Pub Date : 2023-11-30DOI: 10.1016/j.jppr.2023.10.002
Puneet Rana
The theoretical analysis of the mixed convective Buongiorno nanofluid flow in an inclined annular microchannel with convectively heated walls subjected to the effects of nonlinear thermal radiation, exponential heat source (EHS), thermal dependent heat source (THS) is carried out. The description of the Buongiorno nanofluid is implemented to analyze the Brownian diffusion and thermo-migration mechanisms. The general boundary conditions for the velocity, thermal, and nanoparticle volume fraction (NVF) are considered. Numerical solutions for fully developed governing equations are obtained using bvp5c solver and verify with FEM. The optimization of heat transport rates is made by using the Box-Behnken design-based response surface method. It is found that the Lorentz force and the angle inclination of the annulus significantly affect the rheological characteristics of the nanofluid. Nanoparticles increase thermal energy in the system through Brownian diffusion and thermophoresis, resulting in increased temperature field. Internal heat sources would serve as an important tool for modulating the thermal field in microchannel, as they are directly associated. At low-level values of the thermal Biot number, the exponential heat source, and the thermal radiation parameter, it is possible to attain the maximum Nusselt number on both walls of the annulus.
{"title":"Heat transfer optimization and rheological features of Buongiorno nanofluid in a convectively heated inclined annulus with nonlinear thermal radiation using response surface methodology","authors":"Puneet Rana","doi":"10.1016/j.jppr.2023.10.002","DOIUrl":"https://doi.org/10.1016/j.jppr.2023.10.002","url":null,"abstract":"<p>The theoretical analysis of the mixed convective Buongiorno nanofluid flow in an inclined annular microchannel with convectively heated walls subjected to the effects of nonlinear thermal radiation, exponential heat source (EHS), thermal dependent heat source (THS) is carried out. The description of the Buongiorno nanofluid is implemented to analyze the Brownian diffusion and thermo-migration mechanisms. The general boundary conditions for the velocity, thermal, and nanoparticle volume fraction (NVF) are considered. Numerical solutions for fully developed governing equations are obtained using bvp5c solver and verify with FEM. The optimization of heat transport rates is made by using the Box-Behnken design-based response surface method. It is found that the Lorentz force and the angle inclination of the annulus significantly affect the rheological characteristics of the nanofluid. Nanoparticles increase thermal energy in the system through Brownian diffusion and thermophoresis, resulting in increased temperature field. Internal heat sources would serve as an important tool for modulating the thermal field in microchannel, as they are directly associated. At low-level values of the thermal Biot number, the exponential heat source, and the thermal radiation parameter, it is possible to attain the maximum Nusselt number on both walls of the annulus.</p>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"40 S1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519248","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-30DOI: 10.1016/j.jppr.2023.09.001
Buğrahan Alabaş, İlker Yılmaz, Yakup Çam
In this study, combustion instabilities and flue gas emission changes under different dilutions of N2 (nitrogen) and Ar (argon) of a promising biogas mixture (70% CH4 - 30% CO2) in the fight against greenhouse gas emissions were investigated. In the experiments, additions were made from 0% to 50% at intervals of 10% for both gases. In order to detect the instability of the flame, external acoustic enforcements at different frequencies was applied through the speakers placed in the combustion chamber arms. The dynamic pressure fluctuation values were recorded. The results showed that low dilution ratios were effective in reducing flame instability for both inert gases. However, as the dilution ratio increased, the fuel/air mixture became leaner and blowoff occurred. In the case of comparing two different gases, it has been observed that the effect of argon gas on reducing dynamic pressure fluctuation is higher. Burner outlet temperature and brightness values of the flame decreased in both Ar and N2 dilution. CO and NOx emissions increased with increasing diluent volume for all dilution conditions. When the emissions of the two diluent gases are compared, the CO emission, which was 3134 ppm in the undiluted condition, increased up to 4949 ppm in 50% Ar dilution, while it increased to 4521 ppm in 50% N2 dilution.
{"title":"N2 and Ar dilution on the premixed biogas jet flame under external acoustic enforcement","authors":"Buğrahan Alabaş, İlker Yılmaz, Yakup Çam","doi":"10.1016/j.jppr.2023.09.001","DOIUrl":"https://doi.org/10.1016/j.jppr.2023.09.001","url":null,"abstract":"<p>In this study, combustion instabilities and flue gas emission changes under different dilutions of N<sub>2</sub> (nitrogen) and Ar (argon) of a promising biogas mixture (70% CH<sub>4</sub> - 30% CO<sub>2</sub>) in the fight against greenhouse gas emissions were investigated. In the experiments, additions were made from 0% to 50% at intervals of 10% for both gases. In order to detect the instability of the flame, external acoustic enforcements at different frequencies was applied through the speakers placed in the combustion chamber arms. The dynamic pressure fluctuation values were recorded. The results showed that low dilution ratios were effective in reducing flame instability for both inert gases. However, as the dilution ratio increased, the fuel/air mixture became leaner and blowoff occurred. In the case of comparing two different gases, it has been observed that the effect of argon gas on reducing dynamic pressure fluctuation is higher. Burner outlet temperature and brightness values of the flame decreased in both Ar and N<sub>2</sub> dilution. CO and NO<sub>x</sub> emissions increased with increasing diluent volume for all dilution conditions. When the emissions of the two diluent gases are compared, the CO emission, which was 3134 ppm in the undiluted condition, increased up to 4949 ppm in 50% Ar dilution, while it increased to 4521 ppm in 50% N<sub>2</sub> dilution.</p>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"36 4","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519266","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-30DOI: 10.1016/j.jppr.2023.11.002
Bagh Ali, Muhammad Ilyas, Imran Siddique, Huizhu Yang, Muhammad Kamran Ashraf, Sohaib Abdal
We explored the insinuations of bio-convection and thermal radiation on nanofluid transportation across stretching permeable wedge with magnetic force. Appropriate similarity transformation variables are utilized to achieve ordinary differential equations. In order to tackle the non-linearity of these equations, numerical procedure based on shooting technique and Range Kutta method are harnessed on MATLAB platform. Computational and devour is carried out to evaluate the influence of controlling limitations on temperature, velocity, concentration of nanofluids and micro-organisms density. The growing strength of thermophoresis and Brownian motion enhance the fluid temperature. The profile volume fraction show decline against higher values of parameters which are Lewis number, unsteadiness and Brownian motion but opposite trend noted against higher value of Williamson and thermophoresis parameters. The skin friction values rise with the growing values of parameter of wedge angle for the moving wedge. The motile organism profile exhibits decrease against growing strength of Peclet number, bioconvection Lewis number, temperature difference and unsteady parameters while opposite behavior has been noted against wedge angle parameter.
{"title":"Numerical study for bio-convection effects on MHD nano-fluid flow past a porous and extending wedge","authors":"Bagh Ali, Muhammad Ilyas, Imran Siddique, Huizhu Yang, Muhammad Kamran Ashraf, Sohaib Abdal","doi":"10.1016/j.jppr.2023.11.002","DOIUrl":"https://doi.org/10.1016/j.jppr.2023.11.002","url":null,"abstract":"<p>We explored the insinuations of bio-convection and thermal radiation on nanofluid transportation across stretching permeable wedge with magnetic force. Appropriate similarity transformation variables are utilized to achieve ordinary differential equations. In order to tackle the non-linearity of these equations, numerical procedure based on shooting technique and Range Kutta method are harnessed on MATLAB platform. Computational and devour is carried out to evaluate the influence of controlling limitations on temperature, velocity, concentration of nanofluids and micro-organisms density. The growing strength of thermophoresis and Brownian motion enhance the fluid temperature. The profile volume fraction show decline against higher values of parameters which are Lewis number, unsteadiness and Brownian motion but opposite trend noted against higher value of Williamson and thermophoresis parameters. The skin friction values rise with the growing values of parameter of wedge angle for the moving wedge. The motile organism profile exhibits decrease against growing strength of Peclet number, bioconvection Lewis number, temperature difference and unsteady parameters while opposite behavior has been noted against wedge angle parameter.</p>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"64 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-25DOI: 10.1016/j.jppr.2023.11.001
P.V. Ananth Subray, B.N. Hanumagowda, C.S.K. Raju, S.V.K. Varma, Jagdish Prakash Darcy, Se-Jin Yook Darcy, Nehad Ali Shah Darcy
The present study explores the influence of electromagnetic effects on the flow of a nanofluid in a saturated permeable medium, confined between a clear viscous fluid in an inclined channel. The nanofluid consists of cobalt ferrite nanoparticles dispersed in ethylene glycol. The governing equations are derived considering Darcy's law for the permeable medium and Tiwari's model for fluids containing nano-sized particles. Additionally, radiation and dissipation effects are incorporated into the energy equation. The equations are transformed into dimensionless form and solved analytically using the perturbation technique. The results are analyzed through graphs and tables for different material parameters. The findings reveal that higher electric and magnetic strengths have a significant impact on the fluid velocity at the interface of the two fluids, resulting in reduced shear both at the clear fluid surface and the interface between them. This highlights the crucial role played by electric and magnetic strengths in modifying flow phenomena. Consequently, combining electric and magnetic strengths with nanofluids can be utilized to achieve desired qualities in multi-fluid flow and enhance heat transfer characteristics.
{"title":"Analytical analysis of inclined three-layered composite channel with cobalt ferrite nanoparticles and Hall current in Darcy medium","authors":"P.V. Ananth Subray, B.N. Hanumagowda, C.S.K. Raju, S.V.K. Varma, Jagdish Prakash Darcy, Se-Jin Yook Darcy, Nehad Ali Shah Darcy","doi":"10.1016/j.jppr.2023.11.001","DOIUrl":"https://doi.org/10.1016/j.jppr.2023.11.001","url":null,"abstract":"<p>The present study explores the influence of electromagnetic effects on the flow of a nanofluid in a saturated permeable medium, confined between a clear viscous fluid in an inclined channel. The nanofluid consists of cobalt ferrite nanoparticles dispersed in ethylene glycol. The governing equations are derived considering Darcy's law for the permeable medium and Tiwari's model for fluids containing nano-sized particles. Additionally, radiation and dissipation effects are incorporated into the energy equation. The equations are transformed into dimensionless form and solved analytically using the perturbation technique. The results are analyzed through graphs and tables for different material parameters. The findings reveal that higher electric and magnetic strengths have a significant impact on the fluid velocity at the interface of the two fluids, resulting in reduced shear both at the clear fluid surface and the interface between them. This highlights the crucial role played by electric and magnetic strengths in modifying flow phenomena. Consequently, combining electric and magnetic strengths with nanofluids can be utilized to achieve desired qualities in multi-fluid flow and enhance heat transfer characteristics.</p>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"66 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519270","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-22DOI: 10.1016/j.jppr.2022.07.006
Hanwen Guo, Donghai Jin, Xiwu Liu, Xingmin Gui
Non-axisymmetric endwall contouring has been proved to be an effective flow control technique in turbomachinery. Several different flow control mechanisms and qualitative design strategies have been proposed. The endwall contouring mechanism based on the flow governing equations is significant for exploring the quantitative design strategies of the non-axisymmetric endwall contouring. In this paper, the static pressure redistribution mechanism of endwall contouring was explained based on the radial equilibrium equation. A quantified expression of the static pressure redistribution mechanism was proposed. Compressor cascades were simulated using an experimentally validated numerical method to validate the static pressure redistribution mechanism. A geometric parameter named meridional curvature (Cme) is defined to quantify the concave and convex features of the endwall. Results indicate that the contoured endwall changes the streamline curvature, inducing a centrifugal acceleration. Consequently, the radial pressure gradient is reformed to maintain the radial equilibrium. The convex endwall represented by positive Cme increases the radial pressure gradient, decreasing the endwall static pressure, while the concave endwall represented by negative Cme increases the endwall static pressure. The Cme helps to establish the quantified relation between the change in the endwall radial pressure gradient and the endwall geometry. Besides, there is a great correlation between the distributions of the Cme and the change in the endwall static pressure. It can be concluded that the parameter Cme can be considered as a significant parameter to parameterize the endwall surface and to explore the quantitative design strategies of the non-axisymmetric endwall contouring.
{"title":"Static pressure redistribution mechanism of non-axisymmetric endwall based on radial equilibrium","authors":"Hanwen Guo, Donghai Jin, Xiwu Liu, Xingmin Gui","doi":"10.1016/j.jppr.2022.07.006","DOIUrl":"https://doi.org/10.1016/j.jppr.2022.07.006","url":null,"abstract":"<p>Non-axisymmetric endwall contouring has been proved to be an effective flow control technique in turbomachinery. Several different flow control mechanisms and qualitative design strategies have been proposed. The endwall contouring mechanism based on the flow governing equations is significant for exploring the quantitative design strategies of the non-axisymmetric endwall contouring. In this paper, the static pressure redistribution mechanism of endwall contouring was explained based on the radial equilibrium equation. A quantified expression of the static pressure redistribution mechanism was proposed. Compressor cascades were simulated using an experimentally validated numerical method to validate the static pressure redistribution mechanism. A geometric parameter named meridional curvature (<em>C</em><sub><em>me</em></sub>) is defined to quantify the concave and convex features of the endwall. Results indicate that the contoured endwall changes the streamline curvature, inducing a centrifugal acceleration. Consequently, the radial pressure gradient is reformed to maintain the radial equilibrium. The convex endwall represented by positive <em>C</em><sub><em>me</em></sub> increases the radial pressure gradient, decreasing the endwall static pressure, while the concave endwall represented by negative <em>C</em><sub><em>me</em></sub> increases the endwall static pressure. The <em>C</em><sub><em>me</em></sub> helps to establish the quantified relation between the change in the endwall radial pressure gradient and the endwall geometry. Besides, there is a great correlation between the distributions of the <em>C</em><sub><em>me</em></sub> and the change in the endwall static pressure. It can be concluded that the parameter <em>C</em><sub><em>me</em></sub> can be considered as a significant parameter to parameterize the endwall surface and to explore the quantitative design strategies of the non-axisymmetric endwall contouring.</p>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"1 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519230","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-11-21DOI: 10.1016/j.jppr.2023.10.001
Lingen Chen, Huijun Feng, Yanlin Ge, Shuangshuang Shi
In finite-time thermodynamic analyses for various gas turbine cycles, there are two common models: one is closed-cycle model with thermal conductance optimization of heat exchangers, and another is open-cycle model with optimization of pressure drop (PD) distributions. Both of optimization also with searching optimal compressor pressure ratio (PR). This paper focuses on an open-cycle model. A two-shaft open-cycle gas turbine power plant (OCGTPP) is modeled in this paper. Expressions of power output (PP) and thermal conversion efficiency (TCE) are deduced, and these performances are optimized by varying the relative PD and compressor PR. The results show that there exist the optimal values (0.32 and 14.0) of PD and PR which lead to double maximum dimensionless PP (1.75). There also exists an optimal value (0.38) of area allocation ratio which leads to maximum TCE (0.37). Moreover, the performances of three types of gas turbine cycles, such as one-shaft and two-shaft ones, are compared. When the relative pressure drop at the compressor inlet is small, the TCE of third cycle is the biggest one; when this pressure drop is large, the PP of second cycle is the biggest one. The results herein can be applied to guide the preliminary designs of OCGTPPs.
{"title":"Power and efficiency optimizations for an open cycle two-shaft gas turbine power plant","authors":"Lingen Chen, Huijun Feng, Yanlin Ge, Shuangshuang Shi","doi":"10.1016/j.jppr.2023.10.001","DOIUrl":"https://doi.org/10.1016/j.jppr.2023.10.001","url":null,"abstract":"<p>In finite-time thermodynamic analyses for various gas turbine cycles, there are two common models: one is closed-cycle model with thermal conductance optimization of heat exchangers, and another is open-cycle model with optimization of pressure drop (PD) distributions. Both of optimization also with searching optimal compressor pressure ratio (PR). This paper focuses on an open-cycle model. A two-shaft open-cycle gas turbine power plant (OCGTPP) is modeled in this paper. Expressions of power output (PP) and thermal conversion efficiency (TCE) are deduced, and these performances are optimized by varying the relative PD and compressor PR. The results show that there exist the optimal values (0.32 and 14.0) of PD and PR which lead to double maximum dimensionless PP (1.75). There also exists an optimal value (0.38) of area allocation ratio which leads to maximum TCE (0.37). Moreover, the performances of three types of gas turbine cycles, such as one-shaft and two-shaft ones, are compared. When the relative pressure drop at the compressor inlet is small, the TCE of third cycle is the biggest one; when this pressure drop is large, the PP of second cycle is the biggest one. The results herein can be applied to guide the preliminary designs of OCGTPPs.</p>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"57 1","pages":""},"PeriodicalIF":5.3,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138519281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.jppr.2023.08.004
Hemant Kumar, Chetan S. Mistry
This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed mixed-flow compressor having stage exit static pressure to inlet total pressure ratio of 3.8 with 39,836 rpm rotor speed. The four different tip configurations namely the constant (λ = 0.016 and 0.019) and variable (λ = 0.011 (inlet)-0.019 (exit) and 0.019 (inlet)-0.022 (exit)) tip clearances were numerically analysed using available experimental data-set. The numerical investigation reveals that in contrast to the classic jet-wake pattern, two anomalous velocity profiles formed at the impeller exit which results in pressure losses in the vaneless diffuser. Near the impeller inlet, the tip leakage flow rolls up to discrete tip leakage vortex structure for each tip clearance configuration. This results in the formation of a region of momentum deficit, recirculation zone, which gets weakened as it moves downstream. The tip clearance configuration is observed to profoundly influence the extent and vorticity of the tip leakage vortex. In the splitter blade passage, the tip leakage flow and Coriolis flow interact with passage flow, resulting in the formation of two secondary passage vortices that move downstream along the pressure and suction surface of the splitter blade. The tip clearance configuration directly influences the impeller exit jet-wake pattern by modulating the secondary passage vortices trajectory and vorticity. Moreover, off-design analysis for tip clearances λ = 0.016 and λ = 0.019, depict distinctive tip leakage vortex characteristics. When operating near the stall conditions (80% of design mass flow rate), λ = 0.019 exhibits bubble shape tip leakage vortex breakdown occurring near the impeller inlet. This result in a substantial change in the tip leakage vortex nature; expansion of the recirculation zone and early weakening of the vorticity in the tip leakage vortex. It is observed that vortex breakdown plays a vital role in characteristics of the passage flow field structure and compressor performance near the stall conditions.
{"title":"Understanding of tip clearance flow structure in high speed mixed flow compressor","authors":"Hemant Kumar, Chetan S. Mistry","doi":"10.1016/j.jppr.2023.08.004","DOIUrl":"https://doi.org/10.1016/j.jppr.2023.08.004","url":null,"abstract":"<div><p>This paper addresses the necessity to make a physical interpretation of a highly complex three-dimensional tip clearance flow field study for high-speed mixed-flow compressor having stage exit static pressure to inlet total pressure ratio of 3.8 with 39,836 rpm rotor speed. The four different tip configurations namely the constant (<em>λ</em> = 0.016 and 0.019) and variable (<em>λ</em> = 0.011 (inlet)-0.019 (exit) and 0.019 (inlet)-0.022 (exit)) tip clearances were numerically analysed using available experimental data-set. The numerical investigation reveals that in contrast to the classic jet-wake pattern, two anomalous velocity profiles formed at the impeller exit which results in pressure losses in the vaneless diffuser. Near the impeller inlet, the tip leakage flow rolls up to discrete tip leakage vortex structure for each tip clearance configuration. This results in the formation of a region of momentum deficit, recirculation zone, which gets weakened as it moves downstream. The tip clearance configuration is observed to profoundly influence the extent and vorticity of the tip leakage vortex. In the splitter blade passage, the tip leakage flow and Coriolis flow interact with passage flow, resulting in the formation of two secondary passage vortices that move downstream along the pressure and suction surface of the splitter blade. The tip clearance configuration directly influences the impeller exit jet-wake pattern by modulating the secondary passage vortices trajectory and vorticity. Moreover, off-design analysis for tip clearances <em>λ</em> = 0.016 and <em>λ</em> = 0.019, depict distinctive tip leakage vortex characteristics. When operating near the stall conditions (80% of design mass flow rate), <em>λ</em> = 0.019 exhibits bubble shape tip leakage vortex breakdown occurring near the impeller inlet. This result in a substantial change in the tip leakage vortex nature; expansion of the recirculation zone and early weakening of the vorticity in the tip leakage vortex. It is observed that vortex breakdown plays a vital role in characteristics of the passage flow field structure and compressor performance near the stall conditions.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"12 3","pages":"Pages 356-379"},"PeriodicalIF":5.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49702474","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.jppr.2023.01.001
Shuai Hao , Tielin Ma , She Chen , Hongzhong Ma , Jinwu Xiang , Fangxiang Ouyang
“Ionic wind” generators are used as the main propulsion system in ion propulsion unmanned aerial vehicles (UAVs). Owing to the large size and poor stiffness of the electrode array in the propulsion system, the electrode array is prone to deformation under the flight load. In this work, the thrust characteristics and static aeroelastic properties of “ionic wind” propulsion systems were analyzed in detail. The simulation model for an “ionic wind” propulsion system was established by coupling a two-dimensional gas discharge model with a gas dynamics model. The influences of electrode voltage, spacing, size, and shape on the performance of the propulsion system were investigated. The fluid-solid interaction method was used to solve static aeroelastic characteristics under deformation. The aerodynamic and thrust performances of the elastic state and the rigid state were compared. It was found that the operating voltage, the distance between two electrodes, and the emitter radius had greater impacts on the thrust of the propulsion system. The propulsion system had a small contribution to the lift but a large contribution to the drag. In the elastic state, the lift coefficient accounted for 12.2%, and the drag coefficient accounted for 25.8%. Under the action of the downwash airflow from the wing, the propulsion system formed an upward moment around the center of mass, which contributed greatly to the pitching moment derivative of the whole aircraft. In the elastic state, the pitching moment derivative accounted for 29.7%. After elastic deformation, the thrust action point moved upward by 28.7 mm. Hence, the no lift pitching moment is reduced by 0.104 N·m, and the pitching moment coefficient is reduced by 0.014, causing a great impact on the longitudinal trimming of the whole aircraft.
{"title":"Static aeroelasticity of the propulsion system of ion propulsion unmanned aerial vehicles","authors":"Shuai Hao , Tielin Ma , She Chen , Hongzhong Ma , Jinwu Xiang , Fangxiang Ouyang","doi":"10.1016/j.jppr.2023.01.001","DOIUrl":"10.1016/j.jppr.2023.01.001","url":null,"abstract":"<div><p>“Ionic wind” generators are used as the main propulsion system in ion propulsion unmanned aerial vehicles (UAVs). Owing to the large size and poor stiffness of the electrode array in the propulsion system, the electrode array is prone to deformation under the flight load. In this work, the thrust characteristics and static aeroelastic properties of “ionic wind” propulsion systems were analyzed in detail. The simulation model for an “ionic wind” propulsion system was established by coupling a two-dimensional gas discharge model with a gas dynamics model. The influences of electrode voltage, spacing, size, and shape on the performance of the propulsion system were investigated. The fluid-solid interaction method was used to solve static aeroelastic characteristics under deformation. The aerodynamic and thrust performances of the elastic state and the rigid state were compared. It was found that the operating voltage, the distance between two electrodes, and the emitter radius had greater impacts on the thrust of the propulsion system. The propulsion system had a small contribution to the lift but a large contribution to the drag. In the elastic state, the lift coefficient accounted for 12.2%, and the drag coefficient accounted for 25.8%. Under the action of the downwash airflow from the wing, the propulsion system formed an upward moment around the center of mass, which contributed greatly to the pitching moment derivative of the whole aircraft. In the elastic state, the pitching moment derivative accounted for 29.7%. After elastic deformation, the thrust action point moved upward by 28.7 mm. Hence, the no lift pitching moment is reduced by 0.104 N·m, and the pitching moment coefficient is reduced by 0.014, causing a great impact on the longitudinal trimming of the whole aircraft.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"12 3","pages":"Pages 336-355"},"PeriodicalIF":5.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46836235","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.jppr.2023.08.002
Yixiu Shen , Yimeng Li , Zhenggang Du
One of the crucial factors affecting the carrying capacity of the cryogenic liquid launch vehicle is the effective volume of the tank. Theoretical and experimental investigations on vortex breaker mechanisms have proposed promising schemes applied in the oxygen tank of the liquid-propellant launch vehicle to ensure the normal operation of the engine. In this paper, the liquid surface profile functions of the laminar core when the vortex generates were derived based on the Rankine vortex model. The dimensionless residual volume V/d3 and the Froude number were applied to compare the theoretical prediction of critical height with the actual simulation data of liquid oxygen. This comparison method can improve the model's accuracy. The efficiency of different basic shapes of vortex breakers was tested by conducting CFD modelling on a non-vertical outflow tank under a specific operating condition. Simulation results suggest negligible effects of heat transfer and surface tension. A circular plate is considered the optimal vortex breaker shape in traditional vertical outflow tanks, while a higher optimize efficiency was discovered in the half baffle basic shape in a non-vertical outflow tank by comparing the dimensionless residual volume and flow coefficient. A 34.26% reduction in flow resistance of half baffle breaker can be reached when applying a twenty-degree outlet pipe chamfering setting compared to a zero-degree chamfer. Considering practical operating limitations, it is concluded that a vortex breaker mechanism in a half baffle basic shape with a radius of 2.5d and a height of 4/d is the optimal scheme, which is suitable for all types of tanks. Its optimization efficiency of the residual volume reduction is about 56.68% compared to a no-breaker installation case. Lastly, a general equation based on CFD simulation for predicting the residual volume under a certain outflow velocity was proposed: , which trend is consistent with that of mathematical prediction . This consistency proves the accuracy and applicability of optimization strategy in this paper.
{"title":"Numerical study of vortex breaker optimization in a first stage oxygen tank","authors":"Yixiu Shen , Yimeng Li , Zhenggang Du","doi":"10.1016/j.jppr.2023.08.002","DOIUrl":"https://doi.org/10.1016/j.jppr.2023.08.002","url":null,"abstract":"<div><p>One of the crucial factors affecting the carrying capacity of the cryogenic liquid launch vehicle is the effective volume of the tank. Theoretical and experimental investigations on vortex breaker mechanisms have proposed promising schemes applied in the oxygen tank of the liquid-propellant launch vehicle to ensure the normal operation of the engine. In this paper, the liquid surface profile functions of the laminar core when the vortex generates were derived based on the Rankine vortex model. The dimensionless residual volume <em>V/d</em><sup>3</sup> and the Froude number were applied to compare the theoretical prediction of critical height with the actual simulation data of liquid oxygen. This comparison method can improve the model's accuracy. The efficiency of different basic shapes of vortex breakers was tested by conducting CFD modelling on a non-vertical outflow tank under a specific operating condition. Simulation results suggest negligible effects of heat transfer and surface tension. A circular plate is considered the optimal vortex breaker shape in traditional vertical outflow tanks, while a higher optimize efficiency was discovered in the half baffle basic shape in a non-vertical outflow tank by comparing the dimensionless residual volume and flow coefficient. A 34.26% reduction in flow resistance of half baffle breaker can be reached when applying a twenty-degree outlet pipe chamfering setting compared to a zero-degree chamfer. Considering practical operating limitations, it is concluded that a vortex breaker mechanism in a half baffle basic shape with a radius of 2.5<em>d</em> and a height of 4/<em>d</em> is the optimal scheme, which is suitable for all types of tanks. Its optimization efficiency of the residual volume reduction is about 56.68% compared to a no-breaker installation case. Lastly, a general equation based on CFD simulation for predicting the residual volume under a certain outflow velocity was proposed: <span><math><mrow><mi>V</mi><mo>/</mo><msup><mi>d</mi><mn>3</mn></msup><mo>≅</mo><mi>α</mi><mi>F</mi><msup><mi>r</mi><mn>0.3</mn></msup></mrow></math></span>, which trend is consistent with that of mathematical prediction <span><math><mrow><mi>V</mi><mo>/</mo><msup><mi>d</mi><mn>3</mn></msup><mo>≅</mo><mi>α</mi><mi>F</mi><msup><mi>r</mi><mrow><mn>1</mn><mo>/</mo><mn>3</mn></mrow></msup></mrow></math></span>. This consistency proves the accuracy and applicability of optimization strategy in this paper.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"12 3","pages":"Pages 322-335"},"PeriodicalIF":5.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49700765","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-09-01DOI: 10.1016/j.jppr.2023.08.001
Shuiting Ding , Huimin Zhou , Junbo Liu , Xingyu Zhang , Guo Li
Probabilistic damage tolerance is a critical method to understand and communicate risk and safety. This paper reviews recent research on the probabilistic damage tolerance design for life-limited parts. The vision of the probabilistic damage tolerance assessment is provided. Five core parts of the probabilistic damage tolerance method are introduced separately, including the anomaly distribution, stress processing and zone definition, fatigue and fracture calculation method, probability of failure (POF) calculation method, and the combination with residual stress induced by the manufacturing process. The above currently-available risk assessment methods provide practical tools for failure risk predictions and are applied by the airworthiness regulations. However, new problems are exposed with the development of the aero-engines. The time-consuming anomaly distribution derivation process restricts the development of the anomaly distribution, especially for the developing aviation industries with little empirical data. Additionally, the strong transient characteristic is prominent because of the significant temperature differences during the take-off and climbing periods. The complex loads then challenge the fatigue and fracture calculation model. Besides, high computational efficiency is required because various variables are considered to calculate the POF. Therefore, new technologies for the probabilistic damage tolerance assessment are provided, including the efficient anomaly distribution acquisition method based on small samples, the zone definition method considering transient process, and stress intensity factor (SIF) solutions under arbitrary stress distributions combined with the machine learning method. Then, an efficient numerical integration method for calculating failure risk based on the probability density evolution theory is proposed. Meanwhile, the influence of the manufacturing process on residual stress and the failure risk of the rotors is explored. The development of the probabilistic damage tolerance method can meet the requirement of the published airworthiness regulation Federal Aviation Regulation (FAR) 33.70 and guide the modification or amendment of new regulations to ensure the safety of the high-energy rotors.
{"title":"Review of the development of the probabilistic damage tolerance assessment of life-limited parts in compliance with the airworthiness regulations","authors":"Shuiting Ding , Huimin Zhou , Junbo Liu , Xingyu Zhang , Guo Li","doi":"10.1016/j.jppr.2023.08.001","DOIUrl":"10.1016/j.jppr.2023.08.001","url":null,"abstract":"<div><p>Probabilistic damage tolerance is a critical method to understand and communicate risk and safety. This paper reviews recent research on the probabilistic damage tolerance design for life-limited parts. The vision of the probabilistic damage tolerance assessment is provided. Five core parts of the probabilistic damage tolerance method are introduced separately, including the anomaly distribution, stress processing and zone definition, fatigue and fracture calculation method, probability of failure (POF) calculation method, and the combination with residual stress induced by the manufacturing process. The above currently-available risk assessment methods provide practical tools for failure risk predictions and are applied by the airworthiness regulations. However, new problems are exposed with the development of the aero-engines. The time-consuming anomaly distribution derivation process restricts the development of the anomaly distribution, especially for the developing aviation industries with little empirical data. Additionally, the strong transient characteristic is prominent because of the significant temperature differences during the take-off and climbing periods. The complex loads then challenge the fatigue and fracture calculation model. Besides, high computational efficiency is required because various variables are considered to calculate the POF. Therefore, new technologies for the probabilistic damage tolerance assessment are provided, including the efficient anomaly distribution acquisition method based on small samples, the zone definition method considering transient process, and stress intensity factor (SIF) solutions under arbitrary stress distributions combined with the machine learning method. Then, an efficient numerical integration method for calculating failure risk based on the probability density evolution theory is proposed. Meanwhile, the influence of the manufacturing process on residual stress and the failure risk of the rotors is explored. The development of the probabilistic damage tolerance method can meet the requirement of the published airworthiness regulation Federal Aviation Regulation (FAR) 33.70 and guide the modification or amendment of new regulations to ensure the safety of the high-energy rotors.</p></div>","PeriodicalId":51341,"journal":{"name":"Propulsion and Power Research","volume":"12 3","pages":"Pages 297-321"},"PeriodicalIF":5.3,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44464866","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}