This systematic review evaluated the effect of different hydrofluoric acid (HF) etching regimens and a self-etch ceramic primer (SECP) on the flexural strength (FS) and fatigue failure load (FFL) of glass-ceramic materials.The identification of relevant studies was conducted by two authors in five databases: PubMED, Scopus, Web Of Science, LILACS and Virtual Health Library (BVS) until July 2022 with no year limit. The analysis was conducted in RevMan 5.4.1 Software (Cochrane Collaboration) using Random effect model at 5 %. The risk of bias of the included studies were assessed. From the 5349 articles identified, 34 were included for quantitative analysis. Meta-analysis showed that for predominantly glassy ceramics, etching with HF 5 % had no significant impact on FS, however, HF acid etching with concentrations greater than 5 % negatively impacted FS. For lithium disilicate glass-ceramics (LDGC) HF acid etching, negatively influenced FS, while increasing the FFL. HF etching negatively affected FS of hybrid ceramics. The self-etch ceramic primer and HF acid etching showed a similar impact on FFL and FS. This meta-analysis indicates that the impact of SECP and HF acid etching on the mechanical behavior of glass ceramics is material-dependent.
Most reports on duplicate dentures are introduction to fabrication methods or clinical case reports. Only a few studies have verified their clinical effectiveness; hence, evidence to construct useful clinical guidelines for duplicate denture use is lacking. This review aimed to comprehensively investigate reports on duplicate dentures to accumulate evidences that will contribute to the formulation of clinical practice guidelines. Duplicate dentures are effectively used for impression making and bite registration when fabricating new dentures, thereby reducing the number of clinic visits and treatment time. Duplicate denture can also be used as temporary or new dentures. Older people in whom various adaptive abilities have declined, may find it difficult to adjust to new dentures and experience stress, even if the shape is appropriate. Duplicate dentures, which reproduces the shape of old dentures that they are used to, have the advantage of being more familiar to older people and less stressful. When manufacturing duplicate dentures, digital methods such as milling and three-dimensional printing are superior to conventional methods regarding working time and cost. A notable advantage of the digital method is that the denture shape can be saved as digital data, and the denture can be easily duplicated if lost.
This review examined the efficacy of surface treatments and adhesive monomers for enhancing zirconia-resin bond strength. A comprehensive literature search in PubMed, Embase, Web of Science, Scopus, and the Cochrane Library yielded relevant in vitro studies. Employing pairwise and Bayesian network meta-analyses, 77 articles meeting inclusion criteria were analyzed. Gas plasma was found to be ineffective, while treatments including air abrasion, silica coating, laser, selective infiltration etching, hot etching showed varied effectiveness. Air abrasion with finer particles (25–53 µm) showed higher immediate bond strength than larger particles (110–150 µm), with no significant difference post-aging. The Rocatec silica coating system outperformed the CoJet system in both immediate and long-term bond strength. Adhesives containing 10-methacryloyloxydecyl dihydrogen phosphate (10-MDP) were superior to other acidic monomers. The application of 2-hydroxyethyl methacrylate and silane did not improve bonding performance. Notably, 91.2 % of bonds weakened after aging, but this effect was less pronounced with air abrasion or silica coating. The findings highlight the effectiveness of air abrasion, silica coating, selective infiltration etching, hot etching, and laser treatment in improving bond strength, with 10-MDP in bonding agents enhancing zirconia bonding efficacy.

