首页 > 最新文献

Fungal Biology and Biotechnology最新文献

英文 中文
State of the art, recent advances, and challenges in the field of fungal mycelium materials: a snapshot of the 2021 Mini Meeting. 真菌菌丝体材料领域的现状、最新进展和挑战:2021年小型会议快照。
Q1 Agricultural and Biological Sciences Pub Date : 2021-11-10 DOI: 10.1186/s40694-021-00118-3
Noam Attias, Achiya Livne, Tiffany Abitbol

Material development based on fungal mycelium is a fast-rising field of study as researchers, industry, and society actively search for new sustainable materials to address contemporary material challenges. The compelling potential of fungal mycelium materials is currently being explored in relation to various applications, including construction, packaging, "meatless" meat, and leather-like textiles. Here, we highlight the discussions and outcomes from a recent 1-day conference on the topic of fungal mycelium materials ("Fungal Mycelium Materials Mini Meeting"), where a group of researchers from diverse academic disciplines met to discuss the current state of the art, their visions for the future of the material, and thoughts on the challenges surrounding widescale implementation.

基于真菌菌丝体的材料开发是一个快速崛起的研究领域,研究人员、工业界和社会都在积极寻找新的可持续材料来应对当代材料的挑战。目前,人们正在探索真菌菌丝体材料在各种应用方面的巨大潜力,包括建筑、包装、“无肉”肉类和类似皮革的纺织品。在这里,我们重点介绍了最近为期1天的真菌菌丝体材料主题会议(“真菌菌丝体材料迷你会议”)的讨论和结果,来自不同学科的一组研究人员聚集在一起讨论了当前的技术状况,他们对材料未来的展望,以及对大规模实施所面临的挑战的思考。
{"title":"State of the art, recent advances, and challenges in the field of fungal mycelium materials: a snapshot of the 2021 Mini Meeting.","authors":"Noam Attias,&nbsp;Achiya Livne,&nbsp;Tiffany Abitbol","doi":"10.1186/s40694-021-00118-3","DOIUrl":"https://doi.org/10.1186/s40694-021-00118-3","url":null,"abstract":"<p><p>Material development based on fungal mycelium is a fast-rising field of study as researchers, industry, and society actively search for new sustainable materials to address contemporary material challenges. The compelling potential of fungal mycelium materials is currently being explored in relation to various applications, including construction, packaging, \"meatless\" meat, and leather-like textiles. Here, we highlight the discussions and outcomes from a recent 1-day conference on the topic of fungal mycelium materials (\"Fungal Mycelium Materials Mini Meeting\"), where a group of researchers from diverse academic disciplines met to discuss the current state of the art, their visions for the future of the material, and thoughts on the challenges surrounding widescale implementation.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"8 1","pages":"12"},"PeriodicalIF":0.0,"publicationDate":"2021-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8579895/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39715346","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
An overview on current molecular tools for heterologous gene expression in Trichoderma. 木霉异源基因表达的分子工具综述。
Q1 Agricultural and Biological Sciences Pub Date : 2021-10-26 DOI: 10.1186/s40694-021-00119-2
Irene Tomico-Cuenca, Robert L Mach, Astrid R Mach-Aigner, Christian Derntl

Fungi of the genus Trichoderma are routinely used as biocontrol agents and for the production of industrial enzymes. Trichoderma spp. are interesting hosts for heterologous gene expression because their saprotrophic and mycoparasitic lifestyles enable them to thrive on a large number of nutrient sources and some members of this genus are generally recognized as safe (GRAS status). In this review, we summarize and discuss several aspects involved in heterologous gene expression in Trichoderma, including transformation methods, genome editing strategies, native and synthetic expression systems and implications of protein secretion. This review focuses on the industrial workhorse Trichoderma reesei because this fungus is the best-studied member of this genus for protein expression and secretion. However, the discussed strategies and tools can be expected to be transferable to other Trichoderma species.

木霉属真菌通常用作生物控制剂和生产工业酶。木霉属是异源基因表达的有趣宿主,因为它们的腐生和分枝寄生生活方式使它们能够在大量营养来源中茁壮成长,并且该属的一些成员通常被认为是安全的(GRAS状态)。在这篇综述中,我们总结并讨论了木霉异源基因表达的几个方面,包括转化方法、基因组编辑策略、天然和合成表达系统以及蛋白质分泌的意义。这篇综述的重点是工业上的主力木霉里氏木霉,因为这种真菌是该属蛋白质表达和分泌研究最好的成员。然而,所讨论的策略和工具有望转移到其他木霉物种。
{"title":"An overview on current molecular tools for heterologous gene expression in Trichoderma.","authors":"Irene Tomico-Cuenca,&nbsp;Robert L Mach,&nbsp;Astrid R Mach-Aigner,&nbsp;Christian Derntl","doi":"10.1186/s40694-021-00119-2","DOIUrl":"10.1186/s40694-021-00119-2","url":null,"abstract":"<p><p>Fungi of the genus Trichoderma are routinely used as biocontrol agents and for the production of industrial enzymes. Trichoderma spp. are interesting hosts for heterologous gene expression because their saprotrophic and mycoparasitic lifestyles enable them to thrive on a large number of nutrient sources and some members of this genus are generally recognized as safe (GRAS status). In this review, we summarize and discuss several aspects involved in heterologous gene expression in Trichoderma, including transformation methods, genome editing strategies, native and synthetic expression systems and implications of protein secretion. This review focuses on the industrial workhorse Trichoderma reesei because this fungus is the best-studied member of this genus for protein expression and secretion. However, the discussed strategies and tools can be expected to be transferable to other Trichoderma species.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"8 1","pages":"11"},"PeriodicalIF":0.0,"publicationDate":"2021-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8549263/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39569878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Class-II dihydroorotate dehydrogenases from three phylogenetically distant fungi support anaerobic pyrimidine biosynthesis. 来自三种系统发育遥远的真菌的ii类二氢乳酸菌脱氢酶支持厌氧嘧啶生物合成。
Q1 Agricultural and Biological Sciences Pub Date : 2021-10-16 DOI: 10.1186/s40694-021-00117-4
Jonna Bouwknegt, Charlotte C Koster, Aurin M Vos, Raúl A Ortiz-Merino, Mats Wassink, Marijke A H Luttik, Marcel van den Broek, Peter L Hagedoorn, Jack T Pronk

Background: In most fungi, quinone-dependent Class-II dihydroorotate dehydrogenases (DHODs) are essential for pyrimidine biosynthesis. Coupling of these Class-II DHODHs to mitochondrial respiration makes their in vivo activity dependent on oxygen availability. Saccharomyces cerevisiae and closely related yeast species harbor a cytosolic Class-I DHOD (Ura1) that uses fumarate as electron acceptor and thereby enables anaerobic pyrimidine synthesis. Here, we investigate DHODs from three fungi (the Neocallimastigomycete Anaeromyces robustus and the yeasts Schizosaccharomyces japonicus and Dekkera bruxellensis) that can grow anaerobically but, based on genome analysis, only harbor a Class-II DHOD.

Results: Heterologous expression of putative Class-II DHOD-encoding genes from fungi capable of anaerobic, pyrimidine-prototrophic growth (Arura9, SjURA9, DbURA9) in an S. cerevisiae ura1Δ strain supported aerobic as well as anaerobic pyrimidine prototrophy. A strain expressing DbURA9 showed delayed anaerobic growth without pyrimidine supplementation. Adapted faster growing DbURA9-expressing strains showed mutations in FUM1, which encodes fumarase. GFP-tagged SjUra9 and DbUra9 were localized to S. cerevisiae mitochondria, while ArUra9, whose sequence lacked a mitochondrial targeting sequence, was localized to the yeast cytosol. Experiments with cell extracts showed that ArUra9 used free FAD and FMN as electron acceptors. Expression of SjURA9 in S. cerevisiae reproducibly led to loss of respiratory competence and mitochondrial DNA. A cysteine residue (C265 in SjUra9) in the active sites of all three anaerobically active Ura9 orthologs was shown to be essential for anaerobic activity of SjUra9 but not of ArUra9.

Conclusions: Activity of fungal Class-II DHODs was long thought to be dependent on an active respiratory chain, which in most fungi requires the presence of oxygen. By heterologous expression experiments in S. cerevisiae, this study shows that phylogenetically distant fungi independently evolved Class-II dihydroorotate dehydrogenases that enable anaerobic pyrimidine biosynthesis. Further structure-function studies are required to understand the mechanistic basis for the anaerobic activity of Class-II DHODs and an observed loss of respiratory competence in S. cerevisiae strains expressing an anaerobically active DHOD from Sch. japonicus.

背景:在大多数真菌中,依赖醌的ii类二氢乙酸脱氢酶(DHODs)是嘧啶生物合成所必需的。这些ii类DHODHs与线粒体呼吸的耦合使得它们的体内活性依赖于氧的可用性。酿酒酵母和密切相关的酵母菌种含有胞质i类DHOD (Ura1),它使用富马酸盐作为电子受体,从而使厌氧嘧啶合成成为可能。在这里,我们研究了三种可以厌氧生长的真菌(neocallimastigomytes robustus)和酵母Schizosaccharomyces japonicus和Dekkera bruxellensis)的DHOD,但根据基因组分析,它们只有ii类DHOD。结果:能够厌氧、嘧啶原生营养生长的真菌(Arura9, SjURA9, DbURA9)的ii类dhod编码基因在酿酒酵母ura1Δ菌株中异源表达,该菌株支持好氧和厌氧嘧啶原生营养生长。表达DbURA9的菌株在不添加嘧啶的情况下表现出厌氧生长延迟。适应更快生长的表达dbura9的菌株显示编码延胡索酶的FUM1突变。gfp标记的SjUra9和DbUra9定位于酿酒酵母的线粒体,而序列缺乏线粒体靶向序列的ArUra9定位于酵母细胞质。细胞提取物实验表明,ArUra9以游离FAD和FMN为电子受体。SjURA9在酿酒酵母中的表达可导致呼吸能力和线粒体DNA的丧失。在所有三个具有厌氧活性的Ura9同源物的活性位点上都存在半胱氨酸残基(SjUra9中的C265),这对SjUra9的厌氧活性是必需的,而对ArUra9则不是。结论:真菌ii类DHODs的活性一直被认为依赖于活跃的呼吸链,而在大多数真菌中,呼吸链需要氧气的存在。通过在酿酒酵母中的异源表达实验,本研究表明,在系统发育上遥远的真菌独立进化出了ii类二氢羟酸脱氢酶,使厌氧嘧啶生物合成成为可能。需要进一步的结构-功能研究来了解ii类DHOD厌氧活性的机制基础,以及在表达日本血吸虫厌氧活性DHOD的酿酒链球菌菌株中观察到的呼吸能力丧失。
{"title":"Class-II dihydroorotate dehydrogenases from three phylogenetically distant fungi support anaerobic pyrimidine biosynthesis.","authors":"Jonna Bouwknegt,&nbsp;Charlotte C Koster,&nbsp;Aurin M Vos,&nbsp;Raúl A Ortiz-Merino,&nbsp;Mats Wassink,&nbsp;Marijke A H Luttik,&nbsp;Marcel van den Broek,&nbsp;Peter L Hagedoorn,&nbsp;Jack T Pronk","doi":"10.1186/s40694-021-00117-4","DOIUrl":"https://doi.org/10.1186/s40694-021-00117-4","url":null,"abstract":"<p><strong>Background: </strong>In most fungi, quinone-dependent Class-II dihydroorotate dehydrogenases (DHODs) are essential for pyrimidine biosynthesis. Coupling of these Class-II DHODHs to mitochondrial respiration makes their in vivo activity dependent on oxygen availability. Saccharomyces cerevisiae and closely related yeast species harbor a cytosolic Class-I DHOD (Ura1) that uses fumarate as electron acceptor and thereby enables anaerobic pyrimidine synthesis. Here, we investigate DHODs from three fungi (the Neocallimastigomycete Anaeromyces robustus and the yeasts Schizosaccharomyces japonicus and Dekkera bruxellensis) that can grow anaerobically but, based on genome analysis, only harbor a Class-II DHOD.</p><p><strong>Results: </strong>Heterologous expression of putative Class-II DHOD-encoding genes from fungi capable of anaerobic, pyrimidine-prototrophic growth (Arura9, SjURA9, DbURA9) in an S. cerevisiae ura1Δ strain supported aerobic as well as anaerobic pyrimidine prototrophy. A strain expressing DbURA9 showed delayed anaerobic growth without pyrimidine supplementation. Adapted faster growing DbURA9-expressing strains showed mutations in FUM1, which encodes fumarase. GFP-tagged SjUra9 and DbUra9 were localized to S. cerevisiae mitochondria, while ArUra9, whose sequence lacked a mitochondrial targeting sequence, was localized to the yeast cytosol. Experiments with cell extracts showed that ArUra9 used free FAD and FMN as electron acceptors. Expression of SjURA9 in S. cerevisiae reproducibly led to loss of respiratory competence and mitochondrial DNA. A cysteine residue (C265 in SjUra9) in the active sites of all three anaerobically active Ura9 orthologs was shown to be essential for anaerobic activity of SjUra9 but not of ArUra9.</p><p><strong>Conclusions: </strong>Activity of fungal Class-II DHODs was long thought to be dependent on an active respiratory chain, which in most fungi requires the presence of oxygen. By heterologous expression experiments in S. cerevisiae, this study shows that phylogenetically distant fungi independently evolved Class-II dihydroorotate dehydrogenases that enable anaerobic pyrimidine biosynthesis. Further structure-function studies are required to understand the mechanistic basis for the anaerobic activity of Class-II DHODs and an observed loss of respiratory competence in S. cerevisiae strains expressing an anaerobically active DHOD from Sch. japonicus.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"8 1","pages":"10"},"PeriodicalIF":0.0,"publicationDate":"2021-10-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8520639/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39523219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Expanding the toolbox: another auxotrophic marker for targeted gene integrations in Trichoderma reesei. 扩展工具箱:毛霉菌定向基因整合的另一种辅助营养标记。
Q1 Agricultural and Biological Sciences Pub Date : 2021-09-14 DOI: 10.1186/s40694-021-00116-5
Paul Primerano, Melani Juric, Robert Mach, Astrid Mach-Aigner, Christian Derntl

Background: The filamentous ascomycete Trichoderma reesei is used for the industrial production of cellulases and holds the promise for heterologous gene expression due to its outstandingly high protein secretion rates and its long-term application in industry and science. A prerequisite for successful heterologous gene expression is the ability to insert a corresponding expression cassette at suitable loci in the genome of T. reesei.

Results: In this study, we test and demonstrate the applicability of the his1 gene [encoding for the ATP phosphoribosyltransferase (EC 2.4.2.17), part of the histidine biosynthesis pathway] and locus for targeted gene insertion. Deletion of the his1 promoter and a part of the coding region leads to histidine auxotrophy. Reestablishment of the his1 locus restores prototrophy. We designed a matching plasmid that allows integration of an expression cassette at the his1 locus. This is demonstrated by the usage of the reporter EYFP (enhanced yellow fluorescence protein). Further, we describe a minimal effort and seamless marker recycling method. Finally, we test the influence of the integration site on the gene expression by comparing three strains bearing the same EYFP expression construct at different loci.

Conclusion: With the establishment of his1 as integration locus and auxotrophic marker, we could expand the toolbox for strain design in T. reesei. This facilitates future strain constructions with the aim of heterologous gene expression.

背景:丝状赤霉菌雷氏毛霉菌(Trichoderma reesei)被用于纤维素酶的工业化生产,由于其出色的高蛋白质分泌率及其在工业和科学领域的长期应用,它有望实现异源基因表达。异源基因表达成功的先决条件是能够在雷氏菌基因组的合适位点插入相应的表达盒:在这项研究中,我们测试并证明了 his1 基因[编码 ATP 磷酸核糖转移酶(EC 2.4.2.17),组氨酸生物合成途径的一部分]和基因座对定向基因插入的适用性。删除 his1 启动子和部分编码区会导致组氨酸营养不良。重建 his1 基因座可恢复原营养。我们设计了一种匹配质粒,可以在 his1 基因座上整合表达盒。使用报告基因 EYFP(增强黄色荧光蛋白)证明了这一点。此外,我们还介绍了一种省力且无缝的标记回收方法。最后,我们通过比较三个在不同基因座上带有相同 EYFP 表达构建体的菌株,测试了整合位点对基因表达的影响:随着 his1 作为整合位点和辅助营养标记的确立,我们可以扩展雷氏菌株设计的工具箱。结论:随着 his1 作为整合位点和辅助营养标记的确立,我们可以扩大雷氏菌菌株设计的工具箱,这有助于未来以异源基因表达为目的的菌株构建。
{"title":"Expanding the toolbox: another auxotrophic marker for targeted gene integrations in Trichoderma reesei.","authors":"Paul Primerano, Melani Juric, Robert Mach, Astrid Mach-Aigner, Christian Derntl","doi":"10.1186/s40694-021-00116-5","DOIUrl":"10.1186/s40694-021-00116-5","url":null,"abstract":"<p><strong>Background: </strong>The filamentous ascomycete Trichoderma reesei is used for the industrial production of cellulases and holds the promise for heterologous gene expression due to its outstandingly high protein secretion rates and its long-term application in industry and science. A prerequisite for successful heterologous gene expression is the ability to insert a corresponding expression cassette at suitable loci in the genome of T. reesei.</p><p><strong>Results: </strong>In this study, we test and demonstrate the applicability of the his1 gene [encoding for the ATP phosphoribosyltransferase (EC 2.4.2.17), part of the histidine biosynthesis pathway] and locus for targeted gene insertion. Deletion of the his1 promoter and a part of the coding region leads to histidine auxotrophy. Reestablishment of the his1 locus restores prototrophy. We designed a matching plasmid that allows integration of an expression cassette at the his1 locus. This is demonstrated by the usage of the reporter EYFP (enhanced yellow fluorescence protein). Further, we describe a minimal effort and seamless marker recycling method. Finally, we test the influence of the integration site on the gene expression by comparing three strains bearing the same EYFP expression construct at different loci.</p><p><strong>Conclusion: </strong>With the establishment of his1 as integration locus and auxotrophic marker, we could expand the toolbox for strain design in T. reesei. This facilitates future strain constructions with the aim of heterologous gene expression.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"8 1","pages":"9"},"PeriodicalIF":0.0,"publicationDate":"2021-09-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8442374/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39415581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Understanding and controlling filamentous growth of fungal cell factories: novel tools and opportunities for targeted morphology engineering. 理解和控制真菌细胞工厂的丝状生长:目标形态学工程的新工具和机会。
Q1 Agricultural and Biological Sciences Pub Date : 2021-08-23 DOI: 10.1186/s40694-021-00115-6
Vera Meyer, Timothy Cairns, Lars Barthel, Rudibert King, Philipp Kunz, Stefan Schmideder, Henri Müller, Heiko Briesen, Anna Dinius, Rainer Krull

Filamentous fungal cell factories are efficient producers of platform chemicals, proteins, enzymes and natural products. Stirred-tank bioreactors up to a scale of several hundred m³ are commonly used for their cultivation. Fungal hyphae self-assemble into various cellular macromorphologies ranging from dispersed mycelia, loose clumps, to compact pellets. Development of these macromorphologies is so far unpredictable but strongly impacts productivities of fungal bioprocesses. Depending on the strain and the desired product, the morphological forms vary, but no strain- or product-related correlations currently exist to improve process understanding of fungal production systems. However, novel genomic, genetic, metabolic, imaging and modelling tools have recently been established that will provide fundamental new insights into filamentous fungal growth and how it is balanced with product formation. In this primer, these tools will be highlighted and their revolutionary impact on rational morphology engineering and bioprocess control will be discussed.

丝状真菌细胞工厂是平台化学品、蛋白质、酶和天然产物的高效生产者。通常使用几百m³规模的搅拌槽生物反应器进行培养。真菌菌丝自组装成各种细胞大形态,从分散的菌丝、松散的团块到致密的球团。这些宏观形态的发展到目前为止是不可预测的,但强烈影响真菌生物过程的生产力。根据菌株和所需产品的不同,形态形式各不相同,但目前没有菌株或产品相关的相关性,以提高对真菌生产系统的过程理解。然而,最近建立了新的基因组学、遗传学、代谢、成像和建模工具,这些工具将为丝状真菌生长及其如何与产物形成平衡提供基本的新见解。在本入门中,这些工具将重点介绍,并讨论它们对理性形态学工程和生物过程控制的革命性影响。
{"title":"Understanding and controlling filamentous growth of fungal cell factories: novel tools and opportunities for targeted morphology engineering.","authors":"Vera Meyer,&nbsp;Timothy Cairns,&nbsp;Lars Barthel,&nbsp;Rudibert King,&nbsp;Philipp Kunz,&nbsp;Stefan Schmideder,&nbsp;Henri Müller,&nbsp;Heiko Briesen,&nbsp;Anna Dinius,&nbsp;Rainer Krull","doi":"10.1186/s40694-021-00115-6","DOIUrl":"https://doi.org/10.1186/s40694-021-00115-6","url":null,"abstract":"<p><p>Filamentous fungal cell factories are efficient producers of platform chemicals, proteins, enzymes and natural products. Stirred-tank bioreactors up to a scale of several hundred m³ are commonly used for their cultivation. Fungal hyphae self-assemble into various cellular macromorphologies ranging from dispersed mycelia, loose clumps, to compact pellets. Development of these macromorphologies is so far unpredictable but strongly impacts productivities of fungal bioprocesses. Depending on the strain and the desired product, the morphological forms vary, but no strain- or product-related correlations currently exist to improve process understanding of fungal production systems. However, novel genomic, genetic, metabolic, imaging and modelling tools have recently been established that will provide fundamental new insights into filamentous fungal growth and how it is balanced with product formation. In this primer, these tools will be highlighted and their revolutionary impact on rational morphology engineering and bioprocess control will be discussed.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"8 1","pages":"8"},"PeriodicalIF":0.0,"publicationDate":"2021-08-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8383395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39337328","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Retraction Note to: Fungal sensing skin. 回退说明:真菌感应皮肤。
Q1 Agricultural and Biological Sciences Pub Date : 2021-06-02 DOI: 10.1186/s40694-021-00114-7
Andrew Adamatzky, Antoni Gandia, Alessandro Chiolerio
{"title":"Retraction Note to: Fungal sensing skin.","authors":"Andrew Adamatzky,&nbsp;Antoni Gandia,&nbsp;Alessandro Chiolerio","doi":"10.1186/s40694-021-00114-7","DOIUrl":"https://doi.org/10.1186/s40694-021-00114-7","url":null,"abstract":"","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"8 1","pages":"7"},"PeriodicalIF":0.0,"publicationDate":"2021-06-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40694-021-00114-7","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"39055379","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Towards fungal sensing skin. 实现真菌感知皮肤。
Q1 Agricultural and Biological Sciences Pub Date : 2021-05-12 DOI: 10.1186/s40694-021-00113-8
Andrew Adamatzky, Antoni Gandia, Alessandro Chiolerio

A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots. In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off. These are the first experimental evidences that fungal materials can be used not only as mechanical 'skeletons' in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.

真菌皮肤是由丝状真菌制成的同质活菌丝体的柔性薄片。这种皮肤可用于未来自适应建筑的活体结构中,也可作为软体自生长/自适应机器人的传感活体皮肤。在实验室实验研究中,我们证明真菌皮肤能够识别机械和光学刺激。真菌皮肤对加载重物、移除重物和开关照明的反应各不相同。这些实验首次证明,真菌材料不仅可以用作建筑和机器人技术中的机械 "骨架",还可以用作能够识别外部刺激和感官融合的智能皮肤。
{"title":"Towards fungal sensing skin.","authors":"Andrew Adamatzky, Antoni Gandia, Alessandro Chiolerio","doi":"10.1186/s40694-021-00113-8","DOIUrl":"10.1186/s40694-021-00113-8","url":null,"abstract":"<p><p>A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots. In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off. These are the first experimental evidences that fungal materials can be used not only as mechanical 'skeletons' in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"8 1","pages":"6"},"PeriodicalIF":0.0,"publicationDate":"2021-05-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8117569/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38905199","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An approach to change the basic polymer composition of the milled Fomes fomentarius fruiting bodies. 一种改变碾磨后红茅子实体基本聚合物组成的方法。
Q1 Agricultural and Biological Sciences Pub Date : 2021-04-15 DOI: 10.1186/s40694-021-00112-9
Liudmila Kalitukha

Background: Chitin and its derivative chitosan are readily exploited, especially in food, cosmetic, pharmaceutical, biomedical, chemical, and textile industries. The biopolymers are currently recovered from the crustacean shells after purification from the large amount of proteins and minerals. The key problems are centered around a lot of chemical waste and allergenic potential of the heat-stable remaining proteins. Fungi can be considered as an alternative eco-friendlier source of the chitin and chitosan due to the lower level of inorganic materials and absence of the allergenic proteins.

Results: The work presents a new chemical assay to change the composition of the milled Fomes fomentarius fruiting bodies. A gradual 13-fold increase of the chitin amount accompanied by 14-fold decrease of the glucan content was obtained after repetitive alkali-acidic treatment. Raw material contained mainly chitin with 30% degree of deacetylation. After the first and second alkali treatment, the polymer was defined as chitosan with comparable amounts of N-acetyl-D-glucosamine and D-glucosamine units. The last treated samples showed an increase of the chitin amount to 80%, along with typical for the natural tinder fibers degree of deacetylation and three-dimensional fibrous hollow structure.

Conclusions: A new approach allowed a gradual enrichment of the pulverized Fomes fomentarius fruiting bodies with chitin or chitosan, depending on the extraction conditions. High stability and fibrous structure of the fungal cell walls with a drastically increased chitin ratio let us suggest a possibility of the targeted production of the chitin-enriched fungal material biotechnologically under eco-friendly conditions.

背景:几丁质及其衍生物壳聚糖在食品、化妆品、医药、生物医药、化工、纺织等领域具有广泛的应用前景。生物聚合物是目前从甲壳类动物壳中提纯大量蛋白质和矿物质后得到的。关键问题集中在大量的化学废物和热稳定剩余蛋白质的致敏潜力上。真菌可以被认为是甲壳素和壳聚糖的另一种生态友好型来源,因为它的无机材料含量较低,而且不含致敏蛋白。结果:提出了一种新的化学分析方法,可以改变粉磨后的红茅子实体的成分。反复碱-酸处理后,几丁质含量增加13倍,葡聚糖含量减少14倍。原料主要含脱乙酰度30%的几丁质。经过第一次和第二次碱处理后,聚合物被定义为具有相当数量的n -乙酰- d -氨基葡萄糖和d -氨基葡萄糖单元的壳聚糖。最后处理后的样品甲壳素含量提高80%,具有典型的天然火绒纤维脱乙酰化程度和三维纤维中空结构。结论:根据提取条件的不同,甲壳素或壳聚糖可逐步富集粉状fomentarius子实体。真菌细胞壁的高稳定性和纤维结构以及几丁质比例的急剧增加使我们提出了在生态友好条件下生物技术有针对性地生产富含几丁质真菌材料的可能性。
{"title":"An approach to change the basic polymer composition of the milled Fomes fomentarius fruiting bodies.","authors":"Liudmila Kalitukha","doi":"10.1186/s40694-021-00112-9","DOIUrl":"https://doi.org/10.1186/s40694-021-00112-9","url":null,"abstract":"<p><strong>Background: </strong>Chitin and its derivative chitosan are readily exploited, especially in food, cosmetic, pharmaceutical, biomedical, chemical, and textile industries. The biopolymers are currently recovered from the crustacean shells after purification from the large amount of proteins and minerals. The key problems are centered around a lot of chemical waste and allergenic potential of the heat-stable remaining proteins. Fungi can be considered as an alternative eco-friendlier source of the chitin and chitosan due to the lower level of inorganic materials and absence of the allergenic proteins.</p><p><strong>Results: </strong>The work presents a new chemical assay to change the composition of the milled Fomes fomentarius fruiting bodies. A gradual 13-fold increase of the chitin amount accompanied by 14-fold decrease of the glucan content was obtained after repetitive alkali-acidic treatment. Raw material contained mainly chitin with 30% degree of deacetylation. After the first and second alkali treatment, the polymer was defined as chitosan with comparable amounts of N-acetyl-D-glucosamine and D-glucosamine units. The last treated samples showed an increase of the chitin amount to 80%, along with typical for the natural tinder fibers degree of deacetylation and three-dimensional fibrous hollow structure.</p><p><strong>Conclusions: </strong>A new approach allowed a gradual enrichment of the pulverized Fomes fomentarius fruiting bodies with chitin or chitosan, depending on the extraction conditions. High stability and fibrous structure of the fungal cell walls with a drastically increased chitin ratio let us suggest a possibility of the targeted production of the chitin-enriched fungal material biotechnologically under eco-friendly conditions.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"8 1","pages":"5"},"PeriodicalIF":0.0,"publicationDate":"2021-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40694-021-00112-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"38877494","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Preservation stress resistance of melanin deficient conidia from Paecilomyces variotii and Penicillium roqueforti mutants generated via CRISPR/Cas9 genome editing. 通过CRISPR/Cas9基因组编辑获得的变种拟青霉和罗氏青霉缺黑素分生孢子的抗逆性保存
Q1 Agricultural and Biological Sciences Pub Date : 2021-04-02 DOI: 10.1186/s40694-021-00111-w
Sjoerd J Seekles, Pepijn P P Teunisse, Maarten Punt, Tom van den Brule, Jan Dijksterhuis, Jos Houbraken, Han A B Wösten, Arthur F J Ram

Background: The filamentous fungi Paecilomyces variotii and Penicillium roqueforti are prevalent food spoilers and are of interest as potential future cell factories. A functional CRISPR/Cas9 genome editing system would be beneficial for biotechnological advances as well as future (genetic) research in P. variotii and P. roqueforti.

Results: Here we describe the successful implementation of an efficient AMA1-based CRISPR/Cas9 genome editing system developed for Aspergillus niger in P. variotii and P. roqueforti in order to create melanin deficient strains. Additionally, kusA- mutant strains with a disrupted non-homologous end-joining repair mechanism were created to further optimize and facilitate efficient genome editing in these species. The effect of melanin on the resistance of conidia against the food preservation stressors heat and UV-C radiation was assessed by comparing wild-type and melanin deficient mutant conidia.

Conclusions: Our findings show the successful use of CRISPR/Cas9 genome editing and its high efficiency in P. variotii and P. roqueforti in both wild-type strains as well as kusA- mutant background strains. Additionally, we observed that melanin deficient conidia of three food spoiling fungi were not altered in their heat resistance. However, melanin deficient conidia had increased sensitivity towards UV-C radiation.

背景:丝状真菌异拟青霉和洛克福青霉是常见的食物破坏者,是未来潜在的细胞工厂。一个功能性的CRISPR/Cas9基因组编辑系统将有利于生物技术的进步以及未来对P. varotii和P. roqueforti的(遗传)研究。结果:在这里,我们描述了一种高效的基于ama1的CRISPR/Cas9基因组编辑系统的成功实施,该系统为黑曲霉在P. variotii和P. roqueforti中开发,以创建黑色素缺乏菌株。此外,为了进一步优化和促进这些物种的高效基因组编辑,我们创建了具有中断的非同源末端连接修复机制的kusA-突变菌株。通过比较野生型和缺乏黑色素的突变型分生孢子,研究了黑色素对分生孢子抗高温和UV-C辐射的影响。结论:我们的研究结果表明,CRISPR/Cas9基因组编辑在野生型菌株和kusA-突变背景菌株中的成功应用和高效应用。此外,我们观察到三种食物腐败真菌的黑色素缺乏分生孢子的耐热性没有改变。然而,缺乏黑色素的分生孢子对UV-C辐射的敏感性增加。
{"title":"Preservation stress resistance of melanin deficient conidia from Paecilomyces variotii and Penicillium roqueforti mutants generated via CRISPR/Cas9 genome editing.","authors":"Sjoerd J Seekles,&nbsp;Pepijn P P Teunisse,&nbsp;Maarten Punt,&nbsp;Tom van den Brule,&nbsp;Jan Dijksterhuis,&nbsp;Jos Houbraken,&nbsp;Han A B Wösten,&nbsp;Arthur F J Ram","doi":"10.1186/s40694-021-00111-w","DOIUrl":"https://doi.org/10.1186/s40694-021-00111-w","url":null,"abstract":"<p><strong>Background: </strong>The filamentous fungi Paecilomyces variotii and Penicillium roqueforti are prevalent food spoilers and are of interest as potential future cell factories. A functional CRISPR/Cas9 genome editing system would be beneficial for biotechnological advances as well as future (genetic) research in P. variotii and P. roqueforti.</p><p><strong>Results: </strong>Here we describe the successful implementation of an efficient AMA1-based CRISPR/Cas9 genome editing system developed for Aspergillus niger in P. variotii and P. roqueforti in order to create melanin deficient strains. Additionally, kusA<sup>-</sup> mutant strains with a disrupted non-homologous end-joining repair mechanism were created to further optimize and facilitate efficient genome editing in these species. The effect of melanin on the resistance of conidia against the food preservation stressors heat and UV-C radiation was assessed by comparing wild-type and melanin deficient mutant conidia.</p><p><strong>Conclusions: </strong>Our findings show the successful use of CRISPR/Cas9 genome editing and its high efficiency in P. variotii and P. roqueforti in both wild-type strains as well as kusA<sup>-</sup> mutant background strains. Additionally, we observed that melanin deficient conidia of three food spoiling fungi were not altered in their heat resistance. However, melanin deficient conidia had increased sensitivity towards UV-C radiation.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"8 1","pages":"4"},"PeriodicalIF":0.0,"publicationDate":"2021-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1186/s40694-021-00111-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25539748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Fungal sensing skin. 真菌感知皮肤。
Q1 Agricultural and Biological Sciences Pub Date : 2021-03-17 DOI: 10.1186/s40694-021-00110-x
Andrew Adamatzky, Antoni Gandia, Alessandro Chiolerio

Background: A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots.

Results: In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off.

Conclusion: These are the first experimental evidences that fungal materials can be used not only as mechanical 'skeletons' in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.

背景:真菌皮肤是由丝状真菌制成的同质活菌丝体的柔性薄片。这种皮肤可用于未来自适应建筑的活体结构中,也可作为软体自生长/自适应机器人的传感活体皮肤:在实验室实验研究中,我们证明真菌皮肤能够识别机械和光学刺激。结果:在实验室的实验研究中,我们证明了真菌皮肤能够识别机械和光学刺激,皮肤对加载重物、移除重物以及开关照明有不同的反应:这些实验首次证明,真菌材料不仅可以用作建筑和机器人技术中的机械 "骨架",还可以用作能够识别外部刺激和感官融合的智能皮肤。
{"title":"Fungal sensing skin.","authors":"Andrew Adamatzky, Antoni Gandia, Alessandro Chiolerio","doi":"10.1186/s40694-021-00110-x","DOIUrl":"10.1186/s40694-021-00110-x","url":null,"abstract":"<p><strong>Background: </strong>A fungal skin is a thin flexible sheet of a living homogeneous mycelium made by a filamentous fungus. The skin could be used in future living architectures of adaptive buildings and as a sensing living skin for soft self-growing/adaptive robots.</p><p><strong>Results: </strong>In experimental laboratory studies we demonstrate that the fungal skin is capable for recognising mechanical and optical stimulation. The skin reacts differently to loading of a weight, removal of the weight, and switching illumination on and off.</p><p><strong>Conclusion: </strong>These are the first experimental evidences that fungal materials can be used not only as mechanical 'skeletons' in architecture and robotics but also as intelligent skins capable for recognition of external stimuli and sensorial fusion.</p>","PeriodicalId":52292,"journal":{"name":"Fungal Biology and Biotechnology","volume":"8 1","pages":"3"},"PeriodicalIF":0.0,"publicationDate":"2021-03-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7972235/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25488172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Fungal Biology and Biotechnology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1