Pub Date : 2022-12-30DOI: 10.15507/2658-4123.032.202204.588-599
Vyacheslav A. Gladkikh, V. D. Vlasenko
Introduction. We consider a weakly conductive gradient fiber in the single-mode regime and solve the equation for the electric field in the core of this fiber in a general form in the first approximation. The aim of this study is to study the field and energy in the core of a weakly conductive gradient fiber without taking into account the polarization in the single-mode regime in the case of a power-law (generally) refractive index profile. Materials and Methods. From Maxwell’s equations for dielectric media, there was derived an equation for the field in a fiber with gradient refractive index profile. Making the appropriate substitutions, replacing the zero-order Bessel function with a Gaussian function, and making the necessary approximation of the resulting equation, we arrive at an equation that we solve by the Wentzel – Kramers – Brillouin method and obtain analytical expressions for the field and energy inside waveguide for an arbitrary degree of the refractive index. Results. There was obtained a solution of the equation for the field in fiber with a powerlaw refractive index profile. Numerical calculations were carried out. A graph of the dependence of a dimensionless quantity – “normalized” energy – on the waveguide parameter for the first five powers of the profile (n = 1, 2, 3, 4, 5) was plotted. Discussion and Conclusion. It is shown that the energy increases faster for the profile with n = 1, and after this value, the energy for the profile with n = 1 increases sharply, and for n > 1, the energy growth decreases with increasing n. The results obtained in this work can be used for creating an energy-efficient core, for carrying out a possible analysis of information transmission, and for designing waveguides taking into account specific applications.
{"title":"Investigation of Field and Energy in a Weakly-Conducting Optical Fiber with an Arbitrary Degree of Refractive Index Profile","authors":"Vyacheslav A. Gladkikh, V. D. Vlasenko","doi":"10.15507/2658-4123.032.202204.588-599","DOIUrl":"https://doi.org/10.15507/2658-4123.032.202204.588-599","url":null,"abstract":"Introduction. We consider a weakly conductive gradient fiber in the single-mode regime and solve the equation for the electric field in the core of this fiber in a general form in the first approximation. The aim of this study is to study the field and energy in the core of a weakly conductive gradient fiber without taking into account the polarization in the single-mode regime in the case of a power-law (generally) refractive index profile.\u0000Materials and Methods. From Maxwell’s equations for dielectric media, there was derived an equation for the field in a fiber with gradient refractive index profile. Making the appropriate substitutions, replacing the zero-order Bessel function with a Gaussian function, and making the necessary approximation of the resulting equation, we arrive at an equation that we solve by the Wentzel – Kramers – Brillouin method and obtain analytical expressions for the field and energy inside waveguide for an arbitrary degree of the refractive index.\u0000Results. There was obtained a solution of the equation for the field in fiber with a powerlaw refractive index profile. Numerical calculations were carried out. A graph of the dependence of a dimensionless quantity – “normalized” energy – on the waveguide parameter for the first five powers of the profile (n = 1, 2, 3, 4, 5) was plotted.\u0000Discussion and Conclusion. It is shown that the energy increases faster for the profile with n = 1, and after this value, the energy for the profile with n = 1 increases sharply, and for n > 1, the energy growth decreases with increasing n. The results obtained in this work can be used for creating an energy-efficient core, for carrying out a possible analysis of information transmission, and for designing waveguides taking into account specific applications.","PeriodicalId":53796,"journal":{"name":"Engineering Technologies and Systems","volume":"10 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"80886344","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-30DOI: 10.15507/2658-4123.032.202204.613-629
Valentina A. Doroshenko, I. Khozyaev, Dmitry A. Yakovlev, A. Doroshenko, A. Shcherbakov
Introduction. The main component of the compound feedstuff is fish meal, which has unstable quality and high price. Fish and meat-and-bone meals are replaced with protein concentrates and higher quality larvae proteins. The source of feed protein is the biomass of the black soldier flies (Hermetia illucens), which have a rich amino acid composition and also process food waste. The aim of the work is to study the thermal-physical characteristics of the muscle mass of the black soldier fly larvaes (Hermetia illucens). Материалы и методы. The study focused on the muscle mass of black soldier fly larvaes (Hermetia illucens). The subject of the study is thermal-physical regularities during the drying process. The studies were conducted on the basis of Don State Technical University. The article describes determination of thermal-physical characteristics such as specific heat, thermal conductivity, moisture of the raw material, and oiliness. Results. Heat conductivity coefficient of water 0.555 W/(m∙K) for food and feed products from 0.25 to 0.40 W/(m∙K) black Soldier Fly larvae have a heat conductivity equal to 0.144 W/(m∙K), which is lower than conventional feedstuff components. The humidity of the examined raw material is 45% or higher while the heat conductivity remains linear and practically does not increase. Discussion and Conclusion. The results obtained during the work can be used for parameter determination and design of various types of dryers, and for mathematical description of the dynamics and kinetics of drying.
{"title":"Studying the Thermophysical Characteristics of the Muscle Mass of the Black Soldier Fly Larvaes (Hermetia Illucens) as a Drying Object","authors":"Valentina A. Doroshenko, I. Khozyaev, Dmitry A. Yakovlev, A. Doroshenko, A. Shcherbakov","doi":"10.15507/2658-4123.032.202204.613-629","DOIUrl":"https://doi.org/10.15507/2658-4123.032.202204.613-629","url":null,"abstract":"Introduction. The main component of the compound feedstuff is fish meal, which has unstable quality and high price. Fish and meat-and-bone meals are replaced with protein concentrates and higher quality larvae proteins. The source of feed protein is the biomass of the black soldier flies (Hermetia illucens), which have a rich amino acid composition and also process food waste. The aim of the work is to study the thermal-physical characteristics of the muscle mass of the black soldier fly larvaes (Hermetia illucens).\u0000Материалы и методы. The study focused on the muscle mass of black soldier fly larvaes (Hermetia illucens). The subject of the study is thermal-physical regularities during the drying process. The studies were conducted on the basis of Don State Technical University. The article describes determination of thermal-physical characteristics such as specific heat, thermal conductivity, moisture of the raw material, and oiliness.\u0000Results. Heat conductivity coefficient of water 0.555 W/(m∙K) for food and feed products from 0.25 to 0.40 W/(m∙K) black Soldier Fly larvae have a heat conductivity equal to 0.144 W/(m∙K), which is lower than conventional feedstuff components. The humidity of the examined raw material is 45% or higher while the heat conductivity remains linear and practically does not increase.\u0000Discussion and Conclusion. The results obtained during the work can be used for parameter determination and design of various types of dryers, and for mathematical description of the dynamics and kinetics of drying.","PeriodicalId":53796,"journal":{"name":"Engineering Technologies and Systems","volume":"7 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"90478543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-30DOI: 10.15507/2658-4123.032.202204.504-519
I. Gureev
Introduction. Mineral fertilizers essential for intensive crop production technologies are an expensive and environmentally unsafe resource polluting the soil and agricultural products when applied in excess. The purpose of the research is instrumental and methodological support for modern functional diagnostics of nutritional requirements of plants, which is aimed at activating the photosynthesis process. Materials and Methods. It is proposed, for identifying nutritional requirements of plants to replace numerous intermediate plastic test tubes with a mixture of permanent components (sodium chloride, chloroplast suspension and Tillmans’ paint) for the diagnostic solution variants by a separate elastic light-protective container. A homogeneous mixture in a separate container eliminates the error in the concentration of solution components, which accompanies the repeated formation of mixtures in intermediate test tubes. This made it possible to reduce a number of repeated operations of filling intermediate test tubes with pipette dispensers for each tested mixture of elements. The studies were carried out in 2021–2022 using mechanical pipette dispensers Lenpipet Thermo Fisher Scientific (Finland) – 10 ml, Lenpipet Color – 100 μl and Lenpipet Color – 200 μl. Their error was determined on a VK-600 electronic balance. Results. The use of innovation increased the reliability of diagnostic data due to a 8.6% average reduction of error in the concentration of components in the mixture solution. In addition, the time spent on performing diagnostics decreased by 1.7 times that, under the conditions of a limited lifetime of chloroplasts, had a favorable effect on obtaining reliable data. Discussion and Conclusion. Reliable diagnostic data on nutritional requirements of plants will save fertilizer resources and improve the quality of agricultural production free from excessive nutrients.
介绍。集约化作物生产技术所必需的矿物肥料是一种昂贵且对环境不安全的资源,过量施用会污染土壤和农产品。该研究的目的是为植物营养需求的现代功能诊断提供工具和方法支持,旨在激活光合作用过程。材料与方法。为了确定植物的营养需求,建议用一个单独的弹性防光容器,用永久性成分(氯化钠、叶绿体悬浮液和Tillmans油漆)的混合物代替许多中间塑料试管,用于诊断溶液的变体。在一个单独的容器中的均匀混合物消除了溶液成分浓度的误差,这种误差伴随着中间试管中混合物的重复形成。这使得有可能减少用移液器填充中间试管的重复操作,用于每个被测试的元素混合物。研究于2021-2022年使用机械移液器Lenpipet Thermo Fisher Scientific(芬兰)- 10 ml, Lenpipet Color - 100 μl和Lenpipet Color - 200 μl进行。他们的误差是在VK-600电子天平上测定的。由于混合溶液中成分浓度的误差平均降低了8.6%,创新的使用提高了诊断数据的可靠性。此外,在叶绿体寿命有限的条件下,用于诊断的时间减少了1.7倍,这对获得可靠的数据有有利的影响。讨论与结论。可靠的植物营养需求诊断数据将节省肥料资源,提高农业生产质量,避免营养过剩。
{"title":"Instrumental and Methodological Support for the Diagnostics of Nutritional Requirements of Plants","authors":"I. Gureev","doi":"10.15507/2658-4123.032.202204.504-519","DOIUrl":"https://doi.org/10.15507/2658-4123.032.202204.504-519","url":null,"abstract":"Introduction. Mineral fertilizers essential for intensive crop production technologies are an expensive and environmentally unsafe resource polluting the soil and agricultural products when applied in excess. The purpose of the research is instrumental and methodological support for modern functional diagnostics of nutritional requirements of plants, which is aimed at activating the photosynthesis process.\u0000Materials and Methods. It is proposed, for identifying nutritional requirements of plants to replace numerous intermediate plastic test tubes with a mixture of permanent components (sodium chloride, chloroplast suspension and Tillmans’ paint) for the diagnostic solution variants by a separate elastic light-protective container. A homogeneous mixture in a separate container eliminates the error in the concentration of solution components, which accompanies the repeated formation of mixtures in intermediate test tubes. This made it possible to reduce a number of repeated operations of filling intermediate test tubes with pipette dispensers for each tested mixture of elements. The studies were carried out in 2021–2022 using mechanical pipette dispensers Lenpipet Thermo Fisher Scientific (Finland) – 10 ml, Lenpipet Color – 100 μl and Lenpipet Color – 200 μl. Their error was determined on a VK-600 electronic balance.\u0000Results. The use of innovation increased the reliability of diagnostic data due to a 8.6% average reduction of error in the concentration of components in the mixture solution. In addition, the time spent on performing diagnostics decreased by 1.7 times that, under the conditions of a limited lifetime of chloroplasts, had a favorable effect on obtaining reliable data.\u0000Discussion and Conclusion. Reliable diagnostic data on nutritional requirements of plants will save fertilizer resources and improve the quality of agricultural production free from excessive nutrients.","PeriodicalId":53796,"journal":{"name":"Engineering Technologies and Systems","volume":"303 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-12-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"73300810","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.15507/2658-4123.032.202203.390-409
F. Eroshenko, N. Lapenko, I. Storchak, E. A. Bildieva, Roman D. Kostitsyn, Mariya A. Starostina
Introduction. The relevance of the study of steppe phytocenoses is caused by the unsatisfactory state of natural grass stands, namely a low level of biodiversity and a high degree of degradation. The aim of the work is to determine the features of the connection of the Earth remote sensing data with the state and degree of degradation of natural grass stands in unstable moistening zone and arid zone of the Stavropol Territory. The Earth remote sensing data with certain temporal and spatial resolutions make it possible to carry out almost continuous monitoring of the state of natural grass stands. Materials and Methods. The study of steppe phytocenoses was carried out in 2016–2020 on the ground at discount areas (100 m2) according to the requirements of methods generally accepted in phytocenology. Vegetation condition was assessed using the Earth remote sensing data based on the values of the Normalized Difference Vegetation Index. According to the satellite data, Normalized Difference Vegetation Index cartograms were constructed for each point of the study. Results. The proportion of polygons with a high degree of degradation is 18.8% of research objects located in the zone of unstable moistening and the proportion of polygons with an average degree of degradation is 37.5%, while in the arid zone 70.6 and 23.5%, respectively. In the zone of unstable moistening, the highest coefficients of rank correlation between the degradation degree and the area occupied by herbaceous vegetation with a certain value of the vegetation index are observed in the case if Normalized Difference Vegetation Index is in the range of 0.0–0.4, and in the arid zone 0.0–0.3 (at 0.01 significance level). Discussion and Conclusion. When using the Earth remote sensing data to assess the degree of degradation of steppe ecosystems of the Stavropol Territory, it is necessary to use regression models specific to various soil and climatic conditions.
{"title":"Assessment of Natural Plant Communities through the Use of Remote Sensing Data of the Stavropol Territory Steppes","authors":"F. Eroshenko, N. Lapenko, I. Storchak, E. A. Bildieva, Roman D. Kostitsyn, Mariya A. Starostina","doi":"10.15507/2658-4123.032.202203.390-409","DOIUrl":"https://doi.org/10.15507/2658-4123.032.202203.390-409","url":null,"abstract":"Introduction. The relevance of the study of steppe phytocenoses is caused by the unsatisfactory state of natural grass stands, namely a low level of biodiversity and a high degree of degradation. The aim of the work is to determine the features of the connection of the Earth remote sensing data with the state and degree of degradation of natural grass stands in unstable moistening zone and arid zone of the Stavropol Territory. The Earth remote sensing data with certain temporal and spatial resolutions make it possible to carry out almost continuous monitoring of the state of natural grass stands.\u0000Materials and Methods. The study of steppe phytocenoses was carried out in 2016–2020 on the ground at discount areas (100 m2) according to the requirements of methods generally accepted in phytocenology. Vegetation condition was assessed using the Earth remote sensing data based on the values of the Normalized Difference Vegetation Index. According to the satellite data, Normalized Difference Vegetation Index cartograms were constructed for each point of the study.\u0000Results. The proportion of polygons with a high degree of degradation is 18.8% of research objects located in the zone of unstable moistening and the proportion of polygons with an average degree of degradation is 37.5%, while in the arid zone 70.6 and 23.5%, respectively. In the zone of unstable moistening, the highest coefficients of rank correlation between the degradation degree and the area occupied by herbaceous vegetation with a certain value of the vegetation index are observed in the case if Normalized Difference Vegetation Index is in the range of 0.0–0.4, and in the arid zone 0.0–0.3 (at 0.01 significance level).\u0000Discussion and Conclusion. When using the Earth remote sensing data to assess the degree of degradation of steppe ecosystems of the Stavropol Territory, it is necessary to use regression models specific to various soil and climatic conditions.","PeriodicalId":53796,"journal":{"name":"Engineering Technologies and Systems","volume":"24 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81187842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.15507/2658-4123.032.202203.338-354
Vladimir A. Komarov, Mikhail I. Kurashkin
Introduction. The level of technological equipment and quality of equipment placement at the technical service enterprises have a significant impact on the size of work areas and the efficiency of travel paths for moving items of agricultural machinery under repair. The purpose of research is to assess the actual equipment level and the quality of equipment placement at the specific work areas of technical service enterprises. Material and Methods. The quality of the equipment placement at technical service enterprises is determined by comparing the actual and standard values of the coefficient that takes into account the size of work areas and travel paths for moving items of agricultural machinery under repair in particular work areas. There has been proposed a method for determining the level of equipment on the basis of the equipment deterioration and the coefficient of the equipment placement density. Results. Eighty percent of the work areas do not comply with the basic standards of technological design. The actual value of the equipment placement density coefficient at the work areas under research was 1.1‒42.8. The average value of the coefficient was 12.5 for enterprises with a fleet of less than 25 tractors, 10.2 for enterprises with a fleet of 25 to 50 tractors and 8.6 for enterprises with a fleet of more than 50 tractors. The share of the work areas with high density of equipment placement was 13.3%, with average density 40.0% and with low density 46.7%. The coefficients closest to the standard values were found in the work areas for repairing the hydraulic systems and oil equipment, restoring machinery parts with polymer composites, and for painting and drying. The values of the coefficient of equipment placement density at such basic work areas as for bench-working and assembling, forging works, welding, fusing, and etc. in some times differ from the standard values. Discussion and Conclusion. The conducted research showed that most of work areas of technical service enterprises in the Volga Federal District have a low level of equipment. The results of the study will allow optimizing the size of the work areas and ensuring the efficiency of travel paths for moving items of agricultural machinery under repair within the buildings.
{"title":"Assessing the Equipment Level of Technical Service Enterprises in the Agricultural Sector of the Volga Federal District","authors":"Vladimir A. Komarov, Mikhail I. Kurashkin","doi":"10.15507/2658-4123.032.202203.338-354","DOIUrl":"https://doi.org/10.15507/2658-4123.032.202203.338-354","url":null,"abstract":"Introduction. The level of technological equipment and quality of equipment placement at the technical service enterprises have a significant impact on the size of work areas and the efficiency of travel paths for moving items of agricultural machinery under repair. The purpose of research is to assess the actual equipment level and the quality of equipment placement at the specific work areas of technical service enterprises.\u0000Material and Methods. The quality of the equipment placement at technical service enterprises is determined by comparing the actual and standard values of the coefficient that takes into account the size of work areas and travel paths for moving items of agricultural machinery under repair in particular work areas. There has been proposed a method for determining the level of equipment on the basis of the equipment deterioration and the coefficient of the equipment placement density.\u0000Results. Eighty percent of the work areas do not comply with the basic standards of technological design. The actual value of the equipment placement density coefficient at the work areas under research was 1.1‒42.8. The average value of the coefficient was 12.5 for enterprises with a fleet of less than 25 tractors, 10.2 for enterprises with a fleet of 25 to 50 tractors and 8.6 for enterprises with a fleet of more than 50 tractors. The share of the work areas with high density of equipment placement was 13.3%, with average density 40.0% and with low density 46.7%. The coefficients closest to the standard values were found in the work areas for repairing the hydraulic systems and oil equipment, restoring machinery parts with polymer composites, and for painting and drying. The values of the coefficient of equipment placement density at such basic work areas as for bench-working and assembling, forging works, welding, fusing, and etc. in some times differ from the standard values.\u0000Discussion and Conclusion. The conducted research showed that most of work areas of technical service enterprises in the Volga Federal District have a low level of equipment. The results of the study will allow optimizing the size of the work areas and ensuring the efficiency of travel paths for moving items of agricultural machinery under repair within the buildings.","PeriodicalId":53796,"journal":{"name":"Engineering Technologies and Systems","volume":"33 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76533242","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.15507/2658-4123.032.202203.355-372
R. Rostovtsev, M. M. Kovalev, G. Perov, S.V. Prosolov
Introduction. During fiber-flax harvesting, the working tools of pulling units actively interact with the flax plants. The flax pulling unit with transverse tape-disc pulling channels is characterized by the separation of technological plant flows resulting in the loss of seeds and damage to the flax stems. The aim of the work is the theoretical and experimental substantiation of changes in the design of the pulling units with transverse tape-disc pulling channels by eliminating the separation of technological plant flows during flax pulling. Materials and Methods. Experimental studies to substantiate the parameters and modes of the pulling unit operation were carried out according to available and newly developed methodologies, while the evaluation of flax products was carried out according to current GOSTs (Russian National standards). There was determined the influence of the flax ripeness stages, flax yield, and a type of pulling unit on the indicators of separation of technological plant flows and on seed losses. The influence of the pulling unit type, operating width of the pulling section, and the pulling unit speed on the indicators of processing flax straw was also established. Results. There was obtained the dependence for determining the flax stem base elongation, taking into account the seed boll cohesion. The design of the modernized flax pulling unit was used to assess the effect of reducing the flax stem base elongation and eliminating the separation of technological plant flows during pulling on the reduction of seed loss and increase in the yield of flax longs. In the improved flax harvester, the frame elements are positioned behind the pulling unit. Thanks to the modernization of the pulling unit, the flax straw was of higher quality: 1.5 numbers at THLN-1.9M and 1.25 numbers at THLN-1.9P. Discussion and Conclusion. The modernized pulling unit THLN-1,9M during flax harvesting in the stage of early yellow ripeness, compared with the unit THLN-1,9P, can reduce seed loss by 1.4-2.0%, increased output of long fiber by 1.3%. The production of flax longs increases to 0.45 of its number.
{"title":"Studying the Innovative Flax Pulling Process in Apparatuses with Transverse Pulling Channels","authors":"R. Rostovtsev, M. M. Kovalev, G. Perov, S.V. Prosolov","doi":"10.15507/2658-4123.032.202203.355-372","DOIUrl":"https://doi.org/10.15507/2658-4123.032.202203.355-372","url":null,"abstract":"Introduction. During fiber-flax harvesting, the working tools of pulling units actively interact with the flax plants. The flax pulling unit with transverse tape-disc pulling channels is characterized by the separation of technological plant flows resulting in the loss of seeds and damage to the flax stems. The aim of the work is the theoretical and experimental substantiation of changes in the design of the pulling units with transverse tape-disc pulling channels by eliminating the separation of technological plant flows during flax pulling.\u0000Materials and Methods. Experimental studies to substantiate the parameters and modes of the pulling unit operation were carried out according to available and newly developed methodologies, while the evaluation of flax products was carried out according to current GOSTs (Russian National standards). There was determined the influence of the flax ripeness stages, flax yield, and a type of pulling unit on the indicators of separation of technological plant flows and on seed losses. The influence of the pulling unit type, operating width of the pulling section, and the pulling unit speed on the indicators of processing flax straw was also established.\u0000Results. There was obtained the dependence for determining the flax stem base elongation, taking into account the seed boll cohesion. The design of the modernized flax pulling unit was used to assess the effect of reducing the flax stem base elongation and eliminating the separation of technological plant flows during pulling on the reduction of seed loss and increase in the yield of flax longs. In the improved flax harvester, the frame elements are positioned behind the pulling unit. Thanks to the modernization of the pulling unit, the flax straw was of higher quality: 1.5 numbers at THLN-1.9M and 1.25 numbers at THLN-1.9P.\u0000Discussion and Conclusion. The modernized pulling unit THLN-1,9M during flax harvesting in the stage of early yellow ripeness, compared with the unit THLN-1,9P, can reduce seed loss by 1.4-2.0%, increased output of long fiber by 1.3%. The production of flax longs increases to 0.45 of its number.","PeriodicalId":53796,"journal":{"name":"Engineering Technologies and Systems","volume":"110 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87683550","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.15507/2658-4123.032.202203.373-389
V. Likhanov, O. Lopatin
Introduction. Alternative fuels in IC-engines make it possible to reduce the harmful effects of exhaust gases on the environment without the use of expensive cleaning systems, diversify the fuel market, and reduce the consumption of non-renewable energy recourses, while research aimed at studying the use of alternative fuels makes it possible to find optimal options for replacing non-renewable raw materials. The purpose of the work is to study the effect of using ethanol in a standard tractor diesel engine with volumetric mixing and combustion from flare resulting from the autoignition of a rapeseed oil pilot portion and to optimize separate cyclic fuel deliveries to obtain maximum energy and environmental effect. Materials and Methods. The article deals with the description of the results of the use of rapeseed oil and ethanol in a serial tractor diesel engine of dimension 2F 10.5/12.0 with separate fuel injection directly into the combustion chamber. In the course of experimental studies, the working process was indicated by a piezo quartz pressure sensor installed in the cylinder head, fuel and air consumption were measured, and samples of exhaust gases to study the gas composition and determine the content of toxic components and smokiness were taken. Results. The exact ethanol and rapeseed oil delivery was determined; the values of the average effective pressure, the average temperature of gases in the cylinder, and active and full heat generation were obtained. It is shown that with an increase in the cyclic ethanol delivery, the proportion of heat from kinetic combustion increases, while the diesel process is characterized by an increase in the proportion of diffusion combustion when the load increases. The analysis of the processes inside the cylinder when the engine runs on ethanol and rapeseed oil in comparison with the traditional diesel process is carried out. Discussion and Conclusion. The use of rapeseed oil and ethanol can completely replace the traditional fuel of petroleum origin for an operating diesel engine by installing additional fuel equipment and modifying the head of cylinder block through mounting an additional nozzle. In this case, the environmental performance of the diesel engine improves significantly.
{"title":"Usage of Rapeseed Oil and Ethanol in a Diesel Engine","authors":"V. Likhanov, O. Lopatin","doi":"10.15507/2658-4123.032.202203.373-389","DOIUrl":"https://doi.org/10.15507/2658-4123.032.202203.373-389","url":null,"abstract":"Introduction. Alternative fuels in IC-engines make it possible to reduce the harmful effects of exhaust gases on the environment without the use of expensive cleaning systems, diversify the fuel market, and reduce the consumption of non-renewable energy recourses, while research aimed at studying the use of alternative fuels makes it possible to find optimal options for replacing non-renewable raw materials. The purpose of the work is to study the effect of using ethanol in a standard tractor diesel engine with volumetric mixing and combustion from flare resulting from the autoignition of a rapeseed oil pilot portion and to optimize separate cyclic fuel deliveries to obtain maximum energy and environmental effect.\u0000Materials and Methods. The article deals with the description of the results of the use of rapeseed oil and ethanol in a serial tractor diesel engine of dimension 2F 10.5/12.0 with separate fuel injection directly into the combustion chamber. In the course of experimental studies, the working process was indicated by a piezo quartz pressure sensor installed in the cylinder head, fuel and air consumption were measured, and samples of exhaust gases to study the gas composition and determine the content of toxic components and smokiness were taken.\u0000Results. The exact ethanol and rapeseed oil delivery was determined; the values of the average effective pressure, the average temperature of gases in the cylinder, and active and full heat generation were obtained. It is shown that with an increase in the cyclic ethanol delivery, the proportion of heat from kinetic combustion increases, while the diesel process is characterized by an increase in the proportion of diffusion combustion when the load increases. The analysis of the processes inside the cylinder when the engine runs on ethanol and rapeseed oil in comparison with the traditional diesel process is carried out.\u0000Discussion and Conclusion. The use of rapeseed oil and ethanol can completely replace the traditional fuel of petroleum origin for an operating diesel engine by installing additional fuel equipment and modifying the head of cylinder block through mounting an additional nozzle. In this case, the environmental performance of the diesel engine improves significantly.","PeriodicalId":53796,"journal":{"name":"Engineering Technologies and Systems","volume":"163 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"86454691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.15507/2658-4123.032.202203.410-422
Evgeniya V. Antipina, S. Mustafina, A. F. Antipin, N. D. Morozkin
Introduction. The problem of determining the optimal mode parameters during the mathematical modeling of chemical and technological processes is the most important. Numerical methods and algorithms for the solution provide the basis for developing software packages to calculate processes and their digital twins. The mathematical model of the chemical-technological process can be described by a system of differential equations, highlighting the phase variables that determine the state of the process, and the control parameters, which can be changed and thereby affect the course of the process. The aim of the work is to develop a numerical algorithm for solving the problem of optimal control of a chemical-technological process in the presence of terminal constraints and the constraints on the control parameter. Materials and Methods. There was formulated the problem of optimal control in general terms. To solve it, the penalty method and method of artificial immune systems were applied. There was described a method for including constraints in the penalty function and for choosing a sequence of coefficients with which the penalty is taken. To overcome local extrema, a random choice of initial values of control parameters was used. Results. The article presents a step-by-step numerical algorithm for solving the problem of optimal control of a chemical-technological process with terminal constraints. A computational experiment was carried out for a model example, as a result of which the structure of the optimal process control and the corresponding optimal trajectories of phase variables are determined. It is shown that the calculated solution of the optimal control problem consists with the solution obtained by the needle linearization method. Discussion and Conclusion. The developed algorithm allows finding a numerical solution to the problem of optimal control of a chemical-technological process with terminal constraints. The solution does not depend on the choice of the initial approximation.
{"title":"Algorithm for Solving the Problem of Optimal Control of a Chemical-Technological Process with Terminal Constraints","authors":"Evgeniya V. Antipina, S. Mustafina, A. F. Antipin, N. D. Morozkin","doi":"10.15507/2658-4123.032.202203.410-422","DOIUrl":"https://doi.org/10.15507/2658-4123.032.202203.410-422","url":null,"abstract":"Introduction. The problem of determining the optimal mode parameters during the mathematical modeling of chemical and technological processes is the most important. Numerical methods and algorithms for the solution provide the basis for developing software packages to calculate processes and their digital twins. The mathematical model of the chemical-technological process can be described by a system of differential equations, highlighting the phase variables that determine the state of the process, and the control parameters, which can be changed and thereby affect the course of the process. The aim of the work is to develop a numerical algorithm for solving the problem of optimal control of a chemical-technological process in the presence of terminal constraints and the constraints on the control parameter.\u0000Materials and Methods. There was formulated the problem of optimal control in general terms. To solve it, the penalty method and method of artificial immune systems were applied. There was described a method for including constraints in the penalty function and for choosing a sequence of coefficients with which the penalty is taken. To overcome local extrema, a random choice of initial values of control parameters was used.\u0000Results. The article presents a step-by-step numerical algorithm for solving the problem of optimal control of a chemical-technological process with terminal constraints. A computational experiment was carried out for a model example, as a result of which the structure of the optimal process control and the corresponding optimal trajectories of phase variables are determined. It is shown that the calculated solution of the optimal control problem consists with the solution obtained by the needle linearization method.\u0000Discussion and Conclusion. The developed algorithm allows finding a numerical solution to the problem of optimal control of a chemical-technological process with terminal constraints. The solution does not depend on the choice of the initial approximation.","PeriodicalId":53796,"journal":{"name":"Engineering Technologies and Systems","volume":"15 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"76452153","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.15507/2658-4123.032.202203.437-459
E. Tarasov, A. Tarasova
Introduction. The problem of determining the train coordinates on the approach section to the crossing is associated with the impact of destabilizing factors on the information primary detector ? the rail line with distributed parameters. This leads to an error in calculating train coordinates. The aim of the study is to develop and scientifically substantiate the principle of building a system for calculating train coordinates with self-tuning of the decision function under the influence of significant destabilizing factors on the information primary sensor. Materials and Methods. To solve the problem of reliable determination of train coordinates, we propose a two-phase principle for forming the decision function. At the first stage, by means of a training sample of images and using the learning principle, the decision function (model) of the system for calculating train coordinates is determined. When the train enters a fixed-length approach section, the mismatch is determined by comparing the calculated coordinate with the fixed one. The second stage is the self-tuning of the coefficients of the decision function until the required accuracy is achieved. Results. The article shows the stages of forming the decision function by two-dimensional images; there was developed and tested an algorithm for self-turning of the decision function under the influence of various destabilizing factors. Through using 6 attributes of components of current and voltage vectors at the rail line input, 6 solving functions were obtained. Various combinations of two-dimensional images were used as polynomial arguments. Discussion and Conclusion. The study results confirm the feasibility of forming decision function and its self-tuning. The maximum error in calculating coordinates for various combinations ranges from 9.97% (199.34 m) to 4.57% (91.49 m). The error of determination of 5% for two decisive functions satisfies the safety requirements, since in a 45-second time interval to activate an automatic crossing signal, a distance of 100 m is covered in 3 seconds, i.e. the elapsed time is only 3 seconds in a 45 second interval.
{"title":"Automated Train Coordinate Determination System with Self-Tuning of the Decision Function","authors":"E. Tarasov, A. Tarasova","doi":"10.15507/2658-4123.032.202203.437-459","DOIUrl":"https://doi.org/10.15507/2658-4123.032.202203.437-459","url":null,"abstract":"Introduction. The problem of determining the train coordinates on the approach section to the crossing is associated with the impact of destabilizing factors on the information primary detector ? the rail line with distributed parameters. This leads to an error in calculating train coordinates. The aim of the study is to develop and scientifically substantiate the principle of building a system for calculating train coordinates with self-tuning of the decision function under the influence of significant destabilizing factors on the information primary sensor.\u0000Materials and Methods. To solve the problem of reliable determination of train coordinates, we propose a two-phase principle for forming the decision function. At the first stage, by means of a training sample of images and using the learning principle, the decision function (model) of the system for calculating train coordinates is determined. When the train enters a fixed-length approach section, the mismatch is determined by comparing the calculated coordinate with the fixed one. The second stage is the self-tuning of the coefficients of the decision function until the required accuracy is achieved.\u0000Results. The article shows the stages of forming the decision function by two-dimensional images; there was developed and tested an algorithm for self-turning of the decision function under the influence of various destabilizing factors. Through using 6 attributes of components of current and voltage vectors at the rail line input, 6 solving functions were obtained. Various combinations of two-dimensional images were used as polynomial arguments.\u0000Discussion and Conclusion. The study results confirm the feasibility of forming decision function and its self-tuning. The maximum error in calculating coordinates for various combinations ranges from 9.97% (199.34 m) to 4.57% (91.49 m). The error of determination of 5% for two decisive functions satisfies the safety requirements, since in a 45-second time interval to activate an automatic crossing signal, a distance of 100 m is covered in 3 seconds, i.e. the elapsed time is only 3 seconds in a 45 second interval.","PeriodicalId":53796,"journal":{"name":"Engineering Technologies and Systems","volume":"46 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"87763816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-30DOI: 10.15507/2658-4123.032.202203.460-475
M. Belyakov, G. Samarin, A. Kudryavtsev, I. Efremenkov
Introduction. The use of digital technologies will increase the efficiency of animal husbandry. These technologies include optical monitoring of product quality. The aim of the research is to study the dependence of the spectral characteristics and parameters of excitation and luminescence of milk during souring. Materials and Methods. The milk with a fat content of 3.2% was used for measurements. The acidity was controlled by the titrimetric method. The excitation and luminescence registration spectra were measured on a Fluorat-02-Panorama spectrofluorimeter in the range of 200–500 nm. Spectra parameters were calculated in the PanoramaPro and Microcal Origin programs. Results. When milk sours, excitation spectra shift downwards, while a qualitative change in characteristics is observed with the range of 350–500 nm, although the photoelectric signal absolute level is almost an order of magnitude less than with a range of 220?340 nm. The photoluminescence flux when excited by the radiation with wavelength of 262 nm decreases during the souring process. The flux excited by the radiation with wavelength of 385 nm increases especially in the first three days. The flux at wavelength of 442 nm decreases slightly. Statistical parameters and energy of photoluminescence spectra are not informative for the milk souring control. The dependence of the ratio of photoluminescence fluxes excited by the radiation of 385 and 442 nm on acidity is linearly approximated with a determination coefficient of 0.99. Discussion and Conclusion. The change in the milk luminescent properties can be used as a marker of its souring with acidity control. To create a method for monitoring milk quality indicators during souring, the most informative is the use of excitation wavelengths of 385 and 442 nm with subsequent registration of photoluminescence in the ranges 440–490 and 490–600 nm respectively.
{"title":"Change of Spectral Photoluminescent Properties of Milk during Souring","authors":"M. Belyakov, G. Samarin, A. Kudryavtsev, I. Efremenkov","doi":"10.15507/2658-4123.032.202203.460-475","DOIUrl":"https://doi.org/10.15507/2658-4123.032.202203.460-475","url":null,"abstract":"Introduction. The use of digital technologies will increase the efficiency of animal husbandry. These technologies include optical monitoring of product quality. The aim of the research is to study the dependence of the spectral characteristics and parameters of excitation and luminescence of milk during souring.\u0000Materials and Methods. The milk with a fat content of 3.2% was used for measurements. The acidity was controlled by the titrimetric method. The excitation and luminescence registration spectra were measured on a Fluorat-02-Panorama spectrofluorimeter in the range of 200–500 nm. Spectra parameters were calculated in the PanoramaPro and Microcal Origin programs.\u0000Results. When milk sours, excitation spectra shift downwards, while a qualitative change in characteristics is observed with the range of 350–500 nm, although the photoelectric signal absolute level is almost an order of magnitude less than with a range of 220?340 nm. The photoluminescence flux when excited by the radiation with wavelength of 262 nm decreases during the souring process. The flux excited by the radiation with wavelength of 385 nm increases especially in the first three days. The flux at wavelength of 442 nm decreases slightly. Statistical parameters and energy of photoluminescence spectra are not informative for the milk souring control. The dependence of the ratio of photoluminescence fluxes excited by the radiation of 385 and 442 nm on acidity is linearly approximated with a determination coefficient of 0.99.\u0000Discussion and Conclusion. The change in the milk luminescent properties can be used as a marker of its souring with acidity control. To create a method for monitoring milk quality indicators during souring, the most informative is the use of excitation wavelengths of 385 and 442 nm with subsequent registration of photoluminescence in the ranges 440–490 and 490–600 nm respectively.","PeriodicalId":53796,"journal":{"name":"Engineering Technologies and Systems","volume":"1 1","pages":""},"PeriodicalIF":0.3,"publicationDate":"2022-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"75258671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}