Pub Date : 2024-05-31DOI: 10.1007/s40789-024-00697-7
Li’nan Huang, Danyang Li, Lei Jiang, Zhiqiang Li, Dong Tian, Kongzhai Li
The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources. It is imperative to convert the abundant coalbed gas (CBG) into high value-added products, i.e., selective and efficient conversion of methane from CBG. Methane activation, known as the “holy grail”, poses a challenge to the design and development of catalysts. The structural complexity of the active metal on the carrier is of particular concern. In this work, we have studied the nucleation growth of small Co clusters (up to Co6) on the surface of CeO2(110) using density functional theory, from which a stable loaded Co/CeO2(110) structure was selected to investigate the methane activation mechanism. Despite the relatively small size of the selected Co clusters, the obtained Cox/CeO2(110) exhibits interesting properties. The optimized Co5/CeO2(110) structure was selected as the optimal structure to study the activation mechanism of methane due to its competitive electronic structure, adsorption energy and binding energy. The energy barriers for the stepwise dissociation of methane to form CH3*, CH2*, CH*, and C* radical fragments are 0.44, 0.55, 0.31, and 1.20 eV, respectively, indicating that CH* dissociative dehydrogenation is the rate-determining step for the system under investigation here. This fundamental study of metal-support interactions based on Co growth on the CeO2(110) surface contributes to the understanding of the essence of Co/CeO2 catalysts with promising catalytic behavior. It provides theoretical guidance for better designing the optimal Co/CeO2 catalyst for tailored catalytic reactions.
{"title":"Screening the optimal Cox/CeO2(110) (x = 1–6) catalyst for methane activation in coalbed gas","authors":"Li’nan Huang, Danyang Li, Lei Jiang, Zhiqiang Li, Dong Tian, Kongzhai Li","doi":"10.1007/s40789-024-00697-7","DOIUrl":"https://doi.org/10.1007/s40789-024-00697-7","url":null,"abstract":"<p>The challenges posed by energy and environmental issues have forced mankind to explore and utilize unconventional energy sources. It is imperative to convert the abundant coalbed gas (CBG) into high value-added products, i.e., selective and efficient conversion of methane from CBG. Methane activation, known as the “holy grail”, poses a challenge to the design and development of catalysts. The structural complexity of the active metal on the carrier is of particular concern. In this work, we have studied the nucleation growth of small Co clusters (up to Co<sub>6</sub>) on the surface of CeO<sub>2</sub>(110) using density functional theory, from which a stable loaded Co/CeO<sub>2</sub>(110) structure was selected to investigate the methane activation mechanism. Despite the relatively small size of the selected Co clusters, the obtained Co<sub><i>x</i></sub>/CeO<sub>2</sub>(110) exhibits interesting properties. The optimized Co<sub>5</sub>/CeO<sub>2</sub>(110) structure was selected as the optimal structure to study the activation mechanism of methane due to its competitive electronic structure, adsorption energy and binding energy. The energy barriers for the stepwise dissociation of methane to form CH<sub>3</sub>*, CH<sub>2</sub>*, CH*, and C* radical fragments are 0.44, 0.55, 0.31, and 1.20 eV, respectively, indicating that CH* dissociative dehydrogenation is the rate-determining step for the system under investigation here. This fundamental study of metal-support interactions based on Co growth on the CeO<sub>2</sub>(110) surface contributes to the understanding of the essence of Co/CeO<sub>2</sub> catalysts with promising catalytic behavior. It provides theoretical guidance for better designing the optimal Co/CeO<sub>2</sub> catalyst for tailored catalytic reactions.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"41 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The enhanced coalbed methane recovery using CO2 injection (CO2-ECBM) is widely proposed as a way of achieving the energy transition and reducing atmospheric CO2 in areas such as the Lorrain basin in France, where heavy industry is responsible for huge CO2 emissions and coal mines have been closed for more than a decade. This paper deals with the feasibility of extracting methane from the Lorraine basin using CO2-ECBM by comparing data from sorption isotherms, thermogravimetric analyses and breakthrough curves for two coal samples. One is bituminous (Box 18), from Folschviller (France) and is compared with another sub-bituminous (TH01) from La Houve (France), which is used as a reference because it was identified as a good candidate for CO2-ECBM in a previous research program. The quantities of adsorbed gases (CO2/CH4) obtained by sorption isotherms, thermogravimetry and CO2 breakthrough curves showed that Box 18 adsorbs more CO2 and CH4 than TH01 due to its higher porosity and good affinity for gases (CO2/CH4). Tόth model fits the experimental CH4 and CO2 adsorption isotherms better, reflecting the fact that the adsorption surface of the coals studied is heterogeneous. Adsorption enthalpies obtained by calorimetry indicated physisorption for gas-coal interactions, with higher values for CO2 than for CH4. Thermogravimetric analyses and breakthrough curves carried out at up to 50% relative humidity showed that the adsorption capacity of CO2 decreases with increasing temperature and the presence of water, respectively. The compilation of these experimental data explained the adsorption process of the studied coals and revealed their advantages for CO2-ECBM.
在法国洛林盆地等重工业排放大量二氧化碳且煤矿已关闭十多年的地区,利用二氧化碳注入强化煤层甲烷回收(CO2-ECBM)被广泛认为是实现能源转型和减少大气中二氧化碳的一种方法。本文通过比较两种煤炭样本的吸附等温线、热重分析和突破曲线数据,探讨了利用 CO2-ECBM 从洛林盆地提取甲烷的可行性。其中一个是来自法国 Folschviller 的烟煤(方框 18),与另一个来自法国 La Houve 的亚烟煤(TH01)进行了比较。通过吸附等温线、热重仪和二氧化碳突破曲线获得的气体(CO2/CH4)吸附量表明,Box 18 比 TH01 吸附更多的 CO2 和 CH4,因为它的孔隙率更高,对气体(CO2/CH4)的亲和力更好。Tόth模型更适合实验中的CH4和CO2吸附等温线,反映了所研究煤炭的吸附表面是异质的这一事实。通过量热法获得的吸附焓表明气体与煤之间存在物理吸附作用,二氧化碳的吸附焓值高于 CH4。在相对湿度高达 50%的条件下进行的热重分析和突破曲线显示,二氧化碳的吸附能力分别随着温度的升高和水的存在而降低。这些实验数据的汇编解释了所研究煤炭的吸附过程,并揭示了它们在 CO2-ECBM 方面的优势。
{"title":"Comparative study on different coals from the Lorraine basin (France) by sorption isotherms, thermogravimetric analysis and breakthrough curves for CO2-ECBM recovery","authors":"Franck Amoih, Gisèle Finqueneisel, Thierry Zimny, Sandrine Bourrelly, Odile Barres, Dragan Grgic","doi":"10.1007/s40789-024-00696-8","DOIUrl":"https://doi.org/10.1007/s40789-024-00696-8","url":null,"abstract":"<p>The enhanced coalbed methane recovery using CO<sub>2</sub> injection (CO<sub>2</sub>-ECBM) is widely proposed as a way of achieving the energy transition and reducing atmospheric CO<sub>2</sub> in areas such as the Lorrain basin in France, where heavy industry is responsible for huge CO<sub>2</sub> emissions and coal mines have been closed for more than a decade. This paper deals with the feasibility of extracting methane from the Lorraine basin using CO<sub>2</sub>-ECBM by comparing data from sorption isotherms, thermogravimetric analyses and breakthrough curves for two coal samples. One is bituminous (Box 18), from Folschviller (France) and is compared with another sub-bituminous (TH01) from La Houve (France), which is used as a reference because it was identified as a good candidate for CO<sub>2</sub>-ECBM in a previous research program. The quantities of adsorbed gases (CO<sub>2</sub>/CH<sub>4</sub>) obtained by sorption isotherms, thermogravimetry and CO<sub>2</sub> breakthrough curves showed that Box 18 adsorbs more CO<sub>2</sub> and CH<sub>4</sub> than TH01 due to its higher porosity and good affinity for gases (CO<sub>2</sub>/CH<sub>4</sub>). Tόth model fits the experimental CH<sub>4</sub> and CO<sub>2</sub> adsorption isotherms better, reflecting the fact that the adsorption surface of the coals studied is heterogeneous. Adsorption enthalpies obtained by calorimetry indicated physisorption for gas-coal interactions, with higher values for CO<sub>2</sub> than for CH<sub>4</sub>. Thermogravimetric analyses and breakthrough curves carried out at up to 50% relative humidity showed that the adsorption capacity of CO<sub>2</sub> decreases with increasing temperature and the presence of water, respectively. The compilation of these experimental data explained the adsorption process of the studied coals and revealed their advantages for CO<sub>2</sub>-ECBM.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"51 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191829","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-30DOI: 10.1007/s40789-024-00695-9
Haiyang Wang, Desheng Zhou, Yi Zou, Peng Zheng
The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix. Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a notable influence on rock deformation and failure, its effect on hydraulic fracture (HF) propagation remains ambiguous. Therefore, in this study, we improved a traditional fluid–solid coupling method by incorporating the role of seepage force during the fracturing fluid seepage, using the discrete element method. First, we validated the simulation results of the improved method by comparing them with an analytical solution of the seepage force and published experimental results. Next, we conducted numerical simulations in both homogeneous and heterogeneous sandstone formations to investigate the influence of seepage force on HF propagation. Our results indicate that fluid viscosity has a greater impact on the magnitude and extent of seepage force compared to injection rate, and that lower viscosity and injection rate correspond to shorter hydraulic fracture lengths. Furthermore, seepage force influences the direction of HF propagation, causing HFs to deflect towards the side of the reservoir with weaker cementation and higher permeability.
{"title":"Effect mechanism of seepage force on the hydraulic fracture propagation","authors":"Haiyang Wang, Desheng Zhou, Yi Zou, Peng Zheng","doi":"10.1007/s40789-024-00695-9","DOIUrl":"https://doi.org/10.1007/s40789-024-00695-9","url":null,"abstract":"<p>The flow of fluid through the porous matrix of a reservoir rock applies a seepage force to the solid rock matrix. Although the seepage force exerted by fluid flow through the porous matrix of a reservoir rock has a notable influence on rock deformation and failure, its effect on hydraulic fracture (HF) propagation remains ambiguous. Therefore, in this study, we improved a traditional fluid–solid coupling method by incorporating the role of seepage force during the fracturing fluid seepage, using the discrete element method. First, we validated the simulation results of the improved method by comparing them with an analytical solution of the seepage force and published experimental results. Next, we conducted numerical simulations in both homogeneous and heterogeneous sandstone formations to investigate the influence of seepage force on HF propagation. Our results indicate that fluid viscosity has a greater impact on the magnitude and extent of seepage force compared to injection rate, and that lower viscosity and injection rate correspond to shorter hydraulic fracture lengths. Furthermore, seepage force influences the direction of HF propagation, causing HFs to deflect towards the side of the reservoir with weaker cementation and higher permeability.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"12 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-05-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141191336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-29DOI: 10.1007/s40789-024-00681-1
Yuxue Wei, Zhiyuan Fu, Yingzi Meng, Chun Li, Fu Yin, Xue Wang, Chenghua Zhang, Lisheng Guo, Song Sun
Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes. Herein, we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts. The adsorption and photocatalytic degradation process of methylene blue (MB) on MIL‐100(Fe)/GO composites were systematically studied from performance and kinetic perspectives. A possible adsorption‐photocatalytic degradation mechanism is proposed. The optimized 1M8G composite achieves 95% MB removal (60.8 mg/g) in 210 min and displays well recyclability over ten cycles. The obtained MB adsorption and degradation results are well fitted onto Langmuir isotherm and pseudo‐second order kinetic model. This study shed light on the design of MOFs based composites for water treatment.
{"title":"Photocatalytic degradation of methylene blue over MIL-100(Fe)/GO composites: a performance and kinetic study","authors":"Yuxue Wei, Zhiyuan Fu, Yingzi Meng, Chun Li, Fu Yin, Xue Wang, Chenghua Zhang, Lisheng Guo, Song Sun","doi":"10.1007/s40789-024-00681-1","DOIUrl":"https://doi.org/10.1007/s40789-024-00681-1","url":null,"abstract":"<p>Adsorption coupled with photocatalytic degradation is proposed to fulfill the removal and thorough elimination of organic dyes. Herein, we report a facile hydrothermal synthesis of MIL-100(Fe)/GO photocatalysts. The adsorption and photocatalytic degradation process of methylene blue (MB) on MIL‐100(Fe)/GO composites were systematically studied from performance and kinetic perspectives. A possible adsorption‐photocatalytic degradation mechanism is proposed. The optimized 1M8G composite achieves 95% MB removal (60.8 mg/g) in 210 min and displays well recyclability over ten cycles. The obtained MB adsorption and degradation results are well fitted onto Langmuir isotherm and pseudo‐second order kinetic model. This study shed light on the design of MOFs based composites for water treatment.</p><h3 data-test=\"abstract-sub-heading\">Graphical Abstract</h3>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"1 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-05-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1007/s40789-024-00680-2
Chaojun Fan, Hao Sun, Sheng Li, Lei Yang, Bin Xiao, Zhenhua Yang, Mingkun Luo, Xiaofeng Jiang, Lijun Zhou
With the continuous increase of mining in depth, the gas extraction faces the challenges of low permeability, great ground stress, high temperature and large gas pressure in coal seam. The controllable shock wave (CSW), as a new method for enhancing permeability of coal seam to improve gas extraction, features in the advantages of high efficiency, eco-friendly, and low cost. In order to better utilize the CSW into gas extraction in coal mine, the mechanism and feasibility of CSW enhanced extraction need to be studied. In this paper, the basic principles, the experimental tests, the mathematical models, and the on-site tests of CSW fracturing coal seams are reviewed, thereby its future research directions are provided. Based on the different media between electrodes, the CSW can be divided into three categories: hydraulic effect, wire explosion and excitation of energetic materials by detonating wire. During the process of propagation and attenuation of the high-energy shock wave in coal, the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam. The stronger the strength of the CSW is, the more cracks created in the coal is, and the greater the length, width and area of the cracks being. The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength, but excessive shock frequency will also damage the coal structure, resulting in the limited effect of the enhanced gas extraction. Under the influence of ground stress, the crack propagation in coal seam will be restrained. The difference of horizontal principal stress has a significant impact on the shape, propagation direction and connectivity of the CSW induced cracks. The permeability enhancement effect of CSW is affected by the breakage degree of coal seam. The shock wave is absorbed by the broken coal, which may hinder the propagation of CSW, resulting in a poor effect of permeability enhancement. When arranging two adjacent boreholes for CSW permeability enhancement test, the spacing of boreholes should not be too close, which may lead to negative pressure mutual pulling in the early stage of drainage. At present, the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.
{"title":"Research advances in enhanced coal seam gas extraction by controllable shock wave fracturing","authors":"Chaojun Fan, Hao Sun, Sheng Li, Lei Yang, Bin Xiao, Zhenhua Yang, Mingkun Luo, Xiaofeng Jiang, Lijun Zhou","doi":"10.1007/s40789-024-00680-2","DOIUrl":"https://doi.org/10.1007/s40789-024-00680-2","url":null,"abstract":"<p>With the continuous increase of mining in depth, the gas extraction faces the challenges of low permeability, great ground stress, high temperature and large gas pressure in coal seam. The controllable shock wave (CSW), as a new method for enhancing permeability of coal seam to improve gas extraction, features in the advantages of high efficiency, eco-friendly, and low cost. In order to better utilize the CSW into gas extraction in coal mine, the mechanism and feasibility of CSW enhanced extraction need to be studied. In this paper, the basic principles, the experimental tests, the mathematical models, and the on-site tests of CSW fracturing coal seams are reviewed, thereby its future research directions are provided. Based on the different media between electrodes, the CSW can be divided into three categories: hydraulic effect, wire explosion and excitation of energetic materials by detonating wire. During the process of propagation and attenuation of the high-energy shock wave in coal, the shock wave and bubble pulsation work together to produce an enhanced permeability effect on the coal seam. The stronger the strength of the CSW is, the more cracks created in the coal is, and the greater the length, width and area of the cracks being. The repeated shock on the coal seam is conducive to the formation of complex network fracture system as well as the reduction of coal seam strength, but excessive shock frequency will also damage the coal structure, resulting in the limited effect of the enhanced gas extraction. Under the influence of ground stress, the crack propagation in coal seam will be restrained. The difference of horizontal principal stress has a significant impact on the shape, propagation direction and connectivity of the CSW induced cracks. The permeability enhancement effect of CSW is affected by the breakage degree of coal seam. The shock wave is absorbed by the broken coal, which may hinder the propagation of CSW, resulting in a poor effect of permeability enhancement. When arranging two adjacent boreholes for CSW permeability enhancement test, the spacing of boreholes should not be too close, which may lead to negative pressure mutual pulling in the early stage of drainage. At present, the accurate method for effectively predicting the CSW permeability enhanced range should be further investigated.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"191 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930378","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-14DOI: 10.1007/s40789-024-00675-z
Yukai Fu, Yongzheng Wu, Junchen Li, Penghe Zhou, Zhuoyue Sun, Jie He
During the mining process of impact-prone coal seams, drilling pressure relief can reduce the impact propensity of the coal seam, but it also reduces the integrity and strength of the coal mass at the side of the roadway. Therefore, studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks. To achieve this aim, seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine. Besides, the stress–strain curves, acoustic emission signals, DIC strain fields and other data were collected during the experiments. Furthermore, the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed. The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one, and the decline is positively corelated to the diameter of the drilled hole. After hole filling, the strain concentration degree around the drilled hole is lowered to a certain degree, and polyurethane filling has a more remarkable effect than cement filling. Meanwhile, hole filling can enhance the strength and deformation resistance of coal. Hole drilling can accelerate the release of accumulated elastic strain energy, turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones, whereas hole filling can reduce the intensity of energy release. The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes. Moreover, the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.
{"title":"Mechanical properties and energy evolutions of burst-prone coal samples with holes and fillings","authors":"Yukai Fu, Yongzheng Wu, Junchen Li, Penghe Zhou, Zhuoyue Sun, Jie He","doi":"10.1007/s40789-024-00675-z","DOIUrl":"https://doi.org/10.1007/s40789-024-00675-z","url":null,"abstract":"<p>During the mining process of impact-prone coal seams, drilling pressure relief can reduce the impact propensity of the coal seam, but it also reduces the integrity and strength of the coal mass at the side of the roadway. Therefore, studying the mechanical properties and energy evolution rules of coal samples containing holes and filled structures has certain practical significance for achieving coordinated control of coal mine rockburst disasters and the stability of roadway surrounding rocks. To achieve this aim, seven types of burst-prone coal samples were prepared and subject to uniaxial compression experiments with the aid of a TAW-3000 electro-hydraulic servo testing machine. Besides, the stress–strain curves, acoustic emission signals, DIC strain fields and other data were collected during the experiments. Furthermore, the failure modes and energy evolutions of samples with varying drilled hole sizes and filling materials were analyzed. The results show that the indexes related to burst propensity of the drilled coal samples decline to some extent compared with those of the intact one, and the decline is positively corelated to the diameter of the drilled hole. After hole filling, the strain concentration degree around the drilled hole is lowered to a certain degree, and polyurethane filling has a more remarkable effect than cement filling. Meanwhile, hole filling can enhance the strength and deformation resistance of coal. Hole drilling can accelerate the release of accumulated elastic strain energy, turning the acoustic emission events from low-frequency and high-energy ones to high-frequency and low-energy ones, whereas hole filling can reduce the intensity of energy release. The experimental results and theoretical derivation demonstrate that hole filling promotes coal deformability and strength mainly by weakening stress concentration surrounding the drilled holes. Moreover, the fillings can achieve a better filling effect if their elastic modulus and Poisson’s ratio are closer to those of the coal body.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"61 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141165452","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-09DOI: 10.1007/s40789-024-00692-y
Gang Wang, Shuxin Wang, Yixin Liu, Qiming Huang, Shengpeng Li, Shuliang Xie, Jinye Zheng, Jiuyuan Fan
The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.
{"title":"Influences of clean fracturing fluid viscosity and horizontal in-situ stress difference on hydraulic fracture propagation and morphology in coal seam","authors":"Gang Wang, Shuxin Wang, Yixin Liu, Qiming Huang, Shengpeng Li, Shuliang Xie, Jinye Zheng, Jiuyuan Fan","doi":"10.1007/s40789-024-00692-y","DOIUrl":"https://doi.org/10.1007/s40789-024-00692-y","url":null,"abstract":"<p>The viscosity of fracturing fluid and in-situ stress difference are the two important factors that affect the hydraulic fracturing pressure and propagation morphology. In this study, raw coal was used to prepare coal samples for experiments, and clean fracturing fluid samples were prepared using CTAB surfactant. A series of hydraulic fracturing tests were conducted with an in-house developed triaxial hydraulic fracturing simulator and the fracturing process was monitored with an acoustic emission instrument to analyze the influences of fracturing fluid viscosity and horizontal in-situ stress difference on coal fracture propagation. The results show that the number of branched fractures decreased, the fracture pattern became simpler, the fractures width increased obviously, and the distribution of AE event points was concentrated with the increase of the fracturing fluid viscosity or the horizontal in-situ stress difference. The acoustic emission energy decreases with the increase of fracturing fluid viscosity and increases with the increase of horizontal in situ stress difference. The low viscosity clean fracturing fluid has strong elasticity and is easy to be compressed into the tip of fractures, resulting in complex fractures. The high viscosity clean fracturing fluids are the opposite. Our experimental results provide a reference and scientific basis for the design and optimization of field hydraulic fracturing parameters.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"33 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930385","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
CO2 mineralization plays a critical role in the storage and utilization of CO2. Coal fly ash (CFA) and red mud (RM) are widely utilized as CO2 mineralizers. However, the inert calcium species in CFA limit its carbonation capacity, meanwhile the substantial Ca2+ releasing of RM is hindered by a covering layer of calcium carbonate. In this study, CO2 mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity. Multiple analyzers were employed to characterize the raw materials and resulting mineralization products. The results demonstrated that a synergistic effect existed in the composite system of CFA and RM, resulting in improving CO2 mineralization rate and efficiency. The produced calcium carbonate was ectopically attached the surface of CFA in the composite system, thus slowing down its coverage on the surface of RM. This phenomenon facilitated further releasing Ca2+ from the internal RM, thereby enhancing CO2 mineralization efficiency. Meanwhile, the inclusion of RM significantly improved the alkalinity of the composite system, which not only promoted the dissolution of Ca2+ of the inert CaSO4(H2O)2 in CFA, but also accelerated CO2 mineralization rate. The investigation would be beneficial to CO2 mineralization using industrial solid wastes.
二氧化碳矿化在二氧化碳的储存和利用中起着至关重要的作用。粉煤灰(CFA)和赤泥(RM)被广泛用作二氧化碳矿化剂。然而,粉煤灰中的惰性钙限制了其碳化能力,而赤泥中大量 Ca2+ 的释放则受到碳酸钙覆盖层的阻碍。本研究对 CFA 和 RM 复合体系中的二氧化碳矿化进行了研究,以提高其碳化能力。采用多种分析仪对原材料和矿化产物进行了表征。结果表明,CFA 和 RM 复合体系存在协同效应,从而提高了二氧化碳矿化率和效率。在复合体系中,生成的碳酸钙异位附着在 CFA 表面,从而减缓了其在 RM 表面的覆盖速度。这种现象有助于进一步释放 RM 内部的 Ca2+,从而提高 CO2 矿化效率。同时,RM 的加入显著提高了复合体系的碱度,不仅促进了 CFA 中惰性 CaSO4(H2O)2 中 Ca2+ 的溶解,还加快了 CO2 矿化速度。这项研究将有助于利用工业固体废物进行二氧化碳矿化。
{"title":"Synergistic CO2 mineralization using coal fly ash and red mud as a composite system","authors":"Zhenchao Yao, Yugao Wang, Jun Shen, Yanxia Niu, Jiang Feng Yang, Xianyong Wei","doi":"10.1007/s40789-024-00672-2","DOIUrl":"https://doi.org/10.1007/s40789-024-00672-2","url":null,"abstract":"<p>CO<sub>2</sub> mineralization plays a critical role in the storage and utilization of CO<sub>2</sub>. Coal fly ash (CFA) and red mud (RM) are widely utilized as CO<sub>2</sub> mineralizers. However, the inert calcium species in CFA limit its carbonation capacity, meanwhile the substantial Ca<sup>2+</sup> releasing of RM is hindered by a covering layer of calcium carbonate. In this study, CO<sub>2</sub> mineralization in a composite system of CFA and RM was investigated to enhance the carbonation capacity. Multiple analyzers were employed to characterize the raw materials and resulting mineralization products. The results demonstrated that a synergistic effect existed in the composite system of CFA and RM, resulting in improving CO<sub>2</sub> mineralization rate and efficiency. The produced calcium carbonate was ectopically attached the surface of CFA in the composite system, thus slowing down its coverage on the surface of RM. This phenomenon facilitated further releasing Ca<sup>2+</sup> from the internal RM, thereby enhancing CO<sub>2</sub> mineralization efficiency. Meanwhile, the inclusion of RM significantly improved the alkalinity of the composite system, which not only promoted the dissolution of Ca<sup>2+</sup> of the inert CaSO<sub>4</sub>(H<sub>2</sub>O)<sub>2</sub> in CFA, but also accelerated CO<sub>2</sub> mineralization rate. The investigation would be beneficial to CO<sub>2</sub> mineralization using industrial solid wastes.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"33 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-05-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140930382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%, 40%, 60%, 80%, dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance. The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed. Results of experimental studies show that water is a key factor in the mechanical properties of rocks, softening them, increasing their porosity, reducing their brittleness and increasing their plasticity. Under uniaxial compression, the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and ‘X’ type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases. Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60% and less water content, and a weakening effect on samples with 80% and more water content, but the weakening effect is not obvious. Macroscopic damage characteristics of dry samples remain unchanged, water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage, until saturation transformation monoclinic shear damage. The evolution of acoustic emission energy and event number is mainly divided into four stages: loading stage (I), dynamic loading stage (II), yield failure stage (III), and post-peak stage (IV), the acoustic emission characteristics of the stages were different for different water contents. The characteristic value of acoustic emission key point frequency gradually decreases, and the damage degree of the specimen increases, corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.
{"title":"Mechanical properties and acoustic emission characteristics of soft rock with different water contents under dynamic disturbance","authors":"Yujing Jiang, Lugen Chen, Dong Wang, Hengjie Luan, Guangchao Zhang, Ling Dong, Bin Liang","doi":"10.1007/s40789-024-00682-0","DOIUrl":"https://doi.org/10.1007/s40789-024-00682-0","url":null,"abstract":"<p>Uniaxial compression tests and cyclic loading acoustic emission tests were conducted on 20%, 40%, 60%, 80%, dry and saturated muddy sandstone by using a creep impact loading system to investigate the mechanical properties and acoustic emission characteristics of soft rocks with different water contents under dynamic disturbance. The mechanical properties and acoustic emission characteristics of muddy sandstones at different water contents were analysed. Results of experimental studies show that water is a key factor in the mechanical properties of rocks, softening them, increasing their porosity, reducing their brittleness and increasing their plasticity. Under uniaxial compression, the macroscopic damage characteristics of the muddy sandstone change from mono-bevel shear damage and ‘X’ type conjugate bevel shear damage to a roadway bottom-drum type damage as the water content increases. Dynamic perturbation has a strengthening effect on the mechanical properties of samples with 60% and less water content, and a weakening effect on samples with 80% and more water content, but the weakening effect is not obvious. Macroscopic damage characteristics of dry samples remain unchanged, water samples from shear damage and tensile–shear composite damage gradually transformed into cleavage damage, until saturation transformation monoclinic shear damage. The evolution of acoustic emission energy and event number is mainly divided into four stages: loading stage (I), dynamic loading stage (II), yield failure stage (III), and post-peak stage (IV), the acoustic emission characteristics of the stages were different for different water contents. The characteristic value of acoustic emission key point frequency gradually decreases, and the damage degree of the specimen increases, corresponding to low water content—high main frequency—low damage and high water content—low main frequency—high damage.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"29 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140886388","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process. The decoupling strategy was adopted to decouple the biomass gasification process, and the composite oxygen carrier was prepared by embedding Fe2O3 in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane, which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas. Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method, and the reforming performance was evaluated by a fixed bed reactor, and the kinetic parameters were solved based on the gas–solid reaction model. Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design. The experimental results showed that the reaction performance of Fe2O3@SBA-16 was compared with that of pure Fe2O3 and Fe2O3@SBA-15, and the syngas yield was increased by 55.3% and 20.7% respectively, and it had good cycle stability. Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature. The activation energy was 192.79 kJ/mol by fitting. This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.
{"title":"Chemical looping reforming of the micromolecular component from biomass pyrolysis via Fe2O3@SBA-16","authors":"Yunchang Li, Bo Zhang, Xiantan Yang, Bolun Yang, Shengyong Zhang, Zhiqiang Wu","doi":"10.1007/s40789-024-00691-z","DOIUrl":"https://doi.org/10.1007/s40789-024-00691-z","url":null,"abstract":"<p>To solve the problems of low gasification efficiency and high tar content caused by solid–solid contact between biomass and oxygen carrier in traditional biomass chemical looping gasification process. The decoupling strategy was adopted to decouple the biomass gasification process, and the composite oxygen carrier was prepared by embedding Fe<sub>2</sub>O<sub>3</sub> in molecular sieve SBA-16 for the chemical looping reforming process of pyrolysis micromolecular model compound methane, which was expected to realize the directional reforming of pyrolysis volatiles to prepare hydrogen-rich syngas. Thermodynamic analysis of the reaction system was carried out based on the Gibbs free energy minimization method, and the reforming performance was evaluated by a fixed bed reactor, and the kinetic parameters were solved based on the gas–solid reaction model. Thermodynamic analysis verified the feasibility of the reaction and provided theoretical guidance for experimental design. The experimental results showed that the reaction performance of Fe<sub>2</sub>O<sub>3</sub>@SBA-16 was compared with that of pure Fe<sub>2</sub>O<sub>3</sub> and Fe<sub>2</sub>O<sub>3</sub>@SBA-15, and the syngas yield was increased by 55.3% and 20.7% respectively, and it had good cycle stability. Kinetic analysis showed that the kinetic model changed from three-dimensional diffusion to first-order reaction with the increase of temperature. The activation energy was 192.79 kJ/mol by fitting. This paper provides basic data for the directional preparation of hydrogen-rich syngas from biomass and the design of oxygen carriers for pyrolysis of all-component chemical looping reforming.</p>","PeriodicalId":53469,"journal":{"name":"International Journal of Coal Science & Technology","volume":"28 1","pages":""},"PeriodicalIF":8.3,"publicationDate":"2024-04-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140810315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}