This paper presents how forces are perceived in a racing simulator based on a Stewart Platform. By retrieving calculated forces in a racing game by its physics engine and comparing them to real-life measurements during the platforms motions it is possible to evaluate the platforms immersiveness. Virtual values extracted from the game engine are deemed satisfactory to their real life counterparts and serve as a baseline. In order to evaluate forces created by the simulator, a lap around a virtual test track is recorded and played back while an accelerometer and gyroscope record its movements. Overall, accelerations recorded in the direction of X and Y axis along with angular speed of rotation around the aforementioned those axis. To accurately comparing every derived force, the recorded virtual lap is divided into sections representing the five most common manoeuvres during racing. These comparisons serve as an evaluation method to measure the immersiveness of the simulator.
{"title":"Evaluation of forces in a racing simulator based on a Stewart platform","authors":"Jakub Tytuła, Arnold Zaremba, Szymon Nitkiewicz","doi":"10.29354/diag/171729","DOIUrl":"https://doi.org/10.29354/diag/171729","url":null,"abstract":"This paper presents how forces are perceived in a racing simulator based on a Stewart Platform. By retrieving calculated forces in a racing game by its physics engine and comparing them to real-life measurements during the platforms motions it is possible to evaluate the platforms immersiveness. Virtual values extracted from the game engine are deemed satisfactory to their real life counterparts and serve as a baseline. In order to evaluate forces created by the simulator, a lap around a virtual test track is recorded and played back while an accelerometer and gyroscope record its movements. Overall, accelerations recorded in the direction of X and Y axis along with angular speed of rotation around the aforementioned those axis. To accurately comparing every derived force, the recorded virtual lap is divided into sections representing the five most common manoeuvres during racing. These comparisons serve as an evaluation method to measure the immersiveness of the simulator.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":"9 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135498981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ooussama Belkacem Djaidja, H. Mekki, Samir Zeghlache, A. Djerioui
This work presents a new Fault Tolerant Control approach for a doubly fed induction generator using Iterative Learning Control when the fault occurs. The goal of this research is to apply the proposed ILC controller in conjunction with vector control for doubly fed induction generator to enhance its reliability and availability under broken rotor bars. However, the performances of classical VC control are often characterized by their inability to deal with the effects of faults. To overcome these drawbacks, a combination of VC control and iterative learning control is described. The input control signal of the VC controller is gradually regulated by the ILC harmonic compensator in order to eliminate the faults effect. The improvement of this approach related to active and reactive power ripples overshoot and response time have been explained. Which active and reactive power response time have been reduced more than 84% and 87.5 % respectively. The active and reactive power overshoots have been reduced about 45% and 35% respectively. The obtained results emphasize the efficiency and the ability of the proposed FTC to enhance the power quality in faulty condition.
{"title":"A new improved control for power quality enhancement in double fed induction generator using iterative learning control","authors":"Ooussama Belkacem Djaidja, H. Mekki, Samir Zeghlache, A. Djerioui","doi":"10.29354/diag/169462","DOIUrl":"https://doi.org/10.29354/diag/169462","url":null,"abstract":"This work presents a new Fault Tolerant Control approach for a doubly fed induction generator using Iterative Learning Control when the fault occurs. The goal of this research is to apply the proposed ILC controller in conjunction with vector control for doubly fed induction generator to enhance its reliability and availability under broken rotor bars. However, the performances of classical VC control are often characterized by their inability to deal with the effects of faults. To overcome these drawbacks, a combination of VC control and iterative learning control is described. The input control signal of the VC controller is gradually regulated by the ILC harmonic compensator in order to eliminate the faults effect. The improvement of this approach related to active and reactive power ripples overshoot and response time have been explained. Which active and reactive power response time have been reduced more than 84% and 87.5 % respectively. The active and reactive power overshoots have been reduced about 45% and 35% respectively. The obtained results emphasize the efficiency and the ability of the proposed FTC to enhance the power quality in faulty condition.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43567425","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In this, research paper, we analyzed different radar cross-sections and models in Computer Simulation Technology (CST) software and tell in advance the RCS of the layer. In this variation exploration and representation of antenna layout in CST, we make a decision on various polarized plane wave angles. The research results may influence aircraft and any vehicle building, connecting with the incorporation of magnetic and electrical part power going return, therefore the polarization of plane waves, the use of different materials, aircraft, and any vehicle size. For this article, a microstrip antenna design with a reduced monostatic (RCS) with changing angle is described. Radar recognizes a reflected signal from this target due to microwave sensors' capacity to adequately light it with energy. The research used several both basic and sophisticated targets at an unaccompanied median rate of occurrence. Two categories of target forms, basic and complicated, made of iron material, give an appearance for assessing RCS in two distinct systems, Monostatic and Bistatic, with a range of angles.
{"title":"The analysis of the different modeling in CST for predicting designs of a Monostatic and Bistatic RCS","authors":"A. Bekimetov, Madina Yangibaeva","doi":"10.29354/diag/169423","DOIUrl":"https://doi.org/10.29354/diag/169423","url":null,"abstract":"In this, research paper, we analyzed different radar cross-sections and models in Computer Simulation Technology (CST) software and tell in advance the RCS of the layer. In this variation exploration and representation of antenna layout in CST, we make a decision on various polarized plane wave angles. The research results may influence aircraft and any vehicle building, connecting with the incorporation of magnetic and electrical part power going return, therefore the polarization of plane waves, the use of different materials, aircraft, and any vehicle size. For this article, a microstrip antenna design with a reduced monostatic (RCS) with changing angle is described. Radar recognizes a reflected signal from this target due to microwave sensors' capacity to adequately light it with energy. The research used several both basic and sophisticated targets at an unaccompanied median rate of occurrence. Two categories of target forms, basic and complicated, made of iron material, give an appearance for assessing RCS in two distinct systems, Monostatic and Bistatic, with a range of angles.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-08-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47212128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The requirements of Industry 4.0 determine the necessity to change thinking in the field of production development, adopted management methods and modernisation of production resources. When planning the implementation of a new production system (or retrofit), it is possible to use the RAMI 4.0 reference model, which was published in April 2015 by the VDI/VDE Society Measurement and Automatic Control. A key aspect of modern industrial systems is connectivity and trouble-free data exchange. In the case of data exchange, the basic element holding back the development of Industry 4.0 is the lack of standardisation, as well as the lack of interoperability between IIoT network nodes. Modern IIoT applications require high network throughput, low latency and reliability. In view of such guidelines, efficient communication standards and specialised equipment are required. Edge Computing is one of the most important technology trends of the 21st century that will play a key role in the IIoT market. Due to the diversity of available technologies and solutions, no universal standards have been developed to date that can be referred to when planning, building and implementing new applications. The article presents an overview of the most popular industrial communication protocols and their systematisation in terms of meet the requirements for IIoT devices.
{"title":"The performance of IIoT communication standards","authors":"Maciej Walczak, M. Hetmanczyk","doi":"10.29354/diag/169033","DOIUrl":"https://doi.org/10.29354/diag/169033","url":null,"abstract":"The requirements of Industry 4.0 determine the necessity to change thinking in the field of production development, adopted management methods and modernisation of production resources. When planning the implementation of a new production system (or retrofit), it is possible to use the RAMI 4.0 reference model, which was published in April 2015 by the VDI/VDE Society Measurement and Automatic Control. A key aspect of modern industrial systems is connectivity and trouble-free data exchange. In the case of data exchange, the basic element holding back the development of Industry 4.0 is the lack of standardisation, as well as the lack of interoperability between IIoT network nodes. Modern IIoT applications require high network throughput, low latency and reliability. In view of such guidelines, efficient communication standards and specialised equipment are required. Edge Computing is one of the most important technology trends of the 21st century that will play a key role in the IIoT market. Due to the diversity of available technologies and solutions, no universal standards have been developed to date that can be referred to when planning, building and implementing new applications. The article presents an overview of the most popular industrial communication protocols and their systematisation in terms of meet the requirements for IIoT devices.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":"1 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41458859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The article entitled Monitoring of engine oil degradation and possibilities of life prediction in combustion engine deals with chronological monitoring of engine oil on the monitored object - a passenger car with a petrol engine. The research concerns the basic physico-chemical parameters of motor oil, where it discusses the operational factors that contribute to its degradation. The theoretical part of the thesis deals with the analysis of the current state of the problem in the chemical composition of engine oils, analysis of the current state of contact indicators of oil quality in lubrication systems of internal combustion engines and analysis of contactless systems "live" evaluating engine oil quality during vehicle operation. The research part of the work includes the collection of operational data, laboratory analysis of oil samples and statistical processing of the results of tribodiagnostic monitoring. This article discusses the 1st phase of extensive long-term research in the field of tribology and operation of the Mitsubishi Lancer 1.5 Inform motor vehicle
{"title":"Monitoring of engine oil degradation and possiblities of life predictions in combustion engine","authors":"Pavol Lukášik","doi":"10.29354/diag/169032","DOIUrl":"https://doi.org/10.29354/diag/169032","url":null,"abstract":"The article entitled Monitoring of engine oil degradation and possibilities of life prediction in combustion engine deals with chronological monitoring of engine oil on the monitored object - a passenger car with a petrol engine. The research concerns the basic physico-chemical parameters of motor oil, where it discusses the operational factors that contribute to its degradation. The theoretical part of the thesis deals with the analysis of the current state of the problem in the chemical composition of engine oils, analysis of the current state of contact indicators of oil quality in lubrication systems of internal combustion engines and analysis of contactless systems \"live\" evaluating engine oil quality during vehicle operation. The research part of the work includes the collection of operational data, laboratory analysis of oil samples and statistical processing of the results of tribodiagnostic monitoring. This article discusses the 1st phase of extensive long-term research in the field of tribology and operation of the Mitsubishi Lancer 1.5 Inform motor vehicle","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49102548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
M. Steuer, Martin Krzykawski, D. Simiński, Wongelawit Chema, R. Burdzik
Detection of the current location of rail vehicles in the railway infrastructure network determines the safety, efficiency and reliability of rail transport. In addition, it indirectly affects the safety at rail-road crossings, i.e. also the BRD (Road Safety). In terms of efficiency and reliability of transport systems, the ability to detect a moving vehicle can improve the effective capacity of railway lines. As in the case of technical diagnostics, effective recognition of the current state of the transport network determines the efficiency of the transport system. The development of railways, with particular emphasis on high-speed railways, makes it necessary to modernize and improve railway traffic control devices and systems. A special area of development, ensuring the safe and effective use of rail transport, is the detection and location of rail vehicles moving on the railway infrastructure. The ability to determine the precise location of a rail vehicle is a key element in the reliable operation of rail transport. Therefore, in the field of devices and systems for the detection and location of rail vehicles, many studies and analyzes are carried out to develop existing or create new solutions dedicated to positioning rail vehicles.
{"title":"Train detection methods as the foundation of positioning systems of railroad traffic control","authors":"M. Steuer, Martin Krzykawski, D. Simiński, Wongelawit Chema, R. Burdzik","doi":"10.29354/diag/168655","DOIUrl":"https://doi.org/10.29354/diag/168655","url":null,"abstract":"Detection of the current location of rail vehicles in the railway infrastructure network determines the safety, efficiency and reliability of rail transport. In addition, it indirectly affects the safety at rail-road crossings, i.e. also the BRD (Road Safety). In terms of efficiency and reliability of transport systems, the ability to detect a moving vehicle can improve the effective capacity of railway lines. As in the case of technical diagnostics, effective recognition of the current state of the transport network determines the efficiency of the transport system. The development of railways, with particular emphasis on high-speed railways, makes it necessary to modernize and improve railway traffic control devices and systems. A special area of development, ensuring the safe and effective use of rail transport, is the detection and location of rail vehicles moving on the railway infrastructure. The ability to determine the precise location of a rail vehicle is a key element in the reliable operation of rail transport. Therefore, in the field of devices and systems for the detection and location of rail vehicles, many studies and analyzes are carried out to develop existing or create new solutions dedicated to positioning rail vehicles.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46150803","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recent years have witnessed increased attention towards vehicular communications as a part of an overall modernization trend towards the emergence of a reliable, less human-dependent, and more efficient Intelligent Transportation System (ITS) conjugated with the rapid growth of smart cities. ITS imposes better safety and security through the employment of Autonomous Vehicles (AV) to reduce the possibility of accidents caused due to human intervention. The application of autonomous vehicles to the traditional Vehicular Ad-hoc Networks (VANET) has paved the way for the development of a newer networking paradigm called the Internet of Autonomous Vehicles (IoAV). IoAV enjoys several advantages over VANET in terms of robustness, security, and scalability. However, due to the gradual transition from existing vehicles to autonomous ones, both types may be going to coexist together in the same environment. Therefore, a reliable, fast responsive, and flexible infrastructure is necessary to serve both kinds in such a hybrid setting until the transition to all AV is completed. In this context, this paper represents a concise review of the architecture of IoAV infrastructure, its communication modules, message dissemination, protocols and services that comprise the main body of the IoAV framework, in addition to further remarks and research challenges.
{"title":"Internet of autonomous vehicles communication infrastructure: A short review","authors":"Mustafa Haitham Alhabib, Qutaiba Ibrahim Ali","doi":"10.29354/diag/168310","DOIUrl":"https://doi.org/10.29354/diag/168310","url":null,"abstract":"Recent years have witnessed increased attention towards vehicular communications as a part of an overall modernization trend towards the emergence of a reliable, less human-dependent, and more efficient Intelligent Transportation System (ITS) conjugated with the rapid growth of smart cities. ITS imposes better safety and security through the employment of Autonomous Vehicles (AV) to reduce the possibility of accidents caused due to human intervention. The application of autonomous vehicles to the traditional Vehicular Ad-hoc Networks (VANET) has paved the way for the development of a newer networking paradigm called the Internet of Autonomous Vehicles (IoAV). IoAV enjoys several advantages over VANET in terms of robustness, security, and scalability. However, due to the gradual transition from existing vehicles to autonomous ones, both types may be going to coexist together in the same environment. Therefore, a reliable, fast responsive, and flexible infrastructure is necessary to serve both kinds in such a hybrid setting until the transition to all AV is completed. In this context, this paper represents a concise review of the architecture of IoAV infrastructure, its communication modules, message dissemination, protocols and services that comprise the main body of the IoAV framework, in addition to further remarks and research challenges.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46297708","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The control of the doubly-fed induction motor is a complex operation because of this motor characterised by a non-linear multivariable dynamics, having settings that change over time and a significant link between the mechanical component and magnetic behavior (flux) (speed and couple). This article then proposes a new strategy of a robust control of this motor, which is decoupled due to the stator flux’s direction. The proposed control is integrated with the backstepping control which based on Lyapunov theory; this approach consists in constructively designing a control law of nonlinear systems by considering some state variables as being virtual commands, and the important branch of artificial intelligence type-2 fuzzy logic. The hybrid control backstepping-fuzzy logic consists in replacing the regulators applied to the backstepping control by regulators based on type-2 fuzzy logic. This control will be evaluated by numerous simulations where there is a parametric and non-parametric variation.
{"title":"Speed control of doubly fed induction motor using backstepping control with interval type-2 fuzzy controller","authors":"A. Herizi, R. Rouabhi, A. Zemmit","doi":"10.29354/diag/166460","DOIUrl":"https://doi.org/10.29354/diag/166460","url":null,"abstract":"The control of the doubly-fed induction motor is a complex operation because of this motor characterised by a non-linear multivariable dynamics, having settings that change over time and a significant link between the mechanical component and magnetic behavior (flux) (speed and couple). This article then proposes a new strategy of a robust control of this motor, which is decoupled due to the stator flux’s direction. The proposed control is integrated with the backstepping control which based on Lyapunov theory; this approach consists in constructively designing a control law of nonlinear systems by considering some state variables as being virtual commands, and the important branch of artificial intelligence type-2 fuzzy logic. The hybrid control backstepping-fuzzy logic consists in replacing the regulators applied to the backstepping control by regulators based on type-2 fuzzy logic. This control will be evaluated by numerous simulations where there is a parametric and non-parametric variation.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43595275","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Vibration control is very important for high-speed rotors. Oil film damping is considered an effective vibration-damping method, especially for long shafts in gas turbines, ships, and other high-speed rotating equipment. The existing groove in the internal surface of the tilt bearing increases the amount of oil that flows through the bearing; this is more effective in suppressing the vibration of the rotor system carried by the plain bearing. In order to suppress the vibration of the rotor system, which is supported by sliding bearings, a different groove-shaped oil flow (GSOF) is studied and analysed in this paper. A different shape of grooves in bearings was set up and measured to study the vibration-damping effect of the flow oil shape with GSOF. ANSYS software presents significant benefits to engage Fluent for oil flow with Transient structural for vibration measurements. This paper uses these terms to perform the simulation numerically to explore the groove-shaped damper's damping effect under the rotor system. The study identified three enhancements of vibration and settling time. First, the circular groove showed a 35.71% reduction in amplitude and 10% increase in stilling time; the next one is the circular groove which reduced the amplitude by 42.85% and the settling time by 0%. The third modification was the inclined groove which reduced the amplitude by 42.85% and the settling time by 12%. The last one was the triple-inclined groove, which reduced the amplitude and settling time by 57.14% and 20%, respectively.
{"title":"Numerical investigation on the vibration reduction of rotating shaft using different groove shapes of tilt bearing","authors":"Ahmed Imad Abbood, F. A. Abdulla","doi":"10.29354/diag/168084","DOIUrl":"https://doi.org/10.29354/diag/168084","url":null,"abstract":"Vibration control is very important for high-speed rotors. Oil film damping is considered an effective vibration-damping method, especially for long shafts in gas turbines, ships, and other high-speed rotating equipment. The existing groove in the internal surface of the tilt bearing increases the amount of oil that flows through the bearing; this is more effective in suppressing the vibration of the rotor system carried by the plain bearing. In order to suppress the vibration of the rotor system, which is supported by sliding bearings, a different groove-shaped oil flow (GSOF) is studied and analysed in this paper. A different shape of grooves in bearings was set up and measured to study the vibration-damping effect of the flow oil shape with GSOF. ANSYS software presents significant benefits to engage Fluent for oil flow with Transient structural for vibration measurements. This paper uses these terms to perform the simulation numerically to explore the groove-shaped damper's damping effect under the rotor system. The study identified three enhancements of vibration and settling time. First, the circular groove showed a 35.71% reduction in amplitude and 10% increase in stilling time; the next one is the circular groove which reduced the amplitude by 42.85% and the settling time by 0%. The third modification was the inclined groove which reduced the amplitude by 42.85% and the settling time by 12%. The last one was the triple-inclined groove, which reduced the amplitude and settling time by 57.14% and 20%, respectively.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42837974","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mohamed Ben Rahmoune, Abdelhamid IRATNI, Amel Sabrine Amari, A. Hafaifa, I. Colak
Solar energy has become one of the most important renewable energies in the world. With the increasing installation of power plants in the world, the supervision and diagnosis of photovoltaic systems have become an important challenge with the increased occurrence of various internal and external faults. Indeed, this work proposes a new solar power plant diagnosis based on the artificial neural network approach. The developed model was to improve the performance and reliability of the power plant located in Tamanrasset, Algeria, which is subjected to varying weather conditions in terms of radiation and ambient temperature. By using the real data collected from the studied system, this approach allow to increase electricity production and address any issues that may arise quickly, ensuring uninterrupted power supply for the region. Neural networks have shown interesting results with high accuracy. This fault diagnosis approach allows to determine the time of occurrence of a fault affecting the examined PV system. Also, allow an early detection of failures and degradation of the system, which contributes to improving the productivity of this photovoltaic installation. With a significant reduction in the time needed to repair the damage caused by these faults and improve the reliability and continuity of the electrical energy production service.
{"title":"Fault detection and diagnosis of photovoltaic system based on neural networks approach","authors":"Mohamed Ben Rahmoune, Abdelhamid IRATNI, Amel Sabrine Amari, A. Hafaifa, I. Colak","doi":"10.29354/diag/166428","DOIUrl":"https://doi.org/10.29354/diag/166428","url":null,"abstract":"Solar energy has become one of the most important renewable energies in the world. With the increasing installation of power plants in the world, the supervision and diagnosis of photovoltaic systems have become an important challenge with the increased occurrence of various internal and external faults. Indeed, this work proposes a new solar power plant diagnosis based on the artificial neural network approach. The developed model was to improve the performance and reliability of the power plant located in Tamanrasset, Algeria, which is subjected to varying weather conditions in terms of radiation and ambient temperature. By using the real data collected from the studied system, this approach allow to increase electricity production and address any issues that may arise quickly, ensuring uninterrupted power supply for the region. Neural networks have shown interesting results with high accuracy. This fault diagnosis approach allows to determine the time of occurrence of a fault affecting the examined PV system. Also, allow an early detection of failures and degradation of the system, which contributes to improving the productivity of this photovoltaic installation. With a significant reduction in the time needed to repair the damage caused by these faults and improve the reliability and continuity of the electrical energy production service.","PeriodicalId":52164,"journal":{"name":"Diagnostyka","volume":" ","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-06-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45438368","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}