光子(第VII节)。
{"title":"The meanings of the mysterious number 137","authors":"A. Bacchieri","doi":"10.4006/0836-1398-35.2.220","DOIUrl":"https://doi.org/10.4006/0836-1398-35.2.220","url":null,"abstract":"The inverse of the fine-structure constant is &lt;mml:math display=\"inline\"&gt; &lt;mml:msup&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;α&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt;−&lt;/mml:mo&gt; &lt;mml:mn&gt;1&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;/mml:msup&gt;\u0000 &lt;/mml:math&gt;  ≅ 137.036. Both the Nobel Prize winners, Pauli and Feynman, became fascinated with the number 137. However, physicists have not yet been able to find any relationship between this number and a physical law. Here, the integer 137 has several clear meanings,\u0000 on the basis of the following two premises: (1) Form of light: Longitudinal massive particles (photons) having length &lt;mml:math display=\"inline\"&gt; &lt;mml:mi&gt;λ&lt;/mml:mi&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mi&gt;c&lt;/mml:mi&gt; &lt;mml:mo&gt;/&lt;/mml:mo&gt; &lt;mml:mi&gt;ν&lt;/mml:mi&gt;\u0000 &lt;mml:mo&gt;,&lt;/mml:mo&gt; &lt;/mml:math&gt; where &lt;mml:math display=\"inline\"&gt; &lt;mml:mi&gt;ν&lt;/mml:mi&gt; &lt;mml:mo&gt; &lt;/mml:mo&gt; &lt;/mml:math&gt; is the frequency, namely, the number of photons in the same ray (continuous succession of photons) crossing a given\u0000 observer in unit time; 2) electron structure: Its charge is not uniformly distributed, but it can be considered as a point particle fixed on the electron spherical surface and facing the atom nucleus during the electron orbits; the electron charge also corresponds to the photons‐electron\u0000 impact point, where photons are absorbed and released. On the above bases, for the H atom, we found the following main results: &lt;mml:math display=\"inline\"&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;mml:mo&gt; &lt;/mml:mo&gt; &lt;/mml:math&gt; = 1, 2, …, 137 electron different circular\u0000 orbits, with n\u0000 2 being the admitted photons number along two equal circular orbits; &lt;mml:math display=\"inline\"&gt; &lt;mml:mn&gt;2&lt;/mml:mn&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;ν&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt;\u0000 &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;/&lt;/mml:mo&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt;\u0000 &lt;/mml:math&gt; , with &lt;mml:math display=\"inline\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;ν&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; being the photons admitted frequency on each\u0000 circular orbit &lt;mml:math display=\"inline\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;r&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; with &lt;mml:math display=\"inline\"&gt; &lt;mml:msub&gt;\u0000 &lt;mml:mrow&gt; &lt;mml:mi&gt;f&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;n&lt;/mml:mi&gt; &lt;mml:mo&gt; &lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;/mml:math&gt; being the electron related frequency; &lt;mml:math display=\"inline\"&gt; &lt;mml:msubsup&gt;\u0000 &lt;mml:mrow&gt; &lt;mml:mi&gt;v&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mn&gt;0&lt;/mml:mn&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mo&gt; &lt;/mml:mo&gt; &lt;/mml:mrow&gt; &lt;/mml:msubsup&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mi&gt;α&lt;/mml:mi&gt;\u0000 &lt;mml:mi&gt;c&lt;/mml:mi&gt; &lt;/mml:math&gt; is the electron charge ground-state (g-s) orbital speed; &lt;mml:math display=\"inline\"&gt; &lt;mml:msub&gt; &lt;mml:mrow&gt; &lt;mml:mi&gt;r&lt;/mml:mi&gt; &lt;/mml:mrow&gt; &lt;mml:mrow&gt; &lt;mml:mi mathvariant=\"normal\"&gt;o&lt;/mml:mi&gt;\u0000 &lt;/mml:mrow&gt; &lt;/mml:msub&gt; &lt;mml:mo&gt;=&lt;/mml:mo&gt; &lt;mml:mo&gt; &lt;/mml:mo&gt; &lt;mml:mi&gt;α&lt;/mml:mi&gt; ","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49239551","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An intuitive and simplified formulation of general relativistic gravity in empty space 广义相对论引力在空空间中的直观简化公式
IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY Pub Date : 2022-06-26 DOI: 10.4006/0836-1398-35.2.202
L. R. Miller
General relativistic gravity in empty space is formulated using undergraduate calculus, differential equations, and matrix algebra. The key to the formulation involves certain limited assumptions of Newtonian-like behavior in freely falling frames. The formulation results in a field-motion matrix equation that serves essentially the same purpose as Einstein’s field equations in empty space. The limited assumptions of Newtonian-like behavior in freely falling frames are then justified using well-known tensor relationships. To demonstrate its use, the new field-motion equation is used to solve for the Schwarzschild metric.
真空中的广义相对论重力是用本科微积分、微分方程和矩阵代数来表述的。这个公式的关键涉及到自由落体中类似牛顿的行为的某些有限假设。这个公式的结果是场运动矩阵方程,本质上与爱因斯坦在真空中的场方程具有相同的目的。然后使用众所周知的张量关系证明了自由落体框架中类似牛顿行为的有限假设。为了证明它的用途,用新的场运动方程求解史瓦西度规。
{"title":"An intuitive and simplified formulation of general relativistic gravity in empty space","authors":"L. R. Miller","doi":"10.4006/0836-1398-35.2.202","DOIUrl":"https://doi.org/10.4006/0836-1398-35.2.202","url":null,"abstract":"General relativistic gravity in empty space is formulated using undergraduate calculus, differential equations, and matrix algebra. The key to the formulation involves certain limited assumptions of Newtonian-like behavior in freely falling frames. The formulation results in a field-motion\u0000 matrix equation that serves essentially the same purpose as Einstein’s field equations in empty space. The limited assumptions of Newtonian-like behavior in freely falling frames are then justified using well-known tensor relationships. To demonstrate its use, the new field-motion equation\u0000 is used to solve for the Schwarzschild metric.","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45111119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classical physics derivation of quantization of electron elliptical orbit in hydrogenlike atom 类氢原子中电子椭圆轨道量子化的经典物理学推导
IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY Pub Date : 2022-06-26 DOI: 10.4006/0836-1398-35.2.147
Jiqing Zeng
On the basis of revising the quantum concept and reinterpreting Bohr's hydrogen atom structure model in classical physics, this paper deduces the elliptical orbital energy level formula of electrons in hydrogenlike atoms in detail. When the electron transition time is taken as unit time (1 s), the energy level formula is completely consistent with Bohr Sommerfeld's atomic structure theory.
在修正量子概念,重新诠释经典物理学中玻尔的氢原子结构模型的基础上,详细推导出类氢原子中电子的椭圆轨道能级公式。当电子跃迁时间为单位时间(1s)时,能级公式与玻尔·索默菲尔德的原子结构理论完全一致。
{"title":"Classical physics derivation of quantization of electron elliptical orbit in hydrogenlike atom","authors":"Jiqing Zeng","doi":"10.4006/0836-1398-35.2.147","DOIUrl":"https://doi.org/10.4006/0836-1398-35.2.147","url":null,"abstract":"On the basis of revising the quantum concept and reinterpreting Bohr's hydrogen atom structure model in classical physics, this paper deduces the elliptical orbital energy level formula of electrons in hydrogenlike atoms in detail. When the electron transition time is taken as unit\u0000 time (1 s), the energy level formula is completely consistent with Bohr Sommerfeld's atomic structure theory.","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46283916","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Conservation of spatial volume and the emergence of gravity and electromagnetism 空间体积守恒和重力和电磁学的出现
IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY Pub Date : 2022-06-25 DOI: 10.4006/0836-1398-35.2.100
K. Moored
The universe is a structured, logical system obeying many natural laws. This essay proposes an additional law termed the conservation of spatial volume. This refers to spacetime’s ability to be displaced, compressed, expanded, and stretched to conserve geometric volume. In addition, space appears to possess Cauchy-like elasticity characteristics measured by the gravitational constant G. It is postulated that space has qualities of an energy density field, which is termed the “spatial energy field” or SEF in this essay. The SEF in all of its parts is a metric of energy field curvature tensors assigned to every coordinate in spacetime. It is proposed that space resists volume displacement by mass and reacts with a counter-force equal to the object’s inertia mass. This is because the compression of space from the displacement of mass creates a gravitational field. The gravitational field represents an increase in spatial density surrounding the object. An increase in spatial density is measured by the change in permittivity ε, permeability μ, and refractive index n, physical parameters of the vacuum. Thus, gravity would be considered an emergent response of spacetime attempting to conserve its volume by the reciprocal curvature force of space. In regard to electromagnetism, electric and magnetic fields are geometric in origin and, therefore, part of spacetime. It is proposed that spacetime has specific properties related to the emergence of electrical fields via the Poynting vector. This is influenced by electric permittivity εo. Magnetic fields appear to emanate from space based on the Lorentz force. This is influenced by magnetic permeability μo. Both the Poynting vector energy flow and the corresponding Lorentz force are the reaction of space counteracting forces of electricity and magnetism while conserving spatial volume. It appears that electromagnetism could be considered a twisting torsion of spacetime. Space appears to mediate electrical and magnetic fields; it provides a framework for transmitting electromagnetic waves as well as momentum-gravitational waves. Gravity and electromagnetism are related, emerging from a common origin, which appears to be the energy of spacetime itself.
宇宙是一个遵循许多自然法则的有结构、有逻辑的系统。本文提出了一个附加的定律,称为空间体积守恒。这指的是时空被位移、压缩、膨胀和拉伸以保持几何体积的能力。此外,空间似乎具有由重力常数g测量的柯西弹性特性。假设空间具有能量密度场的性质,本文将其称为“空间能量场”或SEF。SEF的所有部分都是能量场曲率张量的度规分配给时空中的每个坐标。有人提出,空间通过质量抵抗体积位移,并与一个等于物体惯性质量的反作用力发生反应。这是因为质量位移对空间的压缩产生了引力场。引力场表示物体周围空间密度的增加。通过真空的介电常数ε、磁导率μ和折射率n等物理参数的变化来测量空间密度的增加。因此,引力可以被认为是时空的一种紧急反应,它试图通过空间的曲率互反力来保持其体积。在电磁学方面,电场和磁场的起源是几何的,因此是时空的一部分。提出时空具有与通过坡印亭矢量产生的电场有关的特定性质。这受介电常数ε 0的影响。根据洛伦兹力,磁场似乎是从空间发出的。这受磁导率μo的影响。坡印亭矢量能量流和相应的洛伦兹力都是电磁力空间反作用力的反作用,同时保持空间体积。看来电磁学可以被认为是时空的扭曲。空间似乎是电场和磁场的中介;它为电磁波和动量引力波的传输提供了一个框架。引力和电磁是相关的,它们有一个共同的起源,似乎是时空本身的能量。
{"title":"Conservation of spatial volume and the emergence of gravity and electromagnetism","authors":"K. Moored","doi":"10.4006/0836-1398-35.2.100","DOIUrl":"https://doi.org/10.4006/0836-1398-35.2.100","url":null,"abstract":"The universe is a structured, logical system obeying many natural laws. This essay proposes an additional law termed the conservation of spatial volume. This refers to spacetime’s ability to be displaced, compressed, expanded, and stretched to conserve geometric volume. In addition,\u0000 space appears to possess Cauchy-like elasticity characteristics measured by the gravitational constant G. It is postulated that space has qualities of an energy density field, which is termed the “spatial energy field” or SEF in this essay. The SEF in all of its parts is\u0000 a metric of energy field curvature tensors assigned to every coordinate in spacetime. It is proposed that space resists volume displacement by mass and reacts with a counter-force equal to the object’s inertia mass. This is because the compression of space from the displacement of mass\u0000 creates a gravitational field. The gravitational field represents an increase in spatial density surrounding the object. An increase in spatial density is measured by the change in permittivity ε, permeability μ, and refractive index n, physical parameters of the vacuum. Thus,\u0000 gravity would be considered an emergent response of spacetime attempting to conserve its volume by the reciprocal curvature force of space. In regard to electromagnetism, electric and magnetic fields are geometric in origin and, therefore, part of spacetime. It is proposed that spacetime has\u0000 specific properties related to the emergence of electrical fields via the Poynting vector. This is influenced by electric permittivity εo. Magnetic fields appear to emanate from space based on the Lorentz force. This is influenced by magnetic permeability μo. Both\u0000 the Poynting vector energy flow and the corresponding Lorentz force are the reaction of space counteracting forces of electricity and magnetism while conserving spatial volume. It appears that electromagnetism could be considered a twisting torsion of spacetime. Space appears to mediate electrical\u0000 and magnetic fields; it provides a framework for transmitting electromagnetic waves as well as momentum-gravitational waves. Gravity and electromagnetism are related, emerging from a common origin, which appears to be the energy of spacetime itself.","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47772423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cosmological expansion in the Solar System 太阳系的宇宙学膨胀
IF 0.6 Q4 PHYSICS, MULTIDISCIPLINARY Pub Date : 2022-06-21 DOI: 10.4006/0836-1398-35.2.139
L. A. King, H. Sipilä
In accepted theory, Hubble expansion only operates at the largest scales, i.e., the inter-galactic level. However, this is a theoretical conclusion, which can be rebutted with other theoretical considerations. More significantly, increasing observational data and other evidence, particularly within the Solar System, point to universal expansion operating on all scales where gravitation, as opposed to electronic interaction, is the dominant force. Local Hubble flow has implications for current theories of tidal drag as well as both the early evolution of the Solar System and its long-term future. Expansion is also expected to operate on the structure of galaxies, but it is unclear whether this has any impact on the dark matter problem.
在公认的理论中,哈勃膨胀只在最大的尺度上运行,即星系间的水平。然而,这是一个理论结论,可以用其他理论考虑来反驳。更重要的是,越来越多的观测数据和其他证据,特别是在太阳系内,表明宇宙膨胀在所有尺度上都在进行,而引力,而不是电子相互作用,是主导力量。局部哈勃流对当前的潮汐阻力理论以及太阳系的早期演化及其长期未来都有影响。预计宇宙膨胀也会影响星系的结构,但目前还不清楚这是否会对暗物质问题产生影响。
{"title":"Cosmological expansion in the Solar System","authors":"L. A. King, H. Sipilä","doi":"10.4006/0836-1398-35.2.139","DOIUrl":"https://doi.org/10.4006/0836-1398-35.2.139","url":null,"abstract":"In accepted theory, Hubble expansion only operates at the largest scales, i.e., the inter-galactic level. However, this is a theoretical conclusion, which can be rebutted with other theoretical considerations. More significantly, increasing observational data and other evidence, particularly\u0000 within the Solar System, point to universal expansion operating on all scales where gravitation, as opposed to electronic interaction, is the dominant force. Local Hubble flow has implications for current theories of tidal drag as well as both the early evolution of the Solar System and its\u0000 long-term future. Expansion is also expected to operate on the structure of galaxies, but it is unclear whether this has any impact on the dark matter problem.","PeriodicalId":51274,"journal":{"name":"Physics Essays","volume":" ","pages":""},"PeriodicalIF":0.6,"publicationDate":"2022-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48021967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Physics Essays
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1