首页 > 最新文献

International Journal of Coal Science & Technology最新文献

英文 中文
State-of-the-art on the anchorage performance of rock bolts subjected to shear load 承受剪切荷载的岩石螺栓锚固性能的最新进展
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-02-05 DOI: 10.1007/s40789-023-00643-z
Yu Chen, Haodong Xiao

Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels, mines, and other underground structures. In environments of high ground stress, faults or weak zones can frequently arise in rock formations, presenting a significant challenge for engineering and potentially leading to underground engineering collapse. Rock bolts serve as a crucial structural element for the transmission of tensile stress and are capable of withstanding shear loads to prevent sliding of weak zones within rock mass. Therefore, a complete understanding of the behavior of rock bolts subjected to shear loads is essential. This paper presents a state-of-the-art review of the research progress of rock bolts subjected to shear load in three categories: experiment, numerical simulation, and analytical model. The review focuses on the research studies and developments in this area since the 1970s, providing a comprehensive overview of numerous factors that influence the anchorage performance of rock bolts. These factors include the diameter and angle of the rock bolt installation, rock strength, grouting material, bolt material, borehole diameter, rock bolt preload, normal stress, joint surface roughness and joint expansion angle. The paper reviews the improvement of mechanical parameter setting in numerical simulation of rock bolt shear. Furthermore, it delves into the optimization of the analytical model concerning rock bolt shear theory, approached from the perspectives of both Elastic foundation beam theory coupled with Elastoplasticity theory and Structural mechanic methods. The significance of this review lies in its ability to provide insights into the mechanical behavior of rock bolts. The paper also highlights the limitations of current research and guidelines for further research of rock bolts.

岩石螺栓广泛应用于地下工程,作为隧道、矿井和其他地下结构中为岩体提供支撑和稳定性的一种手段。在高地应力环境中,岩层中经常会出现断层或薄弱区,这给工程设计带来了巨大挑战,并可能导致地下工程坍塌。岩石螺栓是传递拉应力的重要结构元件,能够承受剪切载荷,防止岩体薄弱区滑动。因此,全面了解岩石螺栓在承受剪切荷载时的行为至关重要。本文从实验、数值模拟和分析模型三个方面对承受剪切载荷的岩石螺栓的研究进展进行了最新综述。综述侧重于 20 世纪 70 年代以来该领域的研究和发展,全面概述了影响岩石螺栓锚固性能的众多因素。这些因素包括岩石螺栓安装的直径和角度、岩石强度、灌浆材料、螺栓材料、钻孔直径、岩石螺栓预紧力、法向应力、接头表面粗糙度和接头膨胀角。本文回顾了岩石螺栓剪切数值模拟中机械参数设置的改进。此外,论文还从弹性地基梁理论、弹塑性理论和结构力学方法的角度,深入探讨了岩石螺栓剪切理论分析模型的优化问题。本综述的意义在于它能够为岩石螺栓的力学行为提供深入见解。本文还强调了当前研究的局限性以及进一步研究岩石螺栓的指导原则。
{"title":"State-of-the-art on the anchorage performance of rock bolts subjected to shear load","authors":"Yu Chen, Haodong Xiao","doi":"10.1007/s40789-023-00643-z","DOIUrl":"https://doi.org/10.1007/s40789-023-00643-z","url":null,"abstract":"<p>Rock bolts are extensively utilized in underground engineering as a means of offering support and stability to rock masses in tunnels, mines, and other underground structures. In environments of high ground stress, faults or weak zones can frequently arise in rock formations, presenting a significant challenge for engineering and potentially leading to underground engineering collapse. Rock bolts serve as a crucial structural element for the transmission of tensile stress and are capable of withstanding shear loads to prevent sliding of weak zones within rock mass. Therefore, a complete understanding of the behavior of rock bolts subjected to shear loads is essential. This paper presents a state-of-the-art review of the research progress of rock bolts subjected to shear load in three categories: experiment, numerical simulation, and analytical model. The review focuses on the research studies and developments in this area since the 1970s, providing a comprehensive overview of numerous factors that influence the anchorage performance of rock bolts. These factors include the diameter and angle of the rock bolt installation, rock strength, grouting material, bolt material, borehole diameter, rock bolt preload, normal stress, joint surface roughness and joint expansion angle. The paper reviews the improvement of mechanical parameter setting in numerical simulation of rock bolt shear. Furthermore, it delves into the optimization of the analytical model concerning rock bolt shear theory, approached from the perspectives of both Elastic foundation beam theory coupled with Elastoplasticity theory and Structural mechanic methods. The significance of this review lies in its ability to provide insights into the mechanical behavior of rock bolts. The paper also highlights the limitations of current research and guidelines for further research of rock bolts.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"13 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139754895","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quantitative characterization of the brittleness of deep shales by integrating mineral content, elastic parameters, in situ stress conditions and logging analysis 通过综合矿物含量、弹性参数、现场应力条件和测井分析,定量表征深层页岩的脆性
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-02-05 DOI: 10.1007/s40789-023-00637-x

Abstract

Deep shale reservoirs (3500–4500 m) exhibit significantly different stress states than moderately deep shale reservoirs (2000–3500 m). As a result, the brittleness response mechanisms of deep shales are also different. It is urgent to investigate methods to evaluate the brittleness of deep shales to meet the increasingly urgent needs of deep shale gas development. In this paper, the quotient of Young’s modulus divided by Poisson’s ratio based on triaxial compression tests under in situ stress conditions is taken as SSBV (Static Standard Brittleness Value). A new and pragmatic technique is developed to determine the static brittleness index that considers elastic parameters, the mineral content, and the in situ stress conditions (BIEMS). The coefficient of determination between BIEMS and SSBV reaches 0.555 for experimental data and 0.805 for field data. This coefficient is higher than that of other brittleness indices when compared to SSBV. BIEMS can offer detailed insights into shale brittleness under various conditions, including different mineral compositions, depths, and stress states. This technique can provide a solid data-based foundation for the selection of ‘sweet spots’ for single-well engineering and the comparison of the brittleness of shale gas production layers in different areas.

摘要 深页岩储层(3500-4500 米)与中深页岩储层(2000-3500 米)的应力状态明显不同。因此,深层页岩的脆性响应机制也不同。为满足日益迫切的深层页岩气开发需求,研究深层页岩脆性评价方法迫在眉睫。本文以原位应力条件下的三轴压缩试验为基础,将杨氏模量除以泊松比的商作为 SSBV(静态标准脆性值)。我们开发了一种新的实用技术来确定静态脆性指数,该技术考虑了弹性参数、矿物含量和原位应力条件(BIEMS)。实验数据的 BIEMS 与 SSBV 之间的确定系数达到 0.555,现场数据达到 0.805。与 SSBV 相比,该系数高于其他脆性指数。BIEMS 可以详细揭示页岩在各种条件下的脆性,包括不同的矿物成分、深度和应力状态。该技术可为单井工程 "最佳点 "的选择以及不同地区页岩气生产层脆性的比较提供坚实的数据基础。
{"title":"Quantitative characterization of the brittleness of deep shales by integrating mineral content, elastic parameters, in situ stress conditions and logging analysis","authors":"","doi":"10.1007/s40789-023-00637-x","DOIUrl":"https://doi.org/10.1007/s40789-023-00637-x","url":null,"abstract":"<h3>Abstract</h3> <p>Deep shale reservoirs (3500–4500 m) exhibit significantly different stress states than moderately deep shale reservoirs (2000–3500 m). As a result, the brittleness response mechanisms of deep shales are also different. It is urgent to investigate methods to evaluate the brittleness of deep shales to meet the increasingly urgent needs of deep shale gas development. In this paper, the quotient of Young’s modulus divided by Poisson’s ratio based on triaxial compression tests under in situ stress conditions is taken as SSBV (Static Standard Brittleness Value). A new and pragmatic technique is developed to determine the static brittleness index that considers elastic parameters, the mineral content, and the in situ stress conditions (BIEMS). The coefficient of determination between BIEMS and SSBV reaches 0.555 for experimental data and 0.805 for field data. This coefficient is higher than that of other brittleness indices when compared to SSBV. BIEMS can offer detailed insights into shale brittleness under various conditions, including different mineral compositions, depths, and stress states. This technique can provide a solid data-based foundation for the selection of ‘sweet spots’ for single-well engineering and the comparison of the brittleness of shale gas production layers in different areas.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"19 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139755203","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Heteroatoms doped iron oxide-based catalyst prepared from zinc slag for efficient selective catalytic reduction of NOx with NH3 利用锌渣制备的掺杂异质原子的氧化铁基催化剂用于高效选择性催化还原氮氧化物与 NH3
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-02-05 DOI: 10.1007/s40789-023-00634-0
Jiale Liang, Yaojun Zhang, Hao Chen, Licai Liu, Panyang He, Lei Wu

Excessive emissions of nitrogen oxides from flue gas have imposed various detrimental impacts on environment, and the development of deNOx catalysts with low-cost and high performance is an urgent requirement. Iron oxide-based material has been explored for promising deNOx catalysts. However, the unsatisfactory low-temperature activity limits their practical applications. In this study, a series of excellent low-temperature denitrification catalysts (Ha-FeOx/yZS) were prepared by acid treatment of zinc slag, and the mass ratios of Fe to impure ions was regulated by adjusting the acid concentrations. Ha-FeOx/yZS showed high denitrification performance (> 90%) in the range of 180–300 °C, and the optimal NO conversion and N2 selectivity were higher than 95% at 250 °C. Among them, the Ha-FeOx/2ZS synthesized with 2 mol/L HNO3 exhibited the widest temperature window (175–350 °C). The excellent denitrification performance of Ha-FeOx/yZS was mainly attributed to the strong interaction between Fe and impurity ions to inhibit the growth of crystals, making Ha-FeOx/yZS with amorphous structure, nice fine particles, large specific surface area, more surface acid sites and high chemisorbed oxygen. The in-situ DRIFT experiments confirmed that the SCR reaction on the Ha-FeOx/yZS followed both Langmuir-Hinshelwood (L-H) mechanism and Eley-Rideal (E-R) mechanism. The present work proposed a high value-added method for the preparation of cost-effective catalysts from zinc slag, which showed a promising application prospect in NOx removal by selective catalytic reduction with ammonia.

烟气中氮氧化物的过量排放对环境造成了各种不利影响,因此迫切需要开发低成本、高性能的脱硝催化剂。氧化铁基材料一直被视为前景广阔的脱硝催化剂。然而,低温活性不理想限制了其实际应用。本研究采用酸处理锌渣的方法制备了一系列优良的低温脱硝催化剂(Ha-FeOx/yZS),并通过调节酸浓度来调节铁离子与杂质离子的质量比。Ha-FeOx/yZS在180-300 °C范围内具有较高的脱硝性能(90%),在250 °C时最佳的NO转化率和N2选择性均高于95%。其中,用 2 mol/L HNO3 合成的 Ha-FeOx/2ZS 具有最宽的温度窗口(175-350 ℃)。Ha-FeOx/yZS优异的脱硝性能主要归功于铁与杂质离子之间强烈的相互作用抑制了晶体的生长,使得Ha-FeOx/yZS具有非晶态结构,颗粒细小,比表面积大,表面酸位点多,化学吸附氧高。原位 DRIFT 实验证实,Ha-FeOx/yZS 上的 SCR 反应遵循 Langmuir-Hinshelwood (L-H) 机制和 Eley-Rideal (E-R) 机制。本研究提出了一种利用锌渣制备高性价比催化剂的高附加值方法,该方法在利用氨进行选择性催化还原去除氮氧化物方面具有广阔的应用前景。
{"title":"Heteroatoms doped iron oxide-based catalyst prepared from zinc slag for efficient selective catalytic reduction of NOx with NH3","authors":"Jiale Liang, Yaojun Zhang, Hao Chen, Licai Liu, Panyang He, Lei Wu","doi":"10.1007/s40789-023-00634-0","DOIUrl":"https://doi.org/10.1007/s40789-023-00634-0","url":null,"abstract":"<p>Excessive emissions of nitrogen oxides from flue gas have imposed various detrimental impacts on environment, and the development of deNO<sub><i>x</i></sub> catalysts with low-cost and high performance is an urgent requirement. Iron oxide-based material has been explored for promising deNO<sub><i>x</i></sub> catalysts. However, the unsatisfactory low-temperature activity limits their practical applications. In this study, a series of excellent low-temperature denitrification catalysts (Ha-FeO<sub><i>x</i></sub>/yZS) were prepared by acid treatment of zinc slag, and the mass ratios of Fe to impure ions was regulated by adjusting the acid concentrations. Ha-FeO<sub><i>x</i></sub>/yZS showed high denitrification performance (&gt; 90%) in the range of 180–300 °C, and the optimal NO conversion and N<sub>2</sub> selectivity were higher than 95% at 250 °C. Among them, the Ha-FeO<sub><i>x</i></sub>/2ZS synthesized with 2 mol/L HNO<sub>3</sub> exhibited the widest temperature window (175–350 °C). The excellent denitrification performance of Ha-FeO<sub><i>x</i></sub>/yZS was mainly attributed to the strong interaction between Fe and impurity ions to inhibit the growth of crystals, making Ha-FeO<sub><i>x</i></sub>/yZS with amorphous structure, nice fine particles, large specific surface area, more surface acid sites and high chemisorbed oxygen. The in-situ DRIFT experiments confirmed that the SCR reaction on the Ha-FeO<sub><i>x</i></sub>/yZS followed both Langmuir-Hinshelwood (L-H) mechanism and Eley-Rideal (E-R) mechanism. The present work proposed a high value-added method for the preparation of cost-effective catalysts from zinc slag, which showed a promising application prospect in NO<sub><i>x</i></sub> removal by selective catalytic reduction with ammonia.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"3 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139755076","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Influence of water coupling coefficient on the blasting effect of red sandstone specimens 水耦合系数对红砂岩试样爆破效果的影响
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-02-04 DOI: 10.1007/s40789-023-00620-6
Yang Li, Renshu Yang, Yanbing Wang, Dairui Fu

This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone. The analysis is based on the theories of detonation wave and elastic wave, focusing on the variation in wall pressure of the blasting holes. Using DDNP explosive as the explosive load, blasting tests were conducted on red sandstone specimens with four different water coupling coefficients: 1.20, 1.33, 1.50, and 2.00. The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients. Additionally, the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage. CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock. Additionally, the volume fractal dimension and damage degree of the post-blasting specimens are calculated. The findings are then combined with numerical simulation to facilitate auxiliary analysis. The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone, enabling more of the explosion energy to be utilized for crack propagation following the explosion. The specimens exhibited distinct failure patterns, resulting in corresponding changes in fractal dimensions. The simulated pore wall pressure–time curve validated the derived theoretical results, whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium. As the water coupling coefficient increases, the buffering effect of the water medium becomes increasingly prominent.

本研究探讨了不同水耦合系数对红砂岩爆破效果的影响。分析基于起爆波和弹性波理论,重点关注爆破孔壁压力的变化。以 DDNP 炸药为爆破载荷,对四种不同水耦合系数的红砂岩试样进行了爆破试验:1.20、1.33、1.50 和 2.00。研究考察了在这些不同水耦合系数下爆破后岩石试样的形态。此外,还计算了爆破产生的表面裂缝的分形尺寸,以便对岩石的破坏程度进行定量评估。对爆破后的试样进行了 CT 扫描和三维重建,以直观地描述岩石的损坏程度和裂缝情况。此外,还计算了爆破后试样的体积分形维度和损伤程度。然后将研究结果与数值模拟相结合,以便进行辅助分析。结果表明,水耦合系数的增加会导致孔壁和破碎区的峰值压力降低,从而使更多的爆炸能量被用于爆炸后的裂纹扩展。试样表现出不同的破坏模式,导致分形尺寸发生相应变化。模拟孔壁压力-时间曲线验证了推导出的理论结果,而应力云图和爆炸能量-时间曲线则证明了水介质的缓冲作用。随着水耦合系数的增加,水介质的缓冲作用越来越突出。
{"title":"Influence of water coupling coefficient on the blasting effect of red sandstone specimens","authors":"Yang Li, Renshu Yang, Yanbing Wang, Dairui Fu","doi":"10.1007/s40789-023-00620-6","DOIUrl":"https://doi.org/10.1007/s40789-023-00620-6","url":null,"abstract":"<p>This study investigates the impact of different water coupling coefficients on the blasting effect of red sandstone. The analysis is based on the theories of detonation wave and elastic wave, focusing on the variation in wall pressure of the blasting holes. Using DDNP explosive as the explosive load, blasting tests were conducted on red sandstone specimens with four different water coupling coefficients: 1.20, 1.33, 1.50, and 2.00. The study examines the morphologies of the rock specimens after blasting under these different water coupling coefficients. Additionally, the fractal dimensions of the surface cracks resulting from the blasting were calculated to provide a quantitative evaluation of the extent of rock damage. CT scanning and 3D reconstruction were performed on the post-blasting specimens to visually depict the extent of damage and fractures within the rock. Additionally, the volume fractal dimension and damage degree of the post-blasting specimens are calculated. The findings are then combined with numerical simulation to facilitate auxiliary analysis. The results demonstrate that an increase in the water coupling coefficient leads to a reduction in the peak pressure on the hole wall and the crushing zone, enabling more of the explosion energy to be utilized for crack propagation following the explosion. The specimens exhibited distinct failure patterns, resulting in corresponding changes in fractal dimensions. The simulated pore wall pressure–time curve validated the derived theoretical results, whereas the stress cloud map and explosion energy-time curve demonstrated the buffering effect of the water medium. As the water coupling coefficient increases, the buffering effect of the water medium becomes increasingly prominent.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"20 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139677340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiscale analysis of fine slag from pulverized coal gasification in entrained-flow bed 内流床煤粉气化细渣的多尺度分析
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-02-03 DOI: 10.1007/s40789-023-00660-y
Lirui Mao, Mingdong Zheng, Baoliang Xia, Facun Jiao, Tao Liu, Yuanchun Zhang, Shengtao Gao, Hanxu Li

Fine slag (FS) is an unavoidable by-product of coal gasification. FS, which is a simple heap of solid waste left in the open air, easily causes environmental pollution and has a low resource utilization rate, thereby restricting the development of energy-saving coal gasification technologies. The multiscale analysis of FS performed in this study indicates typical grain size distribution, composition, crystalline structure, and chemical bonding characteristics. The FS primarily contained inorganic and carbon components (dry bases) and exhibited a "three-peak distribution" of the grain size and regular spheroidal as well as irregular shapes. The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds. The carbon constituents were primarily amorphous in structure, with a certain degree of order and active sites. C 1s XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures. The inorganic components, constituting 90% of the total sample, were primarily silicon, aluminum, iron, and calcium. The inorganic components contained Si–O-Si, Si–O–Al, Si–O, SO42−, and Fe–O bonds. Fe 2p XPS spectrum could be deconvoluted into Fe 2p1/2 and Fe 2p3/2 peaks and satellite peaks, while Fe existed mainly in the form of Fe(III). The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future.

细炉渣(FS)是煤气化过程中不可避免的副产品。细渣是露天堆放的简单固体废弃物,容易造成环境污染,资源利用率低,制约了煤气化节能技术的发展。本研究对 FS 进行的多尺度分析表明了典型的粒度分布、成分、晶体结构和化学键特性。FS 主要含有无机成分和碳成分(干基),粒度呈 "三峰分布",形状既有规则的球形,也有不规则的球形。不规则颗粒主要吸附在结构上,分布密集,具有多个孔隙和褶皱。碳成分主要为无定形结构,具有一定的有序性和活性位点。C 1s XPS 光谱显示存在 C-C 和 C-H 键以及许多芳香结构。无机成分占样品总量的 90%,主要是硅、铝、铁和钙。无机成分中含有硅-O-硅、硅-O-铝、硅-O、SO42-和铁-O 键。铁 2p XPS 光谱可分解为铁 2p1/2 峰、铁 2p3/2 峰和卫星峰,而铁主要以铁(III)的形式存在。这项研究的结果将有助于今后精细矿渣的资源利用和形成机制。
{"title":"Multiscale analysis of fine slag from pulverized coal gasification in entrained-flow bed","authors":"Lirui Mao, Mingdong Zheng, Baoliang Xia, Facun Jiao, Tao Liu, Yuanchun Zhang, Shengtao Gao, Hanxu Li","doi":"10.1007/s40789-023-00660-y","DOIUrl":"https://doi.org/10.1007/s40789-023-00660-y","url":null,"abstract":"<p>Fine slag (FS) is an unavoidable by-product of coal gasification. FS, which is a simple heap of solid waste left in the open air, easily causes environmental pollution and has a low resource utilization rate, thereby restricting the development of energy-saving coal gasification technologies. The multiscale analysis of FS performed in this study indicates typical grain size distribution, composition, crystalline structure, and chemical bonding characteristics. The FS primarily contained inorganic and carbon components (dry bases) and exhibited a \"three-peak distribution\" of the grain size and regular spheroidal as well as irregular shapes. The irregular particles were mainly adsorbed onto the structure and had a dense distribution and multiple pores and folds. The carbon constituents were primarily amorphous in structure, with a certain degree of order and active sites. C 1<i>s</i> XPS spectrum indicated the presence of C–C and C–H bonds and numerous aromatic structures. The inorganic components, constituting 90% of the total sample, were primarily silicon, aluminum, iron, and calcium. The inorganic components contained Si–O-Si, Si–O–Al, Si–O, SO<sub>4</sub><sup>2−</sup>, and Fe–O bonds. Fe 2<i>p</i> XPS spectrum could be deconvoluted into Fe 2<i>p</i><sub>1/2</sub> and Fe 2<i>p</i><sub>3/2</sub> peaks and satellite peaks, while Fe existed mainly in the form of Fe(III). The findings of this study will be beneficial in resource utilization and formation mechanism of fine slag in future.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"35 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139678242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geochemical and petrological studies of high sulfur coal and overburden from Makum coalfield (Northeast India) towards understanding and mitigation of acid mine drainage 对马库姆煤田(印度东北部)的高硫煤和覆盖层进行地球化学和岩石学研究,以了解和缓解酸性矿井排水问题
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-02-03 DOI: 10.1007/s40789-023-00658-6

Abstract

Opencast coal mining produces trash of soil and rock containing various minerals, that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drainage (AMD) through oxidation pyrite minerals. The current study entailed assessing the potential production of AMD from an opencast coal mining region in Northeast part of India. In order to have a comprehensive overview of the AMD problem in Makum coalfield, the physico-chemical, geochemical, and petrological characteristics of the coal and overburden (OB) samples collected from the Makum coalfield (Northeast India) were thoroughly investigated. The maceral compositions reveal that coal features all three groups of macerals (liptinite, vitrinite, and inertinite), with a high concentration of liptinite indicating the coal of perhydrous, thereby rendering it more reactive. Pyrite (FeS2) oxidation kinetics were studied by conducting the aqueous leaching experiments of coal and (OB) samples to interpret the chemical weathering under controlled laboratory conditions of various temperature and time periods, and to replicate the actual mine site leaching. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was operated to detect the disposal of some precarious elements from coal and OB samples to the leachates during our controlled leaching experiment. The Rare earth element (REE) enrichment in the samples shows the anthropogenic incorporation of the REE in the coal and OB. These experiments reveal the change in conductivity, acid producing tendency, total dissolved solid(TDS), total Iron(Fe) and dissolved Sulfate(SO42−) ions on progress of the leaching experiments. Moreover, the discharge of FeS2 via atmospheric oxidation in laboratory condition undergoes a significant growth with the rise of temperature of the reaction systems in the environment and follows pseudo first order kinetics. A bio-remediative strategies is also reported in this paper to mitigate AMD water by employing size-segregated powdered limestone and water hyacinth plant in an indigenously developed site-specific prototype station. Apart from neutralisation of AMD water, this eco-friendly AMD remediation strategy demonstrates a reduction in PHEs concentrations in the treated AMD water.

摘要 露天开采煤炭会产生含有各种矿物质的土壤和岩石垃圾,这些垃圾通常被倾倒在废弃场地附近,造成严重的环境问题,包括黄铁矿氧化产生的酸性矿井排水(AMD)。当前的研究需要评估印度东北部露天煤矿开采区可能产生的酸性矿井排水。为了全面了解马库姆煤田的 AMD 问题,对从马库姆煤田(印度东北部)采集的煤炭和覆盖层(OB)样本的物理化学、地球化学和岩石学特征进行了深入研究。宏观成分显示,煤炭具有所有三组宏观矿物(锂辉石、玻璃石和惰性石),高浓度的锂辉石表明煤炭具有过水性,从而使其更具活性。黄铁矿(FeS2)氧化动力学研究通过对煤炭和(OB)样品进行水浸出实验来解释在不同温度和时间段的受控实验室条件下的化学风化,并复制实际矿区浸出情况。在受控浸出实验中,我们使用了电感耦合等离子体-光学发射光谱(ICP-OES)来检测煤炭和转炉样本中一些不稳定元素在浸出液中的弃置情况。样品中的稀土元素富集表明煤炭和转炉煤中人为加入了稀土元素。这些实验揭示了电导率、产酸倾向、总溶解固体(TDS)、总铁(Fe)和溶解硫酸根(SO42-)离子在浸出实验过程中的变化。此外,实验室条件下通过大气氧化法排放的 FeS2 随环境中反应体系温度的升高而显著增加,并遵循伪一阶动力学。本文还报告了一种生物补救策略,即在本地开发的特定地点原型站中采用粒度分隔的粉状石灰石和水葫芦植物来缓解 AMD 水。除了中和 AMD 水之外,这种生态友好型 AMD 治理策略还能降低经处理的 AMD 水中 PHEs 的浓度。
{"title":"Geochemical and petrological studies of high sulfur coal and overburden from Makum coalfield (Northeast India) towards understanding and mitigation of acid mine drainage","authors":"","doi":"10.1007/s40789-023-00658-6","DOIUrl":"https://doi.org/10.1007/s40789-023-00658-6","url":null,"abstract":"<h3>Abstract</h3> <p>Opencast coal mining produces trash of soil and rock containing various minerals, that are usually dumped nearby the abandoned sites which causes severe environmental concern including the production of acid mine drainage (AMD) through oxidation pyrite minerals. The current study entailed assessing the potential production of AMD from an opencast coal mining region in Northeast part of India. In order to have a comprehensive overview of the AMD problem in Makum coalfield, the physico-chemical, geochemical, and petrological characteristics of the coal and overburden (OB) samples collected from the Makum coalfield (Northeast India) were thoroughly investigated. The maceral compositions reveal that coal features all three groups of macerals (liptinite, vitrinite, and inertinite), with a high concentration of liptinite indicating the coal of perhydrous, thereby rendering it more reactive. Pyrite (FeS<sub>2</sub>) oxidation kinetics were studied by conducting the aqueous leaching experiments of coal and (OB) samples to interpret the chemical weathering under controlled laboratory conditions of various temperature and time periods, and to replicate the actual mine site leaching. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) was operated to detect the disposal of some precarious elements from coal and OB samples to the leachates during our controlled leaching experiment. The Rare earth element (REE) enrichment in the samples shows the anthropogenic incorporation of the REE in the coal and OB. These experiments reveal the change in conductivity, acid producing tendency, total dissolved solid(TDS), total Iron(Fe) and dissolved Sulfate(SO<sub>4</sub><sup>2−</sup>) ions on progress of the leaching experiments. Moreover, the discharge of FeS<sub>2</sub> via atmospheric oxidation in laboratory condition undergoes a significant growth with the rise of temperature of the reaction systems in the environment and follows pseudo first order kinetics. A bio-remediative strategies is also reported in this paper to mitigate AMD water by employing size-segregated powdered limestone and water hyacinth plant in an indigenously developed site-specific prototype station. Apart from neutralisation of AMD water, this eco-friendly AMD remediation strategy demonstrates a reduction in PHEs concentrations in the treated AMD water.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"75 3 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139678241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fabrication of pollution-free coal gangue-based catalytic material utilizing ferrous chloride as activator for efficient peroxymonosulfate activation 利用氯化亚铁作为活化剂制备无污染的煤矸石基催化材料,实现高效过一硫酸盐活化
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-01-20 DOI: 10.1007/s40789-023-00659-5
Zhiming Sun, Xinlin Wang, Shaoran Jia, Jialin Liang, Xiaotian Ning, Chunquan Li

Novel coal gangue-based persulfate catalyst (CG-FeCl2) was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate (FeCl2·4H2O). The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated. It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds. And the main gaseous products are H2O, H2, and HCl during the heating process. Besides, the ability of CG-FeCl2 to activate peroxymonosulfate (PMS) for catalytic degradation of polycyclic aromatic hydrocarbons (PAHs) and phenol was deeply studied. More than 95% of naphthyl, phenanthrene and phenol were removed under optimizied conditions. In addition, 1O2, ·OH, and SO4·− were involved in the CG-FeCl2/PMS system from the free radical scavenging experiment, where 1O2 played a major role during the oxidation process. Furthermore, CG-FeCl2/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments. Overall, the novel CG-FeCl2 is an efficient and environmentally friendly catalyst, displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.

通过在氮气环境下煅烧并加入四水氯化亚铁(FeCl2-4H2O),成功合成了新型煤矸石基过硫酸盐催化剂(CG-FeCl2)。对所制备材料在加热过程中的相变和气体产物进行了深入研究。结果表明,氯化亚铁参与了相变并形成了 Si-O-Fe 键。加热过程中的主要气体产物为 H2O、H2 和 HCl。此外,还深入研究了 CG-FeCl2 活化过一硫酸盐(PMS)催化降解多环芳烃(PAHs)和苯酚的能力。在优化条件下,萘、菲和酚的去除率超过 95%。此外,从自由基清除实验来看,CG-FeCl2/PMS 系统中涉及到 1O2、-OH 和 SO4--,其中 1O2 在氧化过程中发挥了主要作用。此外,在相关的降解实验中,CG-FeCl2/PMS 体系在相对较宽的 pH 值范围和常见阴离子的存在下都表现出了卓越的稳定性。总之,新型 CG-FeCl2 是一种高效、环保的催化剂,在多环芳烃和苯酚污染废水处理领域具有潜在的应用前景。
{"title":"Fabrication of pollution-free coal gangue-based catalytic material utilizing ferrous chloride as activator for efficient peroxymonosulfate activation","authors":"Zhiming Sun, Xinlin Wang, Shaoran Jia, Jialin Liang, Xiaotian Ning, Chunquan Li","doi":"10.1007/s40789-023-00659-5","DOIUrl":"https://doi.org/10.1007/s40789-023-00659-5","url":null,"abstract":"<p>Novel coal gangue-based persulfate catalyst (CG-FeCl<sub>2</sub>) was successfully synthesized by the means of calcinating under nitrogen atmosphere with the addition of ferrous chloride tetrahydrate (FeCl<sub>2</sub>·4H<sub>2</sub>O). The phase transformation of the prepared materials and gas products during the heating process are thoroughly investigated. It is suggested that ferrous chloride participated in the phase transformation and formed Si-O-Fe bonds. And the main gaseous products are H<sub>2</sub>O, H<sub>2</sub>, and HCl during the heating process. Besides, the ability of CG-FeCl<sub>2</sub> to activate peroxymonosulfate (PMS) for catalytic degradation of polycyclic aromatic hydrocarbons (PAHs) and phenol was deeply studied. More than 95% of naphthyl, phenanthrene and phenol were removed under optimizied conditions. In addition, <sup>1</sup>O<sub>2</sub>, <sup>·</sup>OH, and SO<sub>4</sub><sup>·−</sup> were involved in the CG-FeCl<sub>2</sub>/PMS system from the free radical scavenging experiment, where <sup>1</sup>O<sub>2</sub> played a major role during the oxidation process. Furthermore, CG-FeCl<sub>2</sub>/PMS system exhibited superior stability in a relatively wide pH range and the presence of common anion from related degradation experiments. Overall, the novel CG-FeCl<sub>2</sub> is an efficient and environmentally friendly catalyst, displaying potential application prospect in the field of PAHs and phenol-contaminated wastewater treatment.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"44 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139510358","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fracture propagation and evolution law of indirect fracturing in the roof of broken soft coal seams 破碎软煤层顶板间接断裂的断裂扩展和演化规律
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-01-17 DOI: 10.1007/s40789-023-00648-8
Haifeng Zhao, Pengyue Li, Xuejiao Li, Wenjie Yao

Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology. In this work, the No. 5 coal seam in the Hancheng block was taken as the research object. Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method, a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established, the fracture morphology propagation and evolution law under different conditions was investigated, and analysis of main controlling factors of fracture parameters was conducted with the combination weight method, which was based on grey incidence, analytic hierarchy process and entropy weight method. The results show that “士”-shaped fractures, T-shaped fractures, cross fractures, H-shaped fractures, and “干”-shaped fractures dominated by horizontal fractures were formed. Different parameter combinations can form different fracture morphologies. When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger, it tends to form “士”-shaped fractures. When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate, cross fractures are easily generated. Different fracture parameters have different main controlling factors. Engineering factors of perforation location, fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters. This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams.

实践证明,在破碎软煤层顶板间接压裂是一项可行的技术。本研究以韩城区块 5 号煤层为研究对象。根据该技术的真三轴水力压裂实验和现场试验结果,采用内聚元素法,建立了破碎软煤层顶板间接压裂三维数值模型,研究了不同条件下的裂缝形态扩展和演化规律,并利用基于灰色发生法、解析层次过程法和熵权法的组合权重法对裂缝参数的主要控制因素进行了分析。结果表明,形成了 "士 "字形断裂、"T "字形断裂、交叉断裂、"H "字形断裂和以水平断裂为主的 "干 "字形断裂。不同的参数组合会形成不同的断裂形态。当煤层渗透率较低、层间最小水平主应力差和压裂液注入率均较大时,易形成 "士 "字形断裂。当煤层渗透率、层间最小水平主应力差和射孔位置适中时,容易产生交叉裂缝。不同的断裂参数有不同的主要控制因素。射孔位置、压裂液注入速度和粘度等工程因素是影响水力压裂裂缝形状参数的主要因素。该研究可为破碎软煤层顶板间接压裂设计提供参考。
{"title":"Fracture propagation and evolution law of indirect fracturing in the roof of broken soft coal seams","authors":"Haifeng Zhao, Pengyue Li, Xuejiao Li, Wenjie Yao","doi":"10.1007/s40789-023-00648-8","DOIUrl":"https://doi.org/10.1007/s40789-023-00648-8","url":null,"abstract":"<p>Indirect fracturing in the roof of broken soft coal seams has been demonstrated to be a feasible technology. In this work, the No. 5 coal seam in the Hancheng block was taken as the research object. Based on the findings of true triaxial hydraulic fracturing experiments and field pilot under this technology and the cohesive element method, a 3D numerical model of indirect fracturing in the roof of broken soft coal seams was established, the fracture morphology propagation and evolution law under different conditions was investigated, and analysis of main controlling factors of fracture parameters was conducted with the combination weight method, which was based on grey incidence, analytic hierarchy process and entropy weight method. The results show that “士”-shaped fractures, T-shaped fractures, cross fractures, H-shaped fractures, and “干”-shaped fractures dominated by horizontal fractures were formed. Different parameter combinations can form different fracture morphologies. When the coal seam permeability is lower and the minimum horizontal principal stress difference between layers and fracturing fluid injection rate are both larger, it tends to form “士”-shaped fractures. When the coal seam permeability and minimum horizontal principal stress between layers and perforation position are moderate, cross fractures are easily generated. Different fracture parameters have different main controlling factors. Engineering factors of perforation location, fracturing fluid injection rate and viscosity are the dominant factors of hydraulic fracture shape parameters. This study can provide a reference for the design of indirect fracturing in the roof of broken soft coal seams.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"8 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139497209","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Three dimensional discrete element modelling of the conventional compression behavior of gas hydrate bearing coal 含瓦斯水合物煤炭常规压缩行为的三维离散元素建模
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-01-16 DOI: 10.1007/s40789-023-00639-9

Abstract

To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal (GHBC) and to calibrate the meso-parameters, the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D, with the parallel bond model employed as the particle contact constitutive model. First, twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters. Then, nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters. Furthermore, the calibration method of the meso-parameters were then proposed. Finally, the contact force chain, the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC. The results show that: (1) The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient. The failure strength increases exponentially with the increase of the friction coefficient, the normal bonding strength and the bonding radius coefficient, and remains constant with the increase of bond stiffness ratio; (2) The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength; (3) The number of the force chains, the contact force, and the bond strength between particles will increase with the increase of the hydrate saturation, which leads to the larger failure strength.

摘要 为分析含瓦斯水合物煤(GHBC)宏观参数与中观参数之间的关系并校准中观参数,采用平行粘结模型作为颗粒接触构成模型,利用 PFC3D 进行了模拟实验室三轴压缩试验的数值试验。首先,进行了 20 次模拟试验,以量化宏观参数与中观参数之间的关系。然后,在三级中使用四个中观力学参数进行了九次正交模拟试验,以评估中观力学参数的敏感性。此外,还提出了中观参数的校准方法。最后,研究了接触力链、接触力和接触次数,以探讨饱和效应对 GHBC 中观力学行为的影响。结果表明(1) 弹性模量与粘结刚度比和摩擦系数呈线性增长,而与法向粘结强度和粘结半径系数呈指数增长。破坏强度随摩擦系数、法向结合强度和结合半径系数的增加呈指数增加,随结合刚度比的增加保持不变;(2)摩擦系数和结合半径系数对弹性模量和破坏强度最敏感;(3)力链数量、接触力和颗粒间的结合强度会随着水合物饱和度的增加而增加,从而导致破坏强度增大。
{"title":"Three dimensional discrete element modelling of the conventional compression behavior of gas hydrate bearing coal","authors":"","doi":"10.1007/s40789-023-00639-9","DOIUrl":"https://doi.org/10.1007/s40789-023-00639-9","url":null,"abstract":"<h3>Abstract</h3> <p>To analyze the relationship between macro and meso parameters of the gas hydrate bearing coal (GHBC) and to calibrate the meso-parameters, the numerical tests were conducted to simulate the laboratory triaxial compression tests by PFC3D, with the parallel bond model employed as the particle contact constitutive model. First, twenty simulation tests were conducted to quantify the relationship between the macro–meso parameters. Then, nine orthogonal simulation tests were performed using four meso-mechanical parameters in a three-level to evaluate the sensitivity of the meso-mechanical parameters. Furthermore, the calibration method of the meso-parameters were then proposed. Finally, the contact force chain, the contact force and the contact number were examined to investigate the saturation effect on the meso-mechanical behavior of GHBC. The results show that: (1) The elastic modulus linearly increases with the bonding stiffness ratio and the friction coefficient while exponentially increasing with the normal bonding strength and the bonding radius coefficient. The failure strength increases exponentially with the increase of the friction coefficient, the normal bonding strength and the bonding radius coefficient, and remains constant with the increase of bond stiffness ratio; (2) The friction coefficient and the bond radius coefficient are most sensitive to the elastic modulus and the failure strength; (3) The number of the force chains, the contact force, and the bond strength between particles will increase with the increase of the hydrate saturation, which leads to the larger failure strength.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"24 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139476150","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical analysis on the factors affecting post-peak characteristics of coal under uniaxial compression 单轴压缩条件下煤炭峰后特性影响因素的数值分析
IF 8.3 1区 工程技术 Q2 ENERGY & FUELS Pub Date : 2024-01-04 DOI: 10.1007/s40789-023-00626-0
Zhiguo Lu, Wenjun Ju, Fuqiang Gao, Taotao Du

The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability. Understanding the significant factors that influence post-peak characteristics can offer valuable insights for the prevention of coal bursts. In this study, the Synthetic Rock Mass method is employed to establish a numerical model, and the factors affecting coal post-peak characteristics are analyzed from four perspectives: coal matrix mechanical parameters, structural weak surface properties, height-to-width ratio, and loading rate. The research identifies four significant influencing factors: deformation modulus, density of discrete fracture networks, height-to-width ratio, and loading rate. The response and sensitivity of post-peak characteristics to single-factor and multi-factor interactions are assessed. The result suggested that feasible prevention and control measures for coal bursts can be formulated through four approaches: weakening the mechanical properties of coal pillars, increasing the number of structural weak surfaces in coal pillars, reducing the width of coal pillars, and optimizing mining and excavation speed. The efficacy of measures aimed at weakening the mechanical properties of coal is successfully demonstrated through a case study on coal burst prevention using large-diameter borehole drilling.

煤炭的后峰值特征直接反映了其失效过程,是评估脆性和爆裂责任的重要参数。了解影响后峰值特征的重要因素可为预防煤炭爆裂提供有价值的见解。本研究采用合成岩体法建立数值模型,从煤基体力学参数、结构薄弱面特性、高宽比和加载速率四个方面分析了影响煤后峰特性的因素。研究发现了四个重要的影响因素:变形模量、离散断裂网络密度、高宽比和加载速率。评估了峰值后特性对单因素和多因素相互作用的响应和敏感性。结果表明,可通过削弱煤柱力学性能、增加煤柱结构薄弱面数量、减小煤柱宽度、优化开采和掘进速度等四种方法制定可行的煤爆防治措施。通过对使用大直径钻孔防止煤爆的案例研究,成功证明了旨在削弱煤炭机械性能的措施的有效性。
{"title":"Numerical analysis on the factors affecting post-peak characteristics of coal under uniaxial compression","authors":"Zhiguo Lu, Wenjun Ju, Fuqiang Gao, Taotao Du","doi":"10.1007/s40789-023-00626-0","DOIUrl":"https://doi.org/10.1007/s40789-023-00626-0","url":null,"abstract":"<p>The post-peak characteristics of coal serve as a direct reflection of its failure process and are essential parameters for evaluating brittleness and bursting liability. Understanding the significant factors that influence post-peak characteristics can offer valuable insights for the prevention of coal bursts. In this study, the Synthetic Rock Mass method is employed to establish a numerical model, and the factors affecting coal post-peak characteristics are analyzed from four perspectives: coal matrix mechanical parameters, structural weak surface properties, height-to-width ratio, and loading rate. The research identifies four significant influencing factors: deformation modulus, density of discrete fracture networks, height-to-width ratio, and loading rate. The response and sensitivity of post-peak characteristics to single-factor and multi-factor interactions are assessed. The result suggested that feasible prevention and control measures for coal bursts can be formulated through four approaches: weakening the mechanical properties of coal pillars, increasing the number of structural weak surfaces in coal pillars, reducing the width of coal pillars, and optimizing mining and excavation speed. The efficacy of measures aimed at weakening the mechanical properties of coal is successfully demonstrated through a case study on coal burst prevention using large-diameter borehole drilling.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"27 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139104007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
International Journal of Coal Science & Technology
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1