Pub Date : 2024-06-19DOI: 10.1088/2058-8585/ad50e7
Marc Steinberger, Andreas Distler, Johannes Hörber, Kai Cheong Tam, Christoph J Brabec and Hans-Joachim Egelhaaf
Drop-on-demand inkjet printing is a promising and commercially relevant technology for producing organic electronic devices of arbitrary shape on a wide variety of different substrates. In this work we transfer the inkjet printing process of organic photovoltaic devices from 2D to 3D substrates, using a 5-axis robot system equipped with a multi-nozzle inkjet printing unit. We present a ready-to-use 3D printing system for industrial application, using a 5-axis motion system controlled by commercial 3D motion software, combined with a commonly used multi-nozzle inkjet print head controlled by the corresponding printing software. The very first time inkjet-printed solar cells on glass/ITO with power conversion efficiencies (PCEs) of up to 7% are realized on a 3D object with surfaces tilted by angles of up to 60° against the horizontal direction. Undesired ink flow during deposition of the inkjet-printed layers was avoided by proper ink formulation. In order to be able to print organic (opto-)electronic devices also on substrates without sputtered indium tin oxide bottom electrode, the bottom electrode was inkjet-printed from silver nanoparticle (AgNP) ink, resulting in the first all inkjet-printed (i.e. including bottom electrode) solar cell on a 3D object ever with a record PCE of 2.5%. This work paves the way for functionalizing even complex objects, such as cars, mobile phones, or ‘Internet of Things’ applications with inkjet-printed (opto-)electronic devices.
{"title":"All inkjet-printed organic solar cells on 3D objects","authors":"Marc Steinberger, Andreas Distler, Johannes Hörber, Kai Cheong Tam, Christoph J Brabec and Hans-Joachim Egelhaaf","doi":"10.1088/2058-8585/ad50e7","DOIUrl":"https://doi.org/10.1088/2058-8585/ad50e7","url":null,"abstract":"Drop-on-demand inkjet printing is a promising and commercially relevant technology for producing organic electronic devices of arbitrary shape on a wide variety of different substrates. In this work we transfer the inkjet printing process of organic photovoltaic devices from 2D to 3D substrates, using a 5-axis robot system equipped with a multi-nozzle inkjet printing unit. We present a ready-to-use 3D printing system for industrial application, using a 5-axis motion system controlled by commercial 3D motion software, combined with a commonly used multi-nozzle inkjet print head controlled by the corresponding printing software. The very first time inkjet-printed solar cells on glass/ITO with power conversion efficiencies (PCEs) of up to 7% are realized on a 3D object with surfaces tilted by angles of up to 60° against the horizontal direction. Undesired ink flow during deposition of the inkjet-printed layers was avoided by proper ink formulation. In order to be able to print organic (opto-)electronic devices also on substrates without sputtered indium tin oxide bottom electrode, the bottom electrode was inkjet-printed from silver nanoparticle (AgNP) ink, resulting in the first all inkjet-printed (i.e. including bottom electrode) solar cell on a 3D object ever with a record PCE of 2.5%. This work paves the way for functionalizing even complex objects, such as cars, mobile phones, or ‘Internet of Things’ applications with inkjet-printed (opto-)electronic devices.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":"92 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141508888","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-07DOI: 10.1088/2058-8585/ad517d
Abiodun Komolafe, Steve Beeby, Russel Torah
The electrical performance of printed conductors often degrades over time due to recurrent or infrequent exposure to practical stresses such as bending and washing. To avoid this, a repair mechanism is required to return the conductor to prime condition, enhancing lifetime and durability during extended stress cycles. In this study, domestic ironing is used to repair and restore the electrical resistance of printed conductors damaged by prolonged bending and washing cycles at standard ironing temperatures. The results of reliability tests on screen-printed conductors on two polyurethane-coated fabrics and six different laminate sheets adhered to the fabrics revealed that ironing significantly enhances the electrical performance of the conductors, limiting the change in electrical resistance to less than 20% after 400 000 bending cycles and to less than 1 Ω after 50 wash cycles. Although laminated conductors are more durable and generally outperformed conductors on the printed primer layer, in both cases, the results showed that the sample could be left for 24 h for ‘self-relaxation’ and would also return to the original value, implying that for future wear, either immediate ironing or leaving the garment for a period between uses could effectively ‘fix’ any bending or washing damage.
{"title":"Improving durability and electrical performance of flexible printed e-textile conductors via domestic ironing","authors":"Abiodun Komolafe, Steve Beeby, Russel Torah","doi":"10.1088/2058-8585/ad517d","DOIUrl":"https://doi.org/10.1088/2058-8585/ad517d","url":null,"abstract":"The electrical performance of printed conductors often degrades over time due to recurrent or infrequent exposure to practical stresses such as bending and washing. To avoid this, a repair mechanism is required to return the conductor to prime condition, enhancing lifetime and durability during extended stress cycles. In this study, domestic ironing is used to repair and restore the electrical resistance of printed conductors damaged by prolonged bending and washing cycles at standard ironing temperatures. The results of reliability tests on screen-printed conductors on two polyurethane-coated fabrics and six different laminate sheets adhered to the fabrics revealed that ironing significantly enhances the electrical performance of the conductors, limiting the change in electrical resistance to less than 20% after 400 000 bending cycles and to less than 1 Ω after 50 wash cycles. Although laminated conductors are more durable and generally outperformed conductors on the printed primer layer, in both cases, the results showed that the sample could be left for 24 h for ‘self-relaxation’ and would also return to the original value, implying that for future wear, either immediate ironing or leaving the garment for a period between uses could effectively ‘fix’ any bending or washing damage.","PeriodicalId":51335,"journal":{"name":"Flexible and Printed Electronics","volume":"14 1","pages":""},"PeriodicalIF":3.1,"publicationDate":"2024-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141550051","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Microstrip patch antennas (MPAs) are compact and easy-to-fabricate antennas, widely used in long-distance communications. MPAs are commonly fabricated using subtractive methods such as photolithographic etching of metals previously deposited using sputtering or evaporation. Despite being an established technique, subtractive manufacturing requires various process steps and generates material waste. Additive manufacturing (AM) techniques instead allow optimal use of material, besides enabling rapid prototyping. AM methods are thus especially interesting for the fabrication of electronic components such as MPAs. AM methods include both 2D and 3D techniques, which can also be combined to embed components within 3D-printed enclosures, protecting them from hazards and/or developing haptic interfaces. In this work, we exploit the combination of 2D and 3D printing AM techniques to realize three MPA configurations: flat, curved (at 45∘), and embedded. First, the MPAs were designed and simulated at 2.3 GHz with a −16.25 dB S