M. Śmieja, Jakub Banach, Tomasz Majkusiak, J. Rapiński
Seismic activity monitoring in the mining exploitation area is an important factor, that has an effect on safety and infrastructure management. The introduction sections presents the outline of mining interference into rock mass structure and selected parameters and methods of observation related to its effects. Further in the article an alternative to currently seismic measurement devices was proposed, and an preliminary research of its metrological quality was carried out based on experimental data. Assessment was based on short time Fourier transform (STFT) and Pearson cross-correlation coefficient.
{"title":"Preliminary assesment of ADIS16470AMLZ sensor for monitoring of seismic activity in mining area","authors":"M. Śmieja, Jakub Banach, Tomasz Majkusiak, J. Rapiński","doi":"10.29354/diag/152952","DOIUrl":"https://doi.org/10.29354/diag/152952","url":null,"abstract":"Seismic activity monitoring in the mining exploitation area is an important factor, that has an effect on safety and infrastructure management. The introduction sections presents the outline of mining interference into rock mass structure and selected parameters and methods of observation related to its effects. Further in the article an alternative to currently seismic measurement devices was proposed, and an preliminary research of its metrological quality was carried out based on experimental data. Assessment was based on short time Fourier transform (STFT) and Pearson cross-correlation coefficient.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"69951188","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utilization of magnetic signature of automotive tire for exploitational wear assessment","authors":"S. Brol, Jan Warczek","doi":"10.29354/diag/156255","DOIUrl":"https://doi.org/10.29354/diag/156255","url":null,"abstract":"","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44994577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the industrial sector, transmission lines are an important part of the electrical grid. Thus it is important to protect it from all the different faults that may occur as soon as possible to supply the electric power continuously. This paper presents a modern solutions and a comparative study of fault detection and identification in electrical transmission lines using artificial neural network (ANN) compare to the fuzzy logic. Faults in transmission line of various types have been created using simulation model. An intelligent monitoring system (IFD: Intelligent Fault Diagnosis) was used at both ends of a 230 kV overhead transmission line, voltage and current measurements exploited as indicator data for this system. Both approaches were found to be robust, accurate and reliable to detect the fault when it occurs, to determine the fault type short circuit or opening of a power line (open circuit), to locate the fault and to determine which phase was faulted.
{"title":"Intelligent fault diagnosis of power transmission line using fuzzy logic and artificial neural network","authors":"K. Touati, M. Boudiaf, I. Merzouk, A. Hafaifa","doi":"10.29354/diag/156495","DOIUrl":"https://doi.org/10.29354/diag/156495","url":null,"abstract":"In the industrial sector, transmission lines are an important part of the electrical grid. Thus it is important to protect it from all the different faults that may occur as soon as possible to supply the electric power continuously. This paper presents a modern solutions and a comparative study of fault detection and identification in electrical transmission lines using artificial neural network (ANN) compare to the fuzzy logic. Faults in transmission line of various types have been created using simulation model. An intelligent monitoring system (IFD: Intelligent Fault Diagnosis) was used at both ends of a 230 kV overhead transmission line, voltage and current measurements exploited as indicator data for this system. Both approaches were found to be robust, accurate and reliable to detect the fault when it occurs, to determine the fault type short circuit or opening of a power line (open circuit), to locate the fault and to determine which phase was faulted.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46509216","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Flat plate solar collector (FPSC) is popular for their low cost, simplicity, and ease of installation and operation. In this work, FPSC thermal performance was analyzed. It's compared to diamond/H2O nanofluids. The volume percentage and kind of nanoparticles are analyzed numerically that validation with experimental data available in the literature. The hot climate of Iraq is employed to approximate the model. The numerical study is performed by using ANSYS/FLUENT software to simulate the case study of problem. Due to less solar intensity after midday, temperatures reduction. The greatest collector thermal efficiency is 68.90% with 1% ND/water nanofluid, a 12.2% increase over pure water. The efficiency of 1% nanofluid is better than other concentrations because of a change in physical properties and an increase in thermal conductivity. Since the intensity of radiation affects the outlet temperature from the solar collector and there is a direct link between them, this increases the efficiency of the solar collector, especially around 12:30 pm at the optimum efficiency.
{"title":"Enhancement of thermal efficiency of nanofluid flows in a flat solar collector using CFD","authors":"Falah Zarda, A. Hussein, S. Danook, Barhm Mohamad","doi":"10.29354/diag/156384","DOIUrl":"https://doi.org/10.29354/diag/156384","url":null,"abstract":"Flat plate solar collector (FPSC) is popular for their low cost, simplicity, and ease of installation and operation. In this work, FPSC thermal performance was analyzed. It's compared to diamond/H2O nanofluids. The volume percentage and kind of nanoparticles are analyzed numerically that validation with experimental data available in the literature. The hot climate of Iraq is employed to approximate the model. The numerical study is performed by using ANSYS/FLUENT software to simulate the case study of problem. Due to less solar intensity after midday, temperatures reduction. The greatest collector thermal efficiency is 68.90% with 1% ND/water nanofluid, a 12.2% increase over pure water. The efficiency of 1% nanofluid is better than other concentrations because of a change in physical properties and an increase in thermal conductivity. Since the intensity of radiation affects the outlet temperature from the solar collector and there is a direct link between them, this increases the efficiency of the solar collector, especially around 12:30 pm at the optimum efficiency.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46307202","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In earlier designs, the compression-ignition engine units were controlled by means of mechanical elements. They were levers, rods, springs, pawls, cams and others. The quality of such control did not ensure the required repeatability of control parameters in the fuel injection and combustion process. After the introduction of the standards limiting engine emissions of the limited exhaust components, the aforementioned engine control systems were not able to meet the requirements. The mechanical regulation of mechanical systems has been replaced by electronic control systems. It was the development of computer techniques and software that enabled design solutions of control systems for injection and combustion process parameters in engines with sufficient accuracy and repeatability of test results. The modern EDC (Electronic Diesel Control) control system, due to the computing power of microprocessors increased in recent years, enables meeting high requirements of modern Common Rail injection systems. The article presents issues in the area of four thematic levels: the design and modernization of the engine, its operation, diagnostic problems in order to determine reasons of unit failures and bench-top methods for assessing the effectiveness of unit repairs as well as issues concerning alternative fuels .
{"title":"Computer-aided diagnostics of injection and combustion processes in engines equipped with Common Rail fuel injection","authors":"W. Lotko","doi":"10.29354/diag/156388","DOIUrl":"https://doi.org/10.29354/diag/156388","url":null,"abstract":"In earlier designs, the compression-ignition engine units were controlled by means of mechanical elements. They were levers, rods, springs, pawls, cams and others. The quality of such control did not ensure the required repeatability of control parameters in the fuel injection and combustion process. After the introduction of the standards limiting engine emissions of the limited exhaust components, the aforementioned engine control systems were not able to meet the requirements. The mechanical regulation of mechanical systems has been replaced by electronic control systems. It was the development of computer techniques and software that enabled design solutions of control systems for injection and combustion process parameters in engines with sufficient accuracy and repeatability of test results. The modern EDC (Electronic Diesel Control) control system, due to the computing power of microprocessors increased in recent years, enables meeting high requirements of modern Common Rail injection systems. The article presents issues in the area of four thematic levels: the design and modernization of the engine, its operation, diagnostic problems in order to determine reasons of unit failures and bench-top methods for assessing the effectiveness of unit repairs as well as issues concerning alternative fuels .","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42445369","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Orobey, Oleksii Nemchuk, O. Lymarenko, V. Piterska, O. Sherstiuk, I. Lehetska
The work is devoted to the diagnostic issues of the possibilities of technological balancing of steel shaped strand ropes of lifting and transport equipment, which is of great scientific and practical importance, since it will improve their performance. A literature review showed that this topic is practically not covered and only the issues of straightening (bending) strands, which are not effective enough, are considered. The research objective and the problem that must be solved to obtain ropes with better quality characteristics (greater durability and strength) have been formulated. A more accurate expression for the technological torque of shaped strands is presented. The ways of reducing the torque as a harmful factor are indicated. Diagnostics of possible options for technological balancing of ropes was carried out. Rational modes of manufacturing shaped strand ropes have been determined.
{"title":"Diagnostics of stabilization modes of shape strand ropes","authors":"V. Orobey, Oleksii Nemchuk, O. Lymarenko, V. Piterska, O. Sherstiuk, I. Lehetska","doi":"10.29354/diag/156385","DOIUrl":"https://doi.org/10.29354/diag/156385","url":null,"abstract":"The work is devoted to the diagnostic issues of the possibilities of technological balancing of steel shaped strand ropes of lifting and transport equipment, which is of great scientific and practical importance, since it will improve their performance. A literature review showed that this topic is practically not covered and only the issues of straightening (bending) strands, which are not effective enough, are considered. The research objective and the problem that must be solved to obtain ropes with better quality characteristics (greater durability and strength) have been formulated. A more accurate expression for the technological torque of shaped strands is presented. The ways of reducing the torque as a harmful factor are indicated. Diagnostics of possible options for technological balancing of ropes was carried out. Rational modes of manufacturing shaped strand ropes have been determined.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42880365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Maintenance management systems have been operating in the European railway market for many years. However, implementation of the new legal regulations means that the impact of the structured system approach is constantly developing. This new approach focuses on management of the safety critical components (SCC), where the main involved parties are rolling stock manufacturers and the certified entities in charge of maintenance (ECM). The aim of this article is to present how changes to legislation affect development of the maintenance systems, both in the context of their requirements and criteria used, as well as in relation to a requirement of rolling the certification process out to all ECMs, irrespectively of the types of vehicles are used by them. Furthermore, the article focuses on critical safety components and respectively challenges faced by entities on the railway market. Therefore, the process of identifying SCC is described and analysed by providing examples of components that most frequently appear on the list of safety critical components which were developed in the Polish railway market.
{"title":"Safety critical components (SCC) in the maintenance management system for railway vehicle","authors":"Katarzyna Gawlak","doi":"10.29354/diag/156166","DOIUrl":"https://doi.org/10.29354/diag/156166","url":null,"abstract":"Maintenance management systems have been operating in the European railway market for many years. However, implementation of the new legal regulations means that the impact of the structured system approach is constantly developing. This new approach focuses on management of the safety critical components (SCC), where the main involved parties are rolling stock manufacturers and the certified entities in charge of maintenance (ECM). The aim of this article is to present how changes to legislation affect development of the maintenance systems, both in the context of their requirements and criteria used, as well as in relation to a requirement of rolling the certification process out to all ECMs, irrespectively of the types of vehicles are used by them. Furthermore, the article focuses on critical safety components and respectively challenges faced by entities on the railway market. Therefore, the process of identifying SCC is described and analysed by providing examples of components that most frequently appear on the list of safety critical components which were developed in the Polish railway market.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48206447","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Protsenko, Volodymir Malashchenko, S. Kłysz, V. Nastasenko, Mykhaylo Babiy, O. Avramenko
Article deals with safety-overrunning clutches for mechanical transmissions. Modern design of safety-overrunning clutch with grooves sides inclined to semi-coupling radius has been described and researched in the article. It has practical value for creation modular-type machines. On the basis of the theoretic studies, the expressions for obtaining the main specific operation parameters have been proposed: rating torque, beginning and ending operation torques. As the result of the studies, the equations for estimation the clutch main operation characteristics have been received - rating torque exceeding coefficient, coefficients of clutch accuracy and sensitivity. On account of modeling and comparison with clutch where grooves sides are parallel to the radius made a number of important conclusions. The analysis performed demonstrates that clutches with inclined to radius grooves sides in general have higher operation characteristics compared with clutches with parallel to radius grooves sides, particularly higher accuracy coefficient and lower rating torque exceeding coefficient. Obtained results make it possible to recommend for highly loaded large-mass systems clutches with low values of grooves to clutch axe and grooves sides to radius inclination angles, because it provides balls contact with plane sides grooves surfaces and through this allows to decrease contact stresses compared with clutches with grooves sides parallel to radius; allows to provide high load capacity with low rating torque exceeding in overload mode; in clutches with inclined to radius grooves sides friction impact manifests less in operation with high rotation frequency.
{"title":"Load capacity and design parameters of ball-type safety-overrunning clutch with inclined grooves sides","authors":"V. Protsenko, Volodymir Malashchenko, S. Kłysz, V. Nastasenko, Mykhaylo Babiy, O. Avramenko","doi":"10.29354/diag/155837","DOIUrl":"https://doi.org/10.29354/diag/155837","url":null,"abstract":"Article deals with safety-overrunning clutches for mechanical transmissions. Modern design of safety-overrunning clutch with grooves sides inclined to semi-coupling radius has been described and researched in the article. It has practical value for creation modular-type machines. On the basis of the theoretic studies, the expressions for obtaining the main specific operation parameters have been proposed: rating torque, beginning and ending operation torques. As the result of the studies, the equations for estimation the clutch main operation characteristics have been received - rating torque exceeding coefficient, coefficients of clutch accuracy and sensitivity. On account of modeling and comparison with clutch where grooves sides are parallel to the radius made a number of important conclusions. The analysis performed demonstrates that clutches with inclined to radius grooves sides in general have higher operation characteristics compared with clutches with parallel to radius grooves sides, particularly higher accuracy coefficient and lower rating torque exceeding coefficient. Obtained results make it possible to recommend for highly loaded large-mass systems clutches with low values of grooves to clutch axe and grooves sides to radius inclination angles, because it provides balls contact with plane sides grooves surfaces and through this allows to decrease contact stresses compared with clutches with grooves sides parallel to radius; allows to provide high load capacity with low rating torque exceeding in overload mode; in clutches with inclined to radius grooves sides friction impact manifests less in operation with high rotation frequency.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47020829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Polymeric materials and their composites in vehicles have experienced a real boom in the last 30 years, and their application is increasing with a tendency to further growth. The demands on the modern vehicle industry, whether they are trains, planes, or cars, are ever challenging – users want high-performance vehicles, but at the same time they are looking for improved reliability and safety, greater comfort, and low pricing. Changing the proportion of light-weight materials to steel in the construction of new vehicles helps make them lighter and more fuel or electrical energy efficient, resulting in lower greenhouse gas emissions. There is one family of materials that is responding to the challenge of these potentially conflicting demands: polymer materials. This includes relatively pure chemical materials as well as fibre-filled polymer composites.65 This article presents polymeric materials that are used for the production of vehicle parts today
{"title":"The role of lightweight materials in modern transport vehicles","authors":"Ł. Wierzbicki, J. Ćwiek","doi":"10.29354/diag/155850","DOIUrl":"https://doi.org/10.29354/diag/155850","url":null,"abstract":"Polymeric materials and their composites in vehicles have experienced a real boom in the last 30 years, and their application is increasing with a tendency to further growth. The demands on the modern vehicle industry, whether they are trains, planes, or cars, are ever challenging – users want high-performance vehicles, but at the same time they are looking for improved reliability and safety, greater comfort, and low pricing. Changing the proportion of light-weight materials to steel in the construction of new vehicles helps make them lighter and more fuel or electrical energy efficient, resulting in lower greenhouse gas emissions. There is one family of materials that is responding to the challenge of these potentially conflicting demands: polymer materials. This includes relatively pure chemical materials as well as fibre-filled polymer composites.65 This article presents polymeric materials that are used for the production of vehicle parts today","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42953702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Anass Moukhliss, A. Rahmouni, Othman Bouksour, R. Benamar
A discrete model is applied to handle the geometrically nonlinear free and forced vibrations of beams consisting of several different segments whose mechanical characteristics vary in the length direction and contain multiple point masses located at different positions. The beam is presented by an N degree of freedom system (N-Dof). An approach based on Hamilton's principle and spectral analysis is applied, leading to a nonlinear algebraic system. A change of basis from the displacement basis to the modal basis has been performed. The mechanical behavior of the N-Dof system is described in terms of the mass tensor m ij , the linear stiffness tensor k ij , and the nonlinear stiffness tensor b ijkl . The nonlinear vibration frequencies as functions of the amplitude of the associated vibrations in the free and forced cases are predicted using the single mode approach. Once the formulation is established, several applications are considered in this study. Different parameters control the frequency-amplitude dependence curve: the laws that describe the variation of the mechanical properties along the beam length, the number of added masses, the magnitude of excitation force, and so on. Comparisons are made to show the reliability and applicability of this model to non-uniform and non-homogeneous beams in free and forced cases.
{"title":"A discrete model for geometrically nonlinear free and forced vibrations of stepped and continuously segmented Euler-Bernoulli AFG beams (SAFGB) carrying point masses","authors":"Anass Moukhliss, A. Rahmouni, Othman Bouksour, R. Benamar","doi":"10.29354/diag/155191","DOIUrl":"https://doi.org/10.29354/diag/155191","url":null,"abstract":"A discrete model is applied to handle the geometrically nonlinear free and forced vibrations of beams consisting of several different segments whose mechanical characteristics vary in the length direction and contain multiple point masses located at different positions. The beam is presented by an N degree of freedom system (N-Dof). An approach based on Hamilton's principle and spectral analysis is applied, leading to a nonlinear algebraic system. A change of basis from the displacement basis to the modal basis has been performed. The mechanical behavior of the N-Dof system is described in terms of the mass tensor m ij , the linear stiffness tensor k ij , and the nonlinear stiffness tensor b ijkl . The nonlinear vibration frequencies as functions of the amplitude of the associated vibrations in the free and forced cases are predicted using the single mode approach. Once the formulation is established, several applications are considered in this study. Different parameters control the frequency-amplitude dependence curve: the laws that describe the variation of the mechanical properties along the beam length, the number of added masses, the magnitude of excitation force, and so on. Comparisons are made to show the reliability and applicability of this model to non-uniform and non-homogeneous beams in free and forced cases.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2022-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42410572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}