首页 > 最新文献

International Journal of Coal Science & Technology最新文献

英文 中文
Catalytic coal gasification: mechanism, kinetics, and reactor model 催化煤气化:机理、动力学和反应器模型
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-30 DOI: 10.1007/s40789-024-00712-x
Weiwei Li, Chen Wang, Zhongliang Yu, Yuncai Song

Catalytic coal gasification is a promising technology in the field of clean coal utilization. A comprehensive understanding of mechanisms, reaction kinetic, and reactor model is crucial. This article summarizes and analyzes the catalytic mechanisms of key reactions, such as C–O2, C–CO2, C–H2O, and CO–H2. It also compares various kinetic models, including shrinking core model, random pore model, volume model and their respective modifications. Additionally, the article delves into mathematical modellings of catalytic coal gasification, encompassing molecular models or density functional theory, empirical model, computational fluid dynamics, Aspen modeling, and artificial neural network. The aim is to provide a roadmap for the development and scale up of reactors used in catalytic coal gasification.

催化煤气化是煤炭清洁利用领域一项前景广阔的技术。全面了解机理、反应动力学和反应器模型至关重要。本文总结并分析了 C-O2、C-CO2、C-H2O 和 CO-H2 等关键反应的催化机理。文章还比较了各种动力学模型,包括缩芯模型、随机孔模型、体积模型及其各自的修正。此外,文章还深入研究了催化煤气化的数学模型,包括分子模型或密度泛函理论、经验模型、计算流体动力学、Aspen 模型和人工神经网络。目的是为催化煤气化反应器的开发和放大提供路线图。
{"title":"Catalytic coal gasification: mechanism, kinetics, and reactor model","authors":"Weiwei Li, Chen Wang, Zhongliang Yu, Yuncai Song","doi":"10.1007/s40789-024-00712-x","DOIUrl":"https://doi.org/10.1007/s40789-024-00712-x","url":null,"abstract":"<p>Catalytic coal gasification is a promising technology in the field of clean coal utilization. A comprehensive understanding of mechanisms, reaction kinetic, and reactor model is crucial. This article summarizes and analyzes the catalytic mechanisms of key reactions, such as C–O<sub>2</sub>, C–CO<sub>2</sub>, C–H<sub>2</sub>O, and CO–H<sub>2</sub>. It also compares various kinetic models, including shrinking core model, random pore model, volume model and their respective modifications. Additionally, the article delves into mathematical modellings of catalytic coal gasification, encompassing molecular models or density functional theory, empirical model, computational fluid dynamics, Aspen modeling, and artificial neural network. The aim is to provide a roadmap for the development and scale up of reactors used in catalytic coal gasification.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"85 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868106","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Study of synergistic behavior during bituminous coal-cow manure co-gasification: The role of intrinsic AAEM and organic matter 烟煤-牛粪联合气化过程中的协同行为研究:固有 AAEM 和有机物的作用
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-28 DOI: 10.1007/s40789-024-00694-w
Hongqiao Lu, Meng Ma, Juntao Wei, Yonghui Bai, Peng Lv, Jiaofei Wang, Xudong Song, Guanghua Lu, Guangsuo Yu

Co-thermal chemical conversion of coal and biomass is one of the important ways to realize efficient and clean utilization of coal. In this study, a typical Ningdong coal-Yangchangwan bituminous coal and cow manure were used to study the synergistic effect of intrinsic alkali, alkaline earth metals (AAEM) and organic matter on the co-gasification of coal and biomass by thermogravimetry analyzer (TG). The results showed that AAEM had obvious synergistic promotion effect on the gasification of a bituminous coal-cow manure mixture in the isothermal gasification (1000 ℃), whereas the organic matter will show the opposite effect on the process. To further investigate the effect of organic matter on the gasification process, the influence of organic matter on non-isothermal (25-1000 ℃) gasification reaction was investigated with heating rate of 10 ℃ /min, the kinetic parameters of the gasification reaction were obtained by Coats-Redfern method. The increase of biomass mass fraction in the sample facilitates the migration of alkali metals from the material to the solid phase. The possible mechanism of the synergistic effect of intrinsic AAEM/organic matter on the co-gasification process was proposed.

煤与生物质共热化学转化是实现煤炭高效清洁利用的重要途径之一。本研究以典型的宁东煤-羊场湾烟煤和牛粪为原料,利用热重分析仪(TG)研究了固有碱、碱土金属(AAEM)和有机质对煤与生物质共气化的协同效应。结果表明,在等温气化(1000 ℃)过程中,AAEM 对烟煤-牛粪混合物的气化有明显的协同促进作用,而有机物对该过程的影响则相反。为了进一步研究有机物对气化过程的影响,研究了有机物对非等温(25-1000 ℃)气化反应的影响,加热速率为 10 ℃/min,气化反应动力学参数由 Coats-Redfern 方法获得。样品中生物质质量分数的增加促进了碱金属从材料向固相的迁移。提出了固有 AAEM/有机物对协同气化过程产生协同效应的可能机制。
{"title":"Study of synergistic behavior during bituminous coal-cow manure co-gasification: The role of intrinsic AAEM and organic matter","authors":"Hongqiao Lu, Meng Ma, Juntao Wei, Yonghui Bai, Peng Lv, Jiaofei Wang, Xudong Song, Guanghua Lu, Guangsuo Yu","doi":"10.1007/s40789-024-00694-w","DOIUrl":"https://doi.org/10.1007/s40789-024-00694-w","url":null,"abstract":"<p>Co-thermal chemical conversion of coal and biomass is one of the important ways to realize efficient and clean utilization of coal. In this study, a typical Ningdong coal-Yangchangwan bituminous coal and cow manure were used to study the synergistic effect of intrinsic alkali, alkaline earth metals (AAEM) and organic matter on the co-gasification of coal and biomass by thermogravimetry analyzer (TG). The results showed that AAEM had obvious synergistic promotion effect on the gasification of a bituminous coal-cow manure mixture in the isothermal gasification (1000 ℃), whereas the organic matter will show the opposite effect on the process. To further investigate the effect of organic matter on the gasification process, the influence of organic matter on non-isothermal (25-1000 ℃) gasification reaction was investigated with heating rate of 10 ℃ /min, the kinetic parameters of the gasification reaction were obtained by Coats-Redfern method. The increase of biomass mass fraction in the sample facilitates the migration of alkali metals from the material to the solid phase. The possible mechanism of the synergistic effect of intrinsic AAEM/organic matter on the co-gasification process was proposed.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"73 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785254","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Extractability and mineralogical evaluation of rare earth elements from Waterberg Coalfield run-of-mine and discard coal 瓦特贝格煤田采煤和弃煤中稀土元素的可提取性和矿物学评价
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-24 DOI: 10.1007/s40789-024-00702-z
Agnes Modiga, Orevaoghene Eterigho-Ikelegbe, Samson Bada

This study explores the extraction of rare earth elements (REEs) from high-ash run-of-mine and discard coal sourced from the Waterberg Coalfield. Three distinct methods were employed: (1) ultrasonic-assisted caustic digestion; (2) direct acid leaching; and (3) ultrasonic-assisted caustic-acid leaching. Inductively coupled plasma mass spectrometry was utilized to quantify REEs in both the coals and resultant leachates. Leaching the coals with 40% NaOH at 80 °C, along with 40 kHz sonication, yielded a total rare earth element (TREE) recovery of less than 2%. Notable enrichment of REEs was observed in the run-of-mine and discard coal by 17% and 19%, respectively. Upon employing 7.5% HCl, a recovery of less than 11.0% for TREE was achieved in both coal samples. However, leaching the caustic digested coal samples with 7.5% HCl significantly enhanced the TREE recovery to 88.8% and 80.0% for run-of-mine and discard coal, respectively. X-ray diffraction analysis identified kaolinite and quartz as the predominant minerals. Scanning electron microscopy-energy dispersive microanalysis revealed monazite and xenotime as the REE-bearing minerals within the coal samples. These minerals were found either liberated, attached to, or encapsulated by the clay-quartz matrices. Further mineralogical assessments highlighted the increased REE concentrations in coals post-caustic digestion and subsequent recovery during acid leaching. This increase was attributed to the partial dissolution of kaolinite encapsulating the RE-phosphates and the digestion of REE-bearing minerals. Notably, undissolved REE-bearing elements in the caustic-acid-leached coal indicated the necessity of harsh leaching conditions to augment REE recovery from these coal samples.

本研究探讨了从沃特伯格煤田的高灰分原煤和弃煤中提取稀土元素(REEs)的方法。采用了三种不同的方法:(1) 超声波辅助苛性钠消化法;(2) 直接酸浸法;(3) 超声波辅助苛性钠-酸浸法。利用电感耦合等离子体质谱法对煤炭和浸出液中的 REEs 进行量化。在 80 °C 下用 40% 的 NaOH 和 40 kHz 的超声波对煤炭进行浸出,其稀土元素总回收率低于 2%。在原煤和弃煤中观察到的稀土元素富集率分别为 17% 和 19%。在使用 7.5% HCl 时,两个煤样中的 TREE 回收率均低于 11.0%。然而,用 7.5% HCl 浸取经过苛性钠消化的煤样后,矿前煤和废弃煤的 TREE 回收率分别显著提高到 88.8% 和 80.0%。X 射线衍射分析确定高岭石和石英为主要矿物。扫描电子显微镜-能量色散显微分析显示,煤样中的独居石和氙石是含 REE 的矿物。这些矿物或被释放出来,或附着在粘土-石英基质上,或被粘土-石英基质包裹。进一步的矿物学评估表明,在苛性钠消化后和随后的酸浸出过程中,煤炭中的 REE 浓度有所增加。这种增加可归因于包裹稀土磷酸盐的高岭石的部分溶解和含稀土元素矿物的消化。值得注意的是,苛性碱-酸浸出煤中未溶解的含 REE 元素表明,必须在苛刻的浸出条件下才能提高这些煤样的 REE 回收率。
{"title":"Extractability and mineralogical evaluation of rare earth elements from Waterberg Coalfield run-of-mine and discard coal","authors":"Agnes Modiga, Orevaoghene Eterigho-Ikelegbe, Samson Bada","doi":"10.1007/s40789-024-00702-z","DOIUrl":"https://doi.org/10.1007/s40789-024-00702-z","url":null,"abstract":"<p>This study explores the extraction of rare earth elements (REEs) from high-ash run-of-mine and discard coal sourced from the Waterberg Coalfield. Three distinct methods were employed: (1) ultrasonic-assisted caustic digestion; (2) direct acid leaching; and (3) ultrasonic-assisted caustic-acid leaching. Inductively coupled plasma mass spectrometry was utilized to quantify REEs in both the coals and resultant leachates. Leaching the coals with 40% NaOH at 80 °C, along with 40 kHz sonication, yielded a total rare earth element (TREE) recovery of less than 2%. Notable enrichment of REEs was observed in the run-of-mine and discard coal by 17% and 19%, respectively. Upon employing 7.5% HCl, a recovery of less than 11.0% for TREE was achieved in both coal samples. However, leaching the caustic digested coal samples with 7.5% HCl significantly enhanced the TREE recovery to 88.8% and 80.0% for run-of-mine and discard coal, respectively. X-ray diffraction analysis identified kaolinite and quartz as the predominant minerals. Scanning electron microscopy-energy dispersive microanalysis revealed monazite and xenotime as the REE-bearing minerals within the coal samples. These minerals were found either liberated, attached to, or encapsulated by the clay-quartz matrices. Further mineralogical assessments highlighted the increased REE concentrations in coals post-caustic digestion and subsequent recovery during acid leaching. This increase was attributed to the partial dissolution of kaolinite encapsulating the RE-phosphates and the digestion of REE-bearing minerals. Notably, undissolved REE-bearing elements in the caustic-acid-leached coal indicated the necessity of harsh leaching conditions to augment REE recovery from these coal samples.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"1 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141785256","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical simulation on the dynamic mechanical response and fracture mechanism of rocks containing a single hole 含单孔岩石的动态力学响应和断裂机制的数值模拟
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-19 DOI: 10.1007/s40789-024-00718-5
Zhenyu Han, Kai Liu, Jinyin Ma, Diyuan Li

Caverns and tunnels are constantly exposed to dynamic loads, posing a potentially significant threat to the safety of rock structures. To facilitate the understanding of dynamic fracture around openings, a series of discrete element models were established to numerically examine the effect of hole shape on dynamic mechanical properties and crack evolution. The results indicate that the existence of a hole greatly reduces dynamic strength, and the reduction is closely related to hole shape. The strain variation of pre-holed specimens is more complicated and even larger than the value of intact specimens. Although crack initiation differs for varying hole shapes, the entire structural collapse of specimens is controlled by macro shear cracks along the diagonal direction of the specimen, which are effectively identified by velocity trend arrows and contact force distribution. Finally, comparative analysis between failure pattern of pre-holed specimens under static and dynamic loads were conducted.

岩洞和隧道经常受到动态载荷的影响,对岩石结构的安全构成潜在的重大威胁。为了便于理解洞口周围的动态断裂,我们建立了一系列离散元素模型,以数值方法研究洞口形状对动态力学性能和裂缝演化的影响。结果表明,孔洞的存在大大降低了动态强度,而动态强度的降低与孔洞形状密切相关。预孔试样的应变变化更为复杂,甚至大于完整试样的应变值。虽然不同孔型的裂纹起始点不同,但试样的整个结构坍塌是由沿试样对角线方向的宏观剪切裂纹控制的,这些裂纹可以通过速度趋势箭头和接触力分布有效识别。最后,对预孔试样在静载和动载下的破坏模式进行了对比分析。
{"title":"Numerical simulation on the dynamic mechanical response and fracture mechanism of rocks containing a single hole","authors":"Zhenyu Han, Kai Liu, Jinyin Ma, Diyuan Li","doi":"10.1007/s40789-024-00718-5","DOIUrl":"https://doi.org/10.1007/s40789-024-00718-5","url":null,"abstract":"<p>Caverns and tunnels are constantly exposed to dynamic loads, posing a potentially significant threat to the safety of rock structures. To facilitate the understanding of dynamic fracture around openings, a series of discrete element models were established to numerically examine the effect of hole shape on dynamic mechanical properties and crack evolution. The results indicate that the existence of a hole greatly reduces dynamic strength, and the reduction is closely related to hole shape. The strain variation of pre-holed specimens is more complicated and even larger than the value of intact specimens. Although crack initiation differs for varying hole shapes, the entire structural collapse of specimens is controlled by macro shear cracks along the diagonal direction of the specimen, which are effectively identified by velocity trend arrows and contact force distribution. Finally, comparative analysis between failure pattern of pre-holed specimens under static and dynamic loads were conducted.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"51 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical responses and fracturing behaviors of coal under complex normal and shear stresses, Part I: Experimental results 复杂法向应力和剪切应力下煤的机械响应和断裂行为,第一部分:实验结果
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-17 DOI: 10.1007/s40789-024-00705-w
Z. Y. Song, W. G. Dang, Z. C. Bai, Y. Zhao, P. T. Wang, Z. Yang

This work presents experimental tests based on coal collected from a coal mine based underground water reservoir (CMUWR). The mechanical responses of dry and water-soaked coal samples under the complex normal and shear stresses under multi-amplitude and variable frequency is investigated. The experimental results reveal the effects of stress path, water soaking and frequency on deformation, energy dissipation, secant modulus and shear failure surface roughness. The experimental results show that when normal and shear stresses are applied simultaneously, there is a significant competitive relationship between them. On the dominant side, the strain rate will be significantly increased. The sample under a loading frequency of 0.2 Hz exhibits a longer fatigue life. During the cyclic shear test, the shear strain of the water-soaked sample is higher than that of the dry samples. The average roughness coefficient of failure surface exhibits an increasing pattern with increase in shear strength, the elevated roughness of a shear surface is advantageous in constraining shear displacements of specimens, thereby lowering the energy dissipation. This study can provide theoretical and practical implications for a long-term safety evaluation of CMUWR.

本研究介绍了基于煤矿地下水库(CMUWR)采集的煤炭进行的实验测试。研究了干燥和浸水煤样在多振幅、变频率的复杂法向应力和剪切应力作用下的力学响应。实验结果揭示了应力路径、水浸泡和频率对变形、能量耗散、正弦模量和剪切破坏表面粗糙度的影响。实验结果表明,当同时施加法向应力和剪切应力时,它们之间存在明显的竞争关系。在占优势的一方,应变率会明显增加。加载频率为 0.2 Hz 的样品具有更长的疲劳寿命。在循环剪切试验中,浸水样品的剪切应变高于干燥样品。破坏表面的平均粗糙度系数随剪切强度的增加而增加,剪切表面粗糙度的增加有利于限制试样的剪切位移,从而降低能量耗散。这项研究可为 CMUWR 的长期安全评估提供理论和实践意义。
{"title":"Mechanical responses and fracturing behaviors of coal under complex normal and shear stresses, Part I: Experimental results","authors":"Z. Y. Song, W. G. Dang, Z. C. Bai, Y. Zhao, P. T. Wang, Z. Yang","doi":"10.1007/s40789-024-00705-w","DOIUrl":"https://doi.org/10.1007/s40789-024-00705-w","url":null,"abstract":"<p>This work presents experimental tests based on coal collected from a coal mine based underground water reservoir (CMUWR). The mechanical responses of dry and water-soaked coal samples under the complex normal and shear stresses under multi-amplitude and variable frequency is investigated. The experimental results reveal the effects of stress path, water soaking and frequency on deformation, energy dissipation, secant modulus and shear failure surface roughness. The experimental results show that when normal and shear stresses are applied simultaneously, there is a significant competitive relationship between them. On the dominant side, the strain rate will be significantly increased. The sample under a loading frequency of 0.2 Hz exhibits a longer fatigue life. During the cyclic shear test, the shear strain of the water-soaked sample is higher than that of the dry samples. The average roughness coefficient of failure surface exhibits an increasing pattern with increase in shear strength, the elevated roughness of a shear surface is advantageous in constraining shear displacements of specimens, thereby lowering the energy dissipation. This study can provide theoretical and practical implications for a long-term safety evaluation of CMUWR.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"40 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141744125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on pore structure evolution of thermally treated shales: implications for CO2 storage in underground thermally treated shale horizons 热处理页岩孔隙结构演变的实验研究:对地下热处理页岩地层二氧化碳封存的影响
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-12 DOI: 10.1007/s40789-024-00717-6
Bodhisatwa Hazra, Debanjan Chandra, Vikram Vishal, Mehdi Ostadhassan, Chinmay Sethi, Binoy K. Saikia, Jai Krishna Pandey, Atul K. Varma

Extracting gas from unconventional shale reservoirs with low permeability is challenging. To overcome this, hydraulic fracturing (HF) is employed. Despite enhancing shale gas production, HF has drawbacks like groundwater pollution and induced earthquakes. Such issues highlight the need for ongoing exploration of novel shale gas extraction methods such as in situ heating through combustion or pyrolysis to mitigate operational and environmental concerns. In this study, thermally immature shales of contrasting organic richness from Rajmahal Basin of India were heated to different temperatures (pyrolysis at 350, 500 and 650 °C) to assess the temperature protocols necessary for hydrocarbon liberation and investigate the evolution of pore structural facets with implications for CO2 sequestration in underground thermally treated shale horizons. Our results from low-pressure N2 adsorption reveal reduced adsorption capacity in the shale splits treated at 350 and 500 ºC, which can be attributed to structural reworking of the organic matter within the samples leading to formation of complex pore structures that limits the access of nitrogen at low experimental temperatures. Consequently, for both the studied samples BET SSA decreased by ∼58% and 72% at 350 °C, and ∼67% and 68% at 500 °C, whereas average pore diameter increased by ∼45% and 91% at 350 °C, and ∼100% and 94% at 500 °C compared to their untreated counterparts. CO2 adsorption results, unlike N2, revealed a pronounced rise in micropore properties (surface area and volume) at 500 and 650 ºC (∼30%–35% and ∼41%–63%, respectively for both samples), contradicting the N2 adsorption outcomes. Scanning electron microscope (SEM) images complemented the findings, showing pore structures evolving from microcracks to collapsed pores with increasing thermal treatment. Analysis of the SEM images of both samples revealed a notable increase in average pore width (short axis): by ∼4 and 10 times at 350 °C, ∼5 and 12 times at 500 °C, and ∼10 and 28 times at 650 °C compared to the untreated samples. Rock-Eval analysis demonstrated the liberation of almost all pyrolyzable kerogen components in the shales heated to 650 °C. Additionally, the maximum micropore capacity, identified from CO2 gas adsorption analysis, indicated 650 °C as the ideal temperature for in situ conversion and CO2 sequestration. Nevertheless, project viability hinges on assessing other relevant aspects of shale gas development such as geomechanical stability and supercritical CO2 interactions in addition to thermal treatment.

从渗透率低的非常规页岩储层中提取天然气是一项挑战。为了克服这一难题,人们采用了水力压裂法(HF)。尽管可以提高页岩气产量,但水力压裂法也存在地下水污染和诱发地震等缺点。这些问题凸显了不断探索新型页岩气开采方法的必要性,例如通过燃烧或热解进行原位加热,以减轻操作和环境问题。在这项研究中,我们将印度拉杰马哈尔盆地有机质丰富程度不同的热未成熟页岩加热到不同的温度(350、500 和 650 °C 的热解温度),以评估碳氢化合物释放所需的温度协议,并研究孔隙结构面的演变对地下热处理页岩地层二氧化碳封存的影响。我们的低压 N2 吸附结果表明,在 350 ºC 和 500 ºC 温度下处理的页岩裂隙的吸附能力降低,这可能是由于样品中有机物的结构再加工导致形成复杂的孔隙结构,从而限制了氮气在低实验温度下的进入。因此,与未经处理的样品相比,所研究的两种样品的 BET SSA 在 350 °C 时分别降低了 58% 和 72%,在 500 °C 时分别降低了 67% 和 68%,而平均孔径在 350 °C 时分别增加了 45% 和 91%,在 500 °C 时分别增加了 100% 和 94%。与 N2 不同的是,CO2 的吸附结果表明,在 500 和 650 ºC 时,微孔特性(表面积和体积)明显增加(两种样品分别为 30% ∼ 35% 和 41% ∼ 63%),这与 N2 的吸附结果相矛盾。扫描电子显微镜(SEM)图像补充了这一发现,显示出孔隙结构随着热处理程度的增加而从微裂缝演变为塌陷孔隙。对两种样品的扫描电子显微镜图像进行分析后发现,与未经处理的样品相比,平均孔隙宽度(短轴)显著增加:350 °C时增加了4∼10倍,500 °C时增加了5∼12倍,650 °C时增加了10∼28倍。岩石评价分析表明,在加热至 650 °C 的页岩中,几乎所有可热解的角质成分都得到了释放。此外,通过二氧化碳气体吸附分析确定的最大微孔容量表明,650 °C是原地转化和二氧化碳封存的理想温度。不过,除了热处理之外,项目的可行性还取决于对页岩气开发的其他相关方面的评估,如地质力学稳定性和超临界二氧化碳的相互作用。
{"title":"Experimental study on pore structure evolution of thermally treated shales: implications for CO2 storage in underground thermally treated shale horizons","authors":"Bodhisatwa Hazra, Debanjan Chandra, Vikram Vishal, Mehdi Ostadhassan, Chinmay Sethi, Binoy K. Saikia, Jai Krishna Pandey, Atul K. Varma","doi":"10.1007/s40789-024-00717-6","DOIUrl":"https://doi.org/10.1007/s40789-024-00717-6","url":null,"abstract":"<p>Extracting gas from unconventional shale reservoirs with low permeability is challenging. To overcome this, hydraulic fracturing (HF) is employed. Despite enhancing shale gas production, HF has drawbacks like groundwater pollution and induced earthquakes. Such issues highlight the need for ongoing exploration of novel shale gas extraction methods such as in situ heating through combustion or pyrolysis to mitigate operational and environmental concerns. In this study, thermally immature shales of contrasting organic richness from Rajmahal Basin of India were heated to different temperatures (pyrolysis at 350, 500 and 650 °C) to assess the temperature protocols necessary for hydrocarbon liberation and investigate the evolution of pore structural facets with implications for CO<sub>2</sub> sequestration in underground thermally treated shale horizons. Our results from low-pressure N<sub>2</sub> adsorption reveal reduced adsorption capacity in the shale splits treated at 350 and 500 ºC, which can be attributed to structural reworking of the organic matter within the samples leading to formation of complex pore structures that limits the access of nitrogen at low experimental temperatures. Consequently, for both the studied samples BET SSA decreased by ∼58% and 72% at 350 °C, and ∼67% and 68% at 500 °C, whereas average pore diameter increased by ∼45% and 91% at 350 °C, and ∼100% and 94% at 500 °C compared to their untreated counterparts. CO<sub>2</sub> adsorption results, unlike N<sub>2</sub>, revealed a pronounced rise in micropore properties (surface area and volume) at 500 and 650 ºC (∼30%–35% and ∼41%–63%, respectively for both samples), contradicting the N<sub>2</sub> adsorption outcomes. Scanning electron microscope (SEM) images complemented the findings, showing pore structures evolving from microcracks to collapsed pores with increasing thermal treatment. Analysis of the SEM images of both samples revealed a notable increase in average pore width (short axis): by ∼4 and 10 times at 350 °C, ∼5 and 12 times at 500 °C, and ∼10 and 28 times at 650 °C compared to the untreated samples. Rock-Eval analysis demonstrated the liberation of almost all pyrolyzable kerogen components in the shales heated to 650 °C. Additionally, the maximum micropore capacity, identified from CO<sub>2</sub> gas adsorption analysis, indicated 650 °C as the ideal temperature for in situ conversion and CO<sub>2</sub> sequestration. Nevertheless, project viability hinges on assessing other relevant aspects of shale gas development such as geomechanical stability and supercritical CO<sub>2</sub> interactions in addition to thermal treatment.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"67 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141613679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Experimental study on the influence of roadway shape on the evolution of outburst fluid static pressure 巷道形状对爆破流体静压演变影响的实验研究
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-11 DOI: 10.1007/s40789-024-00708-7
Jiang Xu, Xiaomei Wang, Liang Cheng, Shoujian Peng, Hailin Yang, Bin Zhou, Feng Jiao

To explore the static pressure dynamic disaster mechanism of coal-and-gas outburst (CGO) fluid, the self-developed multi-field coupling large-scale physical simulation test system of coal mine dynamic disaster was used to carry out gas outburst and CGO physical simulation tests in straight, L-shaped and T-shaped roadways. The influence of roadway shape on the evolution of static pressure was explored, and the role of pulverized coal in the process of static pressure dynamic disaster was clarified. The results indicated that the static pressure showed a fluctuating downward trend during the outburst process. When gas outburst, the middle and front parts of the roadway in the straight section roadway were the most serious areas of static pressure disasters in the three shapes of roadways. The duration and range of high static pressure disaster in L-shaped roadway were larger than those in T-shaped and straight roadways in turn. When CGO, the most serious area of static pressure disaster in L-shaped and T-shaped roadways moved backward to the middle of the straight section roadway, and there was a rebound phenomenon in the process of static pressure fluctuation decline, which showed the pulse characteristics of CGO. During the outburst, the static pressure dynamic disaster hazard of L-shaped roadway was higher than that of T-shaped roadway, and the static pressure at the bifurcation structure decayed faster than that at the turning structure, which indicated that T-shaped roadway was more conducive to the release of static pressure in roadway, thus reduced the risk of static pressure disaster. When gas outburst, the static pressure attenuation of the fluid in the roadway before and after the turning and bifurcation structure was greater than that of CGO. The peak static pressure and impulse of the fluid during gas outburst were 2 times and 4–5 times that of CGO respectively. The presence of pulverized coal reduced the attenuation of static pressure and the hazard of dynamic disaster, prolonged the release time of energy, and led to the change of the maximum static pressure disaster area.

为探索煤与瓦斯突出(CGO)流体静压动力灾害机理,利用自主研发的多场耦合大型煤矿动力灾害物理模拟试验系统,在直线型、L型和T型巷道中进行了瓦斯突出和CGO物理模拟试验。探讨了巷道形状对静压演化的影响,明确了煤粉在静压动力灾害过程中的作用。结果表明,在瓦斯涌出过程中,静压呈波动下降趋势。瓦斯突出时,直段巷道的中部和前部是三种巷道静压灾害最严重的区域。L 型巷道的高静压灾害持续时间和范围依次大于 T 型和直段巷道。当 CGO 发生时,L 型和 T 型巷道中静压灾害最严重的区域向后移动到直段巷道中间,在静压波动下降过程中出现反弹现象,表现出 CGO 的脉冲特征。瓦斯涌出时,L 型巷道的静压动态灾害危险性高于 T 型巷道,且分岔构造处的静压衰减速度快于转弯构造处的静压衰减速度,这表明 T 型巷道更有利于巷道静压的释放,从而降低了静压灾害的风险。瓦斯涌出时,拐弯和分岔结构前后巷道内流体的静压衰减均大于 CGO。瓦斯涌出时的流体静压峰值和冲量分别是 CGO 的 2 倍和 4-5 倍。煤粉的存在降低了静压衰减和动力灾害的危害,延长了能量释放时间,导致最大静压灾害区域发生变化。
{"title":"Experimental study on the influence of roadway shape on the evolution of outburst fluid static pressure","authors":"Jiang Xu, Xiaomei Wang, Liang Cheng, Shoujian Peng, Hailin Yang, Bin Zhou, Feng Jiao","doi":"10.1007/s40789-024-00708-7","DOIUrl":"https://doi.org/10.1007/s40789-024-00708-7","url":null,"abstract":"<p>To explore the static pressure dynamic disaster mechanism of coal-and-gas outburst (CGO) fluid, the self-developed multi-field coupling large-scale physical simulation test system of coal mine dynamic disaster was used to carry out gas outburst and CGO physical simulation tests in straight, L-shaped and T-shaped roadways. The influence of roadway shape on the evolution of static pressure was explored, and the role of pulverized coal in the process of static pressure dynamic disaster was clarified. The results indicated that the static pressure showed a fluctuating downward trend during the outburst process. When gas outburst, the middle and front parts of the roadway in the straight section roadway were the most serious areas of static pressure disasters in the three shapes of roadways. The duration and range of high static pressure disaster in L-shaped roadway were larger than those in T-shaped and straight roadways in turn. When CGO, the most serious area of static pressure disaster in L-shaped and T-shaped roadways moved backward to the middle of the straight section roadway, and there was a rebound phenomenon in the process of static pressure fluctuation decline, which showed the pulse characteristics of CGO. During the outburst, the static pressure dynamic disaster hazard of L-shaped roadway was higher than that of T-shaped roadway, and the static pressure at the bifurcation structure decayed faster than that at the turning structure, which indicated that T-shaped roadway was more conducive to the release of static pressure in roadway, thus reduced the risk of static pressure disaster. When gas outburst, the static pressure attenuation of the fluid in the roadway before and after the turning and bifurcation structure was greater than that of CGO. The peak static pressure and impulse of the fluid during gas outburst were 2 times and 4–5 times that of CGO respectively. The presence of pulverized coal reduced the attenuation of static pressure and the hazard of dynamic disaster, prolonged the release time of energy, and led to the change of the maximum static pressure disaster area.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"53 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Facile construction of porous carbon fibers from coal pitch for Li-S batteries 利用煤沥青轻松制造用于锂-S 电池的多孔碳纤维
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-11 DOI: 10.1007/s40789-024-00711-y
Junzhuo Guo, Zhiping Lei, Honglei Yan, Weidong Zhang, Zhan-Ku Li, Zhiming Du, Jingchong Yan, Hengfu Shui, Shibiao Ren, Zhicai Wang, Shigang Kang

Coal pitch, an important by-product in the coal coking industry with a high output, is a low-cost and high-carbon yield precursor for the manufacturing of high-value carbon materials. Herein, N/O co-doped carbon fiber (CFCP), fabricated by electrospinning using pre-oxidized coal pitch as the precursor, was employed as the sulfur host for Li-S batteries. The presence of more pyrrolic N and graphic N in CFCP than carbon fiber made from polyacrylonitrile benefits the adsorption of lithium polysulfide and the battery’s life. Sulphur-CFCP cathode (S@CFCP) exhibited excellent specific capacity and cyclability, with a specific capacity of 701.1 mAh/g and a low capacity decay rate of 0.088% per cycle over 200 cycles at 2.0 C, respectively. The high ion diffusion rate, low charge transfer resistance, and effective conversion of lithium polysulfides enable the high electrochemical performance of S@CFCP.

煤沥青是煤焦化行业的重要副产品,产量高,是制造高价值碳材料的低成本高产碳前驱体。在本文中,以预氧化煤沥青为前驱体,通过电纺丝制造的 N/O 共掺杂碳纤维(CFCP)被用作锂-S 电池的硫宿主。与聚丙烯腈制成的碳纤维相比,CFCP 中含有更多的吡咯烷酮 N 和图形 N,这有利于多硫化锂的吸附和电池的寿命。硫-CFCP 正极(S@CFCP)表现出优异的比容量和循环性,在 2.0 C 下循环 200 次,比容量为 701.1 mAh/g,容量衰减率低,每次循环为 0.088%。高离子扩散率、低电荷转移电阻和锂多硫化物的有效转化使 S@CFCP 具有很高的电化学性能。
{"title":"Facile construction of porous carbon fibers from coal pitch for Li-S batteries","authors":"Junzhuo Guo, Zhiping Lei, Honglei Yan, Weidong Zhang, Zhan-Ku Li, Zhiming Du, Jingchong Yan, Hengfu Shui, Shibiao Ren, Zhicai Wang, Shigang Kang","doi":"10.1007/s40789-024-00711-y","DOIUrl":"https://doi.org/10.1007/s40789-024-00711-y","url":null,"abstract":"<p>Coal pitch, an important by-product in the coal coking industry with a high output, is a low-cost and high-carbon yield precursor for the manufacturing of high-value carbon materials. Herein, N/O co-doped carbon fiber (CF<sub>CP</sub>), fabricated by electrospinning using pre-oxidized coal pitch as the precursor, was employed as the sulfur host for Li-S batteries. The presence of more pyrrolic N and graphic N in CF<sub>CP</sub> than carbon fiber made from polyacrylonitrile benefits the adsorption of lithium polysulfide and the battery’s life. Sulphur-CF<sub>CP</sub> cathode (S@CF<sub>CP</sub>) exhibited excellent specific capacity and cyclability, with a specific capacity of 701.1 mAh/g and a low capacity decay rate of 0.088% per cycle over 200 cycles at 2.0 C, respectively. The high ion diffusion rate, low charge transfer resistance, and effective conversion of lithium polysulfides enable the high electrochemical performance of S@CF<sub>CP</sub>.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"153 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587301","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Assessment of factors and mechanism contributing to groundwater depressurisation due to longwall mining 评估长壁采矿造成地下水降压的因素和机制
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-10 DOI: 10.1007/s40789-024-00716-7
M. Chen, C. Zhang, I. Canbulat, S. Saydam, G. Fan, D. Zhang

Assessment of mining impact on groundwater is one of critical considerations for longwall extension and sustainability, however usually constrained by limited data availability, hydrogeological variation, and the complex coupled hydro-mechanical behaviour. This paper aims to determine the factors and mechanism of groundwater depressurisation and identify knowledge gaps and methodological limitations for improving groundwater impact assessment. Analysis of dewatering cases in Australian, Chinese, and US coalfields demonstrates that piezometric drawdown can further lead to surface hydrology degradation, while the hydraulic responses vary with longwall parameters and geological conditions. Statistical interpretation of 422 height of fracturing datasets indicates that the groundwater impact positively correlates to panel geometry and depth of cover, and more pronounced in panel interaction and top coal caving cases. In situ stress, rock competency, clay mineral infillings, fault, valley topography, and surface–subsurface water interaction are geological and hydrogeological factors influencing groundwater hydraulics and long-term recovery. The dewatering mechanism involves permeability enhancement and extensive flow through fracture networks, where interconnected fractures provide steep hydraulic gradients and smooth flow pathways draining the overlying water to goaf of lower heads. Future research should improve fracture network identification and interconnectivity quantification, accompanied by description of fluid flow dynamics in the high fracture frequency and large fracture aperture context. The paper recommends a research framework to address the knowledge gaps with continuous data collection and field-scale numerical modelling as key technical support. The paper consolidates the understanding of longwall mining impacting mine hydrology and provides viewpoints that facilitate an improved assessment of groundwater depressurisation.

评估采矿对地下水的影响是长壁延伸和可持续发展的重要考虑因素之一,但通常受到有限数据可用性、水文地质变化和复杂的水力机械耦合行为的限制。本文旨在确定地下水减压的因素和机制,找出知识差距和方法限制,以改进地下水影响评估。对澳大利亚、中国和美国煤田脱水案例的分析表明,压降会进一步导致地表水文退化,而水力反应则随长壁参数和地质条件的不同而变化。对 422 个压裂数据集高度的统计解释表明,地下水影响与面板几何形状和覆盖深度呈正相关,在面板相互作用和顶煤塌陷情况下更为明显。原位应力、岩石能力、粘土矿物充填、断层、山谷地形以及地表水与地下水的相互作用等地质和水文地质因素影响着地下水水力学和长期恢复。脱水机制包括渗透性增强和通过断裂网络的广泛流动,其中相互连接的断裂提供了陡峭的水力梯度和通畅的水流路径,将上覆水排到水头较低的沟谷中。未来的研究应改进断裂网络的识别和互联量化,同时描述高断裂频率和大断裂孔径背景下的流体流动动态。论文建议建立一个研究框架,以持续的数据收集和现场规模的数值建模作为关键技术支持,解决知识差距问题。论文巩固了对长壁开采影响矿井水文的认识,并提供了有助于改进地下水降压评估的观点。
{"title":"Assessment of factors and mechanism contributing to groundwater depressurisation due to longwall mining","authors":"M. Chen, C. Zhang, I. Canbulat, S. Saydam, G. Fan, D. Zhang","doi":"10.1007/s40789-024-00716-7","DOIUrl":"https://doi.org/10.1007/s40789-024-00716-7","url":null,"abstract":"<p>Assessment of mining impact on groundwater is one of critical considerations for longwall extension and sustainability, however usually constrained by limited data availability, hydrogeological variation, and the complex coupled hydro-mechanical behaviour. This paper aims to determine the factors and mechanism of groundwater depressurisation and identify knowledge gaps and methodological limitations for improving groundwater impact assessment. Analysis of dewatering cases in Australian, Chinese, and US coalfields demonstrates that piezometric drawdown can further lead to surface hydrology degradation, while the hydraulic responses vary with longwall parameters and geological conditions. Statistical interpretation of 422 height of fracturing datasets indicates that the groundwater impact positively correlates to panel geometry and depth of cover, and more pronounced in panel interaction and top coal caving cases. In situ stress, rock competency, clay mineral infillings, fault, valley topography, and surface–subsurface water interaction are geological and hydrogeological factors influencing groundwater hydraulics and long-term recovery. The dewatering mechanism involves permeability enhancement and extensive flow through fracture networks, where interconnected fractures provide steep hydraulic gradients and smooth flow pathways draining the overlying water to goaf of lower heads. Future research should improve fracture network identification and interconnectivity quantification, accompanied by description of fluid flow dynamics in the high fracture frequency and large fracture aperture context. The paper recommends a research framework to address the knowledge gaps with continuous data collection and field-scale numerical modelling as key technical support. The paper consolidates the understanding of longwall mining impacting mine hydrology and provides viewpoints that facilitate an improved assessment of groundwater depressurisation.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"37 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587299","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mechanical responses and fracturing behaviors of coal under complex normal and shear stresses, Part II: Numerical study using DEM 复杂法向应力和剪切应力下煤的机械响应和断裂行为,第二部分:利用 DEM 进行的数值研究
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-07-10 DOI: 10.1007/s40789-024-00706-9
Z. Y. Song, F. Amann, W. G. Dang, Z. Yang

This work presents particle-based numerical simulations on coal pillars in a coal mine based underground water reservoir (CMUWR). We aim to replicate the stress–strain characteristics and present the acoustic emission behavior of the coal under complex dynamic stress paths. The study reveals failure characteristics of coal exposed to monotonic/cyclic shear load under constant/cyclic normal loads. Based on the evolution of stress-time-dependent bond diameter implemented in particle model, different damage paths are established for dry and water-immersed samples under two loading frequencies. Furthermore, the numerical Gutenberg–Richter’s b-value was calculated from the released energy emanating from bond failure, and this work presents the evolution of numerical Gutenberg–Richter’s b-value. The numerical simulation contributes to a micromechanical understanding of the failure mechanisms of coal under water-immersion and cyclic stress, providing valuable insights for strength prediction of CMUWR.

本研究对基于煤矿的地下水库(CMUWR)中的煤柱进行了基于粒子的数值模拟。我们的目的是复制应力-应变特性,并展示煤炭在复杂动态应力路径下的声发射行为。研究揭示了在恒定/周期法向载荷作用下,煤在单调/周期剪切载荷作用下的破坏特征。根据粒子模型中与应力时间相关的粘结直径的演变,在两种加载频率下,为干燥样本和水浸样本建立了不同的破坏路径。此外,数值古腾堡-里克特 b 值是根据粘结破坏释放的能量计算得出的,本研究介绍了数值古腾堡-里克特 b 值的演变情况。数值模拟有助于从微观力学角度理解煤在浸水和循环应力作用下的破坏机理,为 CMUWR 的强度预测提供有价值的见解。
{"title":"Mechanical responses and fracturing behaviors of coal under complex normal and shear stresses, Part II: Numerical study using DEM","authors":"Z. Y. Song, F. Amann, W. G. Dang, Z. Yang","doi":"10.1007/s40789-024-00706-9","DOIUrl":"https://doi.org/10.1007/s40789-024-00706-9","url":null,"abstract":"<p>This work presents particle-based numerical simulations on coal pillars in a coal mine based underground water reservoir (CMUWR). We aim to replicate the stress–strain characteristics and present the acoustic emission behavior of the coal under complex dynamic stress paths. The study reveals failure characteristics of coal exposed to monotonic/cyclic shear load under constant/cyclic normal loads. Based on the evolution of stress-time-dependent bond diameter implemented in particle model, different damage paths are established for dry and water-immersed samples under two loading frequencies. Furthermore, the numerical Gutenberg–Richter’s <i>b</i>-value was calculated from the released energy emanating from bond failure, and this work presents the evolution of numerical Gutenberg–Richter’s <i>b</i>-value. The numerical simulation contributes to a micromechanical understanding of the failure mechanisms of coal under water-immersion and cyclic stress, providing valuable insights for strength prediction of CMUWR.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"18 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141587298","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Coal Science & Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1