Pub Date : 2024-07-01DOI: 10.1016/j.omx.2024.100343
Sunyuezi Chen , Ziwei Lu , Yongfu Liu , Ruiyang Li , Peng Sun , Zhaohua Luo , Jun Jiang
Far-red (FR) photosensitive pigment (PFR) is vital for plant photomorphogenesis. Phosphor-converted (pc) LEDs are the next-generation FR light devices. How to obtain FR-emitting phosphors with a good quantum efficiency, suitable photoluminescence and high thermal stability is still difficult. Herein, we optimize the Y3Ga5O12:Cr3+ FR phosphor, which has an emission peak at 711 nm and a full width at half maximum of 74 nm, closing to the PFR absorption band. By adopting the solid-state sintering technology, the internal quantum efficiency reaches 85.5 %, more than 1.5 times higher than that reported by the liquid reaction (55 %). Furthermore, the external quantum efficiency reaches as high as 33.1 %, indicating the promising application in FR-LEDs.
{"title":"Synthesis, structure and photoluminescent properties of far-red Y3Ga5O12:Cr3+ phosphors","authors":"Sunyuezi Chen , Ziwei Lu , Yongfu Liu , Ruiyang Li , Peng Sun , Zhaohua Luo , Jun Jiang","doi":"10.1016/j.omx.2024.100343","DOIUrl":"10.1016/j.omx.2024.100343","url":null,"abstract":"<div><p>Far-red (FR) photosensitive pigment (P<sub>FR</sub>) is vital for plant photomorphogenesis. Phosphor-converted (pc) LEDs are the next-generation FR light devices. How to obtain FR-emitting phosphors with a good quantum efficiency, suitable photoluminescence and high thermal stability is still difficult. Herein, we optimize the Y<sub>3</sub>Ga<sub>5</sub>O<sub>12</sub>:Cr<sup>3+</sup> FR phosphor, which has an emission peak at 711 nm and a full width at half maximum of 74 nm, closing to the P<sub>FR</sub> absorption band. By adopting the solid-state sintering technology, the internal quantum efficiency reaches 85.5 %, more than 1.5 times higher than that reported by the liquid reaction (55 %). Furthermore, the external quantum efficiency reaches as high as 33.1 %, indicating the promising application in FR-LEDs.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"23 ","pages":"Article 100343"},"PeriodicalIF":0.0,"publicationDate":"2024-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259014782400055X/pdfft?md5=84c9b0616736044d17a5b93cabcd2187&pid=1-s2.0-S259014782400055X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141847818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.omx.2024.100316
Pieter Dorenbos
Thermoluminescence (TL) often involves the liberation of a charge carrier (an electron or a hole) from a charge carrier trapping centre into the conduction band (CB) or the valence band (VB) with subsequent recombination with a counter charge carrier at a luminescence centre. TL glow peak analysis can provide the energy needed to liberate such charge carrier which then defines the location of the charge transition levels (CTL) of the carrier trapping centres below the CB-bottom or above the VB-top. The temperature at the maximum of the TL glow peak changes 3–4 K per 0.01 eV change in thus providing an extremely sensitive probe of energy changes in CTLs. This work collects and reviews data on glow peaks due to electron or hole release from lanthanide dopants in 36 different inorganic compounds. To compare results from different literature sources, data were always re-analysed using the same method that is solely based on the temperature at the maximum of the glow peak. The changes in along the lanthanides series provides insight at the sub 0.1 eV level on the changes in CTL energies. We will use a compound-dependent parameter to account for the nephelauxetic effect and a compound dependent parameter to account for lattice relaxation around the lanthanide. Together with information from lanthanide luminescence spectroscopy, the vacuum referred binding energy (VRBE) diagram will be constructed for each compound. The lanthanide electron or hole trap depth read from the VRBE scheme will be compared with that derived from the TL glow peak. Surprisingly good agreement will be demonstrated.
{"title":"Comparing thermoluminescence data on lanthanides in 36 compounds with predictions from vacuum referred binding energy diagrams","authors":"Pieter Dorenbos","doi":"10.1016/j.omx.2024.100316","DOIUrl":"10.1016/j.omx.2024.100316","url":null,"abstract":"<div><p>Thermoluminescence (TL) often involves the liberation of a charge carrier (an electron or a hole) from a charge carrier trapping centre into the conduction band (CB) or the valence band (VB) with subsequent recombination with a counter charge carrier at a luminescence centre. TL glow peak analysis can provide the energy <span><math><mrow><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span> needed to liberate such charge carrier which then defines the location of the charge transition levels (CTL) of the carrier trapping centres below the CB-bottom or above the VB-top. The temperature at the maximum of the TL glow peak changes 3–4 K per 0.01 eV change in <span><math><mrow><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span> thus providing an extremely sensitive probe of energy changes in CTLs. This work collects and reviews data on glow peaks due to electron or hole release from lanthanide dopants in 36 different inorganic compounds. To compare results from different literature sources, data were always re-analysed using the same method that is solely based on the temperature at the maximum of the glow peak. The changes in <span><math><mrow><mi>Δ</mi><msub><mrow><mi>E</mi></mrow><mrow><mi>t</mi></mrow></msub></mrow></math></span> along the lanthanides series provides insight at the sub 0.1 eV level on the changes in CTL energies. We will use a compound-dependent parameter to account for the nephelauxetic effect and a compound dependent parameter to account for lattice relaxation around the lanthanide. Together with information from lanthanide luminescence spectroscopy, the vacuum referred binding energy (VRBE) diagram will be constructed for each compound. The lanthanide electron or hole trap depth read from the VRBE scheme will be compared with that derived from the TL glow peak. Surprisingly good agreement will be demonstrated.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"22 ","pages":"Article 100316"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147824000287/pdfft?md5=aab3062c038972ade7b03bbc63e040c5&pid=1-s2.0-S2590147824000287-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140785143","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.omx.2024.100329
A. Markovskyi , V. Gorbenko , S. Nizhankovskiy , T. Zorenko , A. Fedorov , Yu Zorenko
Thermal management poses a significant challenge for conventional phosphor-converted white LEDs (pc-WLEDs), thereby affecting their overall efficiency. Single crystal phosphors (SCPs), such as Y3Al5O12:Ce (YAG:Ce), exhibit enhanced efficiency and thermal stability in comparison to conventional powder phosphors. The garnet Lu3Al5O12:Ce (LuAG) has been characterized as a green phosphor with even higher than YAG:Ce temperature stability, making it suitable for use in high-power WLEDs. However, there are some difficulties in obtaining suitable components with longer emission wavelengths in LuAG:Ce phosphors. As a way to solve this issue, the article suggests the growth of LuAG:Ce single crystalline films onto YAG:Ce substrates, thereby producing a composite color converter that possesses adjustable parameters. This paper presents a comprehensive analysis of the fabrication process as well as the characteristics of a two-layered LuAG:Ce film/YAG:Ce substrate composite color converter. The results of investigations of the structural, luminescence and photoconversion characteristics of composite color converters were presented as well. This study includes also consideration of the effect of varying LuAG:Ce film thicknesses and concentrations of Ce3+ in YAG:Ce substrates on photoconversion characteristics of composite converters.
{"title":"Two-layered Lu3Al5O12:Ce/ Y3Al5O12:Ce composite phosphor converter for white light-emitting diode devices","authors":"A. Markovskyi , V. Gorbenko , S. Nizhankovskiy , T. Zorenko , A. Fedorov , Yu Zorenko","doi":"10.1016/j.omx.2024.100329","DOIUrl":"https://doi.org/10.1016/j.omx.2024.100329","url":null,"abstract":"<div><p>Thermal management poses a significant challenge for conventional phosphor-converted white LEDs (pc-WLEDs), thereby affecting their overall efficiency. Single crystal phosphors (SCPs), such as Y<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>:Ce (YAG:Ce), exhibit enhanced efficiency and thermal stability in comparison to conventional powder phosphors. The garnet Lu<sub>3</sub>Al<sub>5</sub>O<sub>12</sub>:Ce (LuAG) has been characterized as a green phosphor with even higher than YAG:Ce temperature stability, making it suitable for use in high-power WLEDs. However, there are some difficulties in obtaining suitable components with longer emission wavelengths in LuAG:Ce phosphors. As a way to solve this issue, the article suggests the growth of LuAG:Ce single crystalline films onto YAG:Ce substrates, thereby producing a composite color converter that possesses adjustable parameters. This paper presents a comprehensive analysis of the fabrication process as well as the characteristics of a two-layered LuAG:Ce film/YAG:Ce substrate composite color converter. The results of investigations of the structural, luminescence and photoconversion characteristics of composite color converters were presented as well. This study includes also consideration of the effect of varying LuAG:Ce film thicknesses and concentrations of Ce<sup>3+</sup> in YAG:Ce substrates on photoconversion characteristics of composite converters.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"22 ","pages":"Article 100329"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S259014782400041X/pdfft?md5=b14a490e40a9ab5be2c237bb74f466c0&pid=1-s2.0-S259014782400041X-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141240032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.omx.2024.100325
Matheus C.S. Nunes , Neilo M. Trindade , Elisabeth M. Yoshimura , Makaiko L. Chithambo
We report the optically stimulated luminescence (OSL) of natural alexandrite (BeAl2O4:Cr3+) from Brazil. Luminescence was stimulated using 470 nm blue, 525 nm green and 850 nm infrared light. The dose-response of the OSL is linear in all cases, a desirable feature of dosimetry applications. The influence of preheating on OSL suggests that electron traps associated with the thermoluminescence of alexandrite contribute to the OSL. Mechanisms responsible for luminescence in alexandrite have been briefly considered.
{"title":"Optically stimulated luminescence of alexandrite","authors":"Matheus C.S. Nunes , Neilo M. Trindade , Elisabeth M. Yoshimura , Makaiko L. Chithambo","doi":"10.1016/j.omx.2024.100325","DOIUrl":"https://doi.org/10.1016/j.omx.2024.100325","url":null,"abstract":"<div><p>We report the optically stimulated luminescence (OSL) of natural alexandrite (BeAl<sub>2</sub>O<sub>4</sub>:Cr<sup>3+</sup>) from Brazil. Luminescence was stimulated using 470 nm blue, 525 nm green and 850 nm infrared light. The dose-response of the OSL is linear in all cases, a desirable feature of dosimetry applications. The influence of preheating on OSL suggests that electron traps associated with the thermoluminescence of alexandrite contribute to the OSL. Mechanisms responsible for luminescence in alexandrite have been briefly considered.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"22 ","pages":"Article 100325"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147824000378/pdfft?md5=cc60d51332407727e9dcc0bcaace38fd&pid=1-s2.0-S2590147824000378-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140952265","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.omx.2024.100331
G. Gordillo , O.G. Torres , C. Alvarez , J.I. Clavijo
The influence of the synthesis method on both microstructure and morphological and electronic properties of CH3NH3PbI3 (MAPbI3) films prepared by different methods were investigated experimentally by Urbach energy and scanning electron microscopy (SEM) measurements, as well as computationally by Density Functional Theory (DFT) calculations.
This study was performed with samples prepared by three different methods including one step anti-solvent assisted spin coating and two-steps new approach that use a route in which in a first step a layer of the inorganic precursor (PbI2) is deposited by conventional thermal evaporation and then in a second step the MAPbI3 compound is formed through a reaction of the PbI2 layer deposited in the first stage and a layer of the organic precursor methylammonium iodide (MAI) deposited by close spaced sublimation (CSS) and also by dipping in a MAI solution.
{"title":"Influence of the synthesis method on structural, morphological and electronic properties of MAPbI3 thin films prepared by three different routes","authors":"G. Gordillo , O.G. Torres , C. Alvarez , J.I. Clavijo","doi":"10.1016/j.omx.2024.100331","DOIUrl":"https://doi.org/10.1016/j.omx.2024.100331","url":null,"abstract":"<div><p>The influence of the synthesis method on both microstructure and morphological and electronic properties of CH<sub>3</sub>NH<sub>3</sub>PbI<sub>3</sub> (MAPbI<sub>3</sub>) films prepared by different methods were investigated experimentally by Urbach energy and scanning electron microscopy (SEM) measurements, as well as computationally by Density Functional Theory (DFT) calculations.</p><p>This study was performed with samples prepared by three different methods including one step anti-solvent assisted spin coating and two-steps new approach that use a route in which in a first step a layer of the inorganic precursor (PbI<sub>2</sub>) is deposited by conventional thermal evaporation and then in a second step the MAPbI<sub>3</sub> compound is formed through a reaction of the PbI<sub>2</sub> layer deposited in the first stage and a layer of the organic precursor methylammonium iodide (MAI) deposited by close spaced sublimation (CSS) and also by dipping in a MAI solution.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"22 ","pages":"Article 100331"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147824000433/pdfft?md5=02625b92f7a25e476af5bb1346de4be6&pid=1-s2.0-S2590147824000433-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141325228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.omx.2024.100320
Júlia C. Peixoto , Rafael V. Perrella , Paulo C. de Sousa Filho , Henrique S. Oliveira , Kisla P.F. Siqueira
Improvement of luminescent thermometers requires not only the search for high-sensitivity thermometric outputs, but also availability of multiple thermometric parameters affording a combined and reliable response. We hereby detail for the first time the luminescence of Eu3+ in manganese tungstate (Eu3+:MnWO4) solids obtained by coprecipitation under ultraviolet excitation and how this material provided an optical thermometric response from 77 K to 373 K via excitation and emission spectra. Processing of up to five thermometric parameters, namely bandwidths, band positions, band shifts and luminescence intensity ratios, resulted in relative thermal sensitivities as high as 1.56% K−1 and temperature uncertainties between 0.01 and 2 K depending on the choice of the spectral parameter. In addition, we demonstrate that Eu3+:MnWO4 also act as a qualitative colorimetric thermosensor because of progressive change of emission color to greenish-yellow to bluish-green upon heating under UV excitation. Therefore, our results show that the combination of broadband tungstate emissions with the 4f-4f narrow emissions of Eu3+ is an effective approach to achieve a multiparametric luminescent thermal response via emission, excitation and visual observation, which makes Eu3+:MnWO4 a promising candidate for advanced thermometry applications.
要改进发光温度计,不仅需要寻找高灵敏度的测温输出,还需要提供多种测温参数,以获得综合可靠的响应。我们在此首次详细介绍了钨酸锰(Eu3+:MnWO4)固体中 Eu3+ 在紫外线激发下通过共沉淀获得的发光,以及这种材料如何通过激发和发射光谱提供从 77 K 到 373 K 的光学测温响应。对多达五个测温参数(即带宽、带位置、带位移和发光强度比)进行处理后,相对热敏度高达 1.56% K-1,温度不确定性介于 0.01 和 2 K 之间,具体取决于光谱参数的选择。此外,我们还证明了 Eu3+:MnWO4 还可作为定性比色热传感器,因为在紫外线激发下加热时,其发射颜色会逐渐由黄绿色变为蓝绿色。因此,我们的研究结果表明,将宽带钨酸盐发射与 Eu3+ 的 4f-4f 窄发射相结合是通过发射、激发和视觉观察实现多参数发光热响应的有效方法,这使得 Eu3+:MnWO4 有希望成为先进测温应用的候选材料。
{"title":"Eu3+-doped manganese tungstate for multiparametric and colorimetric luminescence thermometry","authors":"Júlia C. Peixoto , Rafael V. Perrella , Paulo C. de Sousa Filho , Henrique S. Oliveira , Kisla P.F. Siqueira","doi":"10.1016/j.omx.2024.100320","DOIUrl":"10.1016/j.omx.2024.100320","url":null,"abstract":"<div><p>Improvement of luminescent thermometers requires not only the search for high-sensitivity thermometric outputs, but also availability of multiple thermometric parameters affording a combined and reliable response. We hereby detail for the first time the luminescence of Eu<sup>3+</sup> in manganese tungstate (Eu<sup>3+</sup>:MnWO<sub>4</sub>) solids obtained by coprecipitation under ultraviolet excitation and how this material provided an optical thermometric response from 77 K to 373 K via excitation and emission spectra. Processing of up to five thermometric parameters, namely bandwidths, band positions, band shifts and luminescence intensity ratios, resulted in relative thermal sensitivities as high as 1.56% K<sup>−1</sup> and temperature uncertainties between 0.01 and 2 K depending on the choice of the spectral parameter. In addition, we demonstrate that Eu<sup>3+</sup>:MnWO<sub>4</sub> also act as a qualitative colorimetric thermosensor because of progressive change of emission color to greenish-yellow to bluish-green upon heating under UV excitation. Therefore, our results show that the combination of broadband tungstate emissions with the 4f-4f narrow emissions of Eu<sup>3+</sup> is an effective approach to achieve a multiparametric luminescent thermal response via emission, excitation and visual observation, which makes Eu<sup>3+</sup>:MnWO<sub>4</sub> a promising candidate for advanced thermometry applications.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"22 ","pages":"Article 100320"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147824000329/pdfft?md5=a7f9ae317f65dcc1fbc3c4d4ffe39e7a&pid=1-s2.0-S2590147824000329-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140782663","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.omx.2024.100328
A. Shakhno , S. Witkiewicz-Łukaszek , V. Gorbenko , T. Zorenko , Yu. Zorenko
The study is dedicated to investigation of the structural, luminescent and photoconversion properties of epitaxial converters based on the single crystalline films of Ce3+ doped Ca3Sc2Si3O12 (CSSG:Ce) garnet. These SCFs with different thicknesses were grown using the liquid phase epitaxy method onto: (i) undoped Gd3Ga2.5Al2.5O12 (GAGG (2.5)) substrates; (ii) Ce3+ doped Gd3Ga2.5Al2.5O12 (GAGG:Ce (2.5) and Gd3Ga3Al2O12 (GAGG:Ce (3) substrates. For the first time, we have examined the phosphor conversion properties of the mentioned film and film-crystal converters under the excitation of a blue LED. We have established a trend line in the color coordinate diagram by systematically varying the film thickness in the 2–30 μm, 17–22 μm and 7–22 μm ranges for CSSG:Ce film/GAGG (2.5) crystal, CSSG:Ce film/GAGG:Ce (2.5) crystal and CSSG:Ce film/GAGG:Ce (3) crystal composite converters, respectively.
{"title":"Composite color converters based on the Ca3Sc2Si3O12:Ce single crystalline films","authors":"A. Shakhno , S. Witkiewicz-Łukaszek , V. Gorbenko , T. Zorenko , Yu. Zorenko","doi":"10.1016/j.omx.2024.100328","DOIUrl":"https://doi.org/10.1016/j.omx.2024.100328","url":null,"abstract":"<div><p>The study is dedicated to investigation of the structural, luminescent and photoconversion properties of epitaxial converters based on the single crystalline films of Ce<sup>3+</sup> doped Ca<sub>3</sub>Sc<sub>2</sub>Si<sub>3</sub>O<sub>12</sub> (CSSG:Ce) garnet. These SCFs with different thicknesses were grown using the liquid phase epitaxy method onto: (i) undoped Gd<sub>3</sub>Ga<sub>2.5</sub>Al<sub>2.5</sub>O<sub>12</sub> (GAGG (2.5)) substrates; (ii) Ce<sup>3+</sup> doped Gd<sub>3</sub>Ga<sub>2.5</sub>Al<sub>2.5</sub>O<sub>12</sub> (GAGG:Ce (2.5) and Gd<sub>3</sub>Ga<sub>3</sub>Al<sub>2</sub>O<sub>12</sub> (GAGG:Ce (3) substrates. For the first time, we have examined the phosphor conversion properties of the mentioned film and film-crystal converters under the excitation of a blue LED. We have established a trend line in the color coordinate diagram by systematically varying the film thickness in the 2–30 μm, 17–22 μm and 7–22 μm ranges for CSSG:Ce film/GAGG (2.5) crystal, CSSG:Ce film/GAGG:Ce (2.5) crystal and CSSG:Ce film/GAGG:Ce (3) crystal composite converters, respectively.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"22 ","pages":"Article 100328"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147824000408/pdfft?md5=b746e36dc4b25e37b9fab40a40509a49&pid=1-s2.0-S2590147824000408-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141249421","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the present paper, we study the optical, electrical, and sensing properties of titanium dioxide (TiO2) film deposited on glass plates using a vacuum coating technique (High Hind Vacuum). The optical properties were studied using UV–visible and the result found that the band gap of fabricated thin film is 3.3 eV. The structural properties of the deposited film have been explored by XRD. XRD measurement revealed that the crystallite size is 25.7 nm and it showed that the deposited film is anatase phase and nanometric range. The experimental work was done for the study of LPG sensing properties at 300 K in the laboratory. Results found that the TiO2 film fast response/recovery time (91 s/180 s) and a maximum response of 29 % toward LPG.
{"title":"Optical, electrical, and sensing properties of titanium dioxide film","authors":"Ankit Kumar Vishwakarma , Ashok Kumar Mishra , Lallan Yadava","doi":"10.1016/j.omx.2024.100324","DOIUrl":"10.1016/j.omx.2024.100324","url":null,"abstract":"<div><p>In the present paper, we study the optical, electrical, and sensing properties of titanium dioxide (TiO<sub>2</sub>) film deposited on glass plates using a vacuum coating technique (High Hind Vacuum). The optical properties were studied using UV–visible and the result found that the band gap of fabricated thin film is 3.3 eV. The structural properties of the deposited film have been explored by XRD. XRD measurement revealed that the crystallite size is 25.7 nm and it showed that the deposited film is anatase phase and nanometric range. The experimental work was done for the study of LPG sensing properties at 300 K in the laboratory. Results found that the TiO<sub>2</sub> film fast response/recovery time (91 s/180 s) and a maximum response of 29 % toward LPG.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"22 ","pages":"Article 100324"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147824000366/pdfft?md5=41b5da82724e576249f3e46ae9b22bdf&pid=1-s2.0-S2590147824000366-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141029690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.omx.2024.100310
Philippe Boutinaud
A semi-empirical method is introduced to estimate the emission energy of the Mn4+ ion in fluorides and oxides without using spectroscopic data as inputs. The method is based on the calculation of the nephelauxetic function he at the octahedral crystal sites occupied by the Mn4+ cations in the considered host lattices. Only structural data are required for this calculation. The model reproduces the experimental emission energy of Mn4+ in 51 tested fluorides and 101 tested oxides within ±300 cm−1 in 98% of the fluorides and within ±500 cm−1 in 85% of the oxides. The accuracy is lowered as the he value, i. e. the covalency of the Mn–O bonding, is raised.
{"title":"The nephelauxetic function he: A tool to locate the emission of Mn4+ in oxides and fluorides","authors":"Philippe Boutinaud","doi":"10.1016/j.omx.2024.100310","DOIUrl":"10.1016/j.omx.2024.100310","url":null,"abstract":"<div><p>A semi-empirical method is introduced to estimate the emission energy of the Mn<sup>4+</sup> ion in fluorides and oxides without using spectroscopic data as inputs. The method is based on the calculation of the nephelauxetic function <em>he</em> at the octahedral crystal sites occupied by the Mn<sup>4+</sup> cations in the considered host lattices. Only structural data are required for this calculation. The model reproduces the experimental emission energy of Mn<sup>4+</sup> in 51 tested fluorides and 101 tested oxides within ±300 cm<sup>−1</sup> in 98% of the fluorides and within ±500 cm<sup>−1</sup> in 85% of the oxides. The accuracy is lowered as the <em>he</em> value, <em>i. e.</em> the covalency of the Mn–O bonding, is raised.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"22 ","pages":"Article 100310"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147824000226/pdfft?md5=a5e00731e331baef574cf578fad34085&pid=1-s2.0-S2590147824000226-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140404424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.omx.2024.100322
V. Pankratova , K. Chernenko , A.I. Popov , V. Pankratov
Cerium doped (Lu,Y)2SiO5 (or LYSO) single crystals have been studied by means of luminescence excitation spectroscopy in the temperature range from 7 up to 300 K. Vacuum ultraviolet excitations in 4.5–8 eV energy range from synchrotron radiation of 1.5 GeV storage ring of MAX IV synchrotron facility. It is shown that both type of Ce3+ emission centers (seven and six coordinated centers) are excited under any excitation energy used. It was concluded that the same energy transfer processes from host lattice to impurity ions are involved independently on coordination of Ce3+. It is also demonstrated that excitonic mechanism of energy transfer is dominant under chosen excitation and intrinsic and bound excitons are included in excitation of Ce3+ luminescence in LYSO.
我们通过发光激发光谱对掺铈 (Lu,Y)2SiO5(或 LYSO)单晶体进行了研究,研究温度范围为 7 至 300 K,在 4.5 至 8 eV 能量范围内的真空紫外线激发来自 MAX IV 同步辐射设施 1.5 GeV 储存环的同步辐射。结果表明,在任何激发能量下,两种类型的 Ce3+ 发射中心(七配位中心和六配位中心)都会被激发。结论是,从主晶格到杂质离子的能量转移过程与 Ce3+ 的配位无关。研究还证明,在所选择的激发条件下,能量转移的激子机制占主导地位,LYSO 中 Ce3+ 发光的激发过程包括本征激子和束缚激子。
{"title":"Temperature behavior of Ce3+ emission in (Lu,Y)2SiO5 single crystals excited by vacuum ultraviolet synchrotron light","authors":"V. Pankratova , K. Chernenko , A.I. Popov , V. Pankratov","doi":"10.1016/j.omx.2024.100322","DOIUrl":"https://doi.org/10.1016/j.omx.2024.100322","url":null,"abstract":"<div><p>Cerium doped (Lu,Y)<sub>2</sub>SiO<sub>5</sub> (or LYSO) single crystals have been studied by means of luminescence excitation spectroscopy in the temperature range from 7 up to 300 K. Vacuum ultraviolet excitations in 4.5–8 eV energy range from synchrotron radiation of 1.5 GeV storage ring of MAX IV synchrotron facility. It is shown that both type of Ce<sup>3+</sup> emission centers (seven and six coordinated centers) are excited under any excitation energy used. It was concluded that the same energy transfer processes from host lattice to impurity ions are involved independently on coordination of Ce<sup>3+</sup>. It is also demonstrated that excitonic mechanism of energy transfer is dominant under chosen excitation and intrinsic and bound excitons are included in excitation of Ce<sup>3+</sup> luminescence in LYSO.</p></div>","PeriodicalId":52192,"journal":{"name":"Optical Materials: X","volume":"22 ","pages":"Article 100322"},"PeriodicalIF":0.0,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2590147824000342/pdfft?md5=6b63b49d2f9892dfbf07cd91164e58da&pid=1-s2.0-S2590147824000342-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}