Pub Date : 2024-07-29DOI: 10.1109/JTEHM.2024.3435334
Nikolas Hesse;Sandra Baumgartner;Anja Gut;Hubertus J. A. Van Hedel
Objective: Low-cost, portable RGB-D cameras with integrated motion tracking functionality enable easy-to-use 3D motion analysis without requiring expensive facilities and specialized personnel. However, the accuracy of existing systems is insufficient for most clinical applications, particularly when applied to children. In previous work, we developed an RGB-D camera-based motion tracking method and showed that it accurately captures body joint positions of children and young adults in 3D. In this study, the validity and accuracy of clinically relevant motion parameters that were computed from kinematics of our motion tracking method are evaluated in children and young adults. Methods: Twenty-three typically developing children and healthy young adults (5-29 years, 110–189 cm) performed five movement tasks while being recorded simultaneously with a marker-based Vicon system and an Azure Kinect RGB-D camera. Motion parameters were computed from the extracted kinematics of both methods: time series measurements, i.e., measurements over time, peak measurements, i.e., measurements at a single time instant, and movement smoothness. The agreement of these parameter values was evaluated using Pearson’s correlation coefficients r for time series data, and mean absolute error (MAE) and Bland-Altman plots with limits of agreement for peak measurements and smoothness. Results: Time series measurements showed strong to excellent correlations (r-values between 0.8 and 1.0), MAE for angles ranged from 1.5 to 5 degrees and for smoothness parameters (SPARC) from 0.02-0.09, while MAE for distance-related parameters ranged from 9 to 15 mm. Conclusion: Extracted motion parameters are valid and accurate for various movement tasks in children and young adults, demonstrating the suitability of our tracking method for clinical motion analysis. Clinical Impact: The low-cost portable hardware in combination with our tracking method enables motion analysis outside of specialized facilities while providing measurements that are close to those of the clinical gold-standard.
{"title":"Concurrent Validity of Motion Parameters Measured With an RGB-D Camera-Based Markerless 3D Motion Tracking Method in Children and Young Adults","authors":"Nikolas Hesse;Sandra Baumgartner;Anja Gut;Hubertus J. A. Van Hedel","doi":"10.1109/JTEHM.2024.3435334","DOIUrl":"10.1109/JTEHM.2024.3435334","url":null,"abstract":"Objective: Low-cost, portable RGB-D cameras with integrated motion tracking functionality enable easy-to-use 3D motion analysis without requiring expensive facilities and specialized personnel. However, the accuracy of existing systems is insufficient for most clinical applications, particularly when applied to children. In previous work, we developed an RGB-D camera-based motion tracking method and showed that it accurately captures body joint positions of children and young adults in 3D. In this study, the validity and accuracy of clinically relevant motion parameters that were computed from kinematics of our motion tracking method are evaluated in children and young adults. Methods: Twenty-three typically developing children and healthy young adults (5-29 years, 110–189 cm) performed five movement tasks while being recorded simultaneously with a marker-based Vicon system and an Azure Kinect RGB-D camera. Motion parameters were computed from the extracted kinematics of both methods: time series measurements, i.e., measurements over time, peak measurements, i.e., measurements at a single time instant, and movement smoothness. The agreement of these parameter values was evaluated using Pearson’s correlation coefficients r for time series data, and mean absolute error (MAE) and Bland-Altman plots with limits of agreement for peak measurements and smoothness. Results: Time series measurements showed strong to excellent correlations (r-values between 0.8 and 1.0), MAE for angles ranged from 1.5 to 5 degrees and for smoothness parameters (SPARC) from 0.02-0.09, while MAE for distance-related parameters ranged from 9 to 15 mm. Conclusion: Extracted motion parameters are valid and accurate for various movement tasks in children and young adults, demonstrating the suitability of our tracking method for clinical motion analysis. Clinical Impact: The low-cost portable hardware in combination with our tracking method enables motion analysis outside of specialized facilities while providing measurements that are close to those of the clinical gold-standard.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"580-588"},"PeriodicalIF":3.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Objective: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neurodevelopmental disorder with a prevalence ranging from 6.1 to 9.4%. The main symptoms of ADHD are inattention, hyperactivity, impulsivity, and even destructive behaviors that may have a long-term negative influence on learning performance or social relationships. Early diagnosis and treatment provide the best chance of reducing and managing symptoms. Currently, ADHD diagnosis relies on behavioral observations and ratings by clinicians and parents. Medical diagnosis of ADHD was reported to be delayed because of a global shortage of well-trained clinicians, the heterogeneous nature of ADHD, and combined comorbidities. Therefore, alternative ways to increase the efficiency of early diagnosis are needed. Previous studies used behavioral and neurophysiological data to assess patients with ADHD, yielding an accuracy range from 56.6% to 92%. Several factors were shown to affect the detection rate, including methods and tasks used and the number of electroencephalogram (EEG) channels. Given that children with ADHD have difficulty sustaining attention, in this study, we tested whether data from multiple tasks with different difficulties and prolonged experiment times can probe the levels of brain resources engaged during task performance and increase ADHD detection. Specifically, we proposed a Deep Neural Network-based (DNN) fusion model of multiple tasks to enhance the detection of ADHD. Methods & Results: Forty-nine children with ADHD and thirty-two typically developing children were recruited. Analytic results show that the fusion of multi-task neurophysiological data can increase the separation rate to 89%, whereas a single data type can only achieve a best accuracy of 81%. Moreover, the use of multiple tasks helps distinguish between children with ADHD and typically developing children. Our results suggest that different neurophysiological models from multiple tasks can provide essential information to assist in ADHD screening. In conclusion, the proposed model offers a more efficient, and accurate alternative for early clinical diagnosis and management of ADHD. The application of artificial intelligence and multimodal neurophysiological data in clinical settings sets a precedent for digital health, paving the way for future advancements in the field.
{"title":"Fusion of Multi-Task Neurophysiological Data to Enhance the Detection of Attention- Deficit/Hyperactivity Disorder","authors":"Kai-Feng Zhang;Shih-Ching Yeh;Eric Hsiao-Kuang Wu;Xiu Xu;Ho-Jung Tsai;Chun-Chuan Chen","doi":"10.1109/JTEHM.2024.3435553","DOIUrl":"10.1109/JTEHM.2024.3435553","url":null,"abstract":"Objective: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neurodevelopmental disorder with a prevalence ranging from 6.1 to 9.4%. The main symptoms of ADHD are inattention, hyperactivity, impulsivity, and even destructive behaviors that may have a long-term negative influence on learning performance or social relationships. Early diagnosis and treatment provide the best chance of reducing and managing symptoms. Currently, ADHD diagnosis relies on behavioral observations and ratings by clinicians and parents. Medical diagnosis of ADHD was reported to be delayed because of a global shortage of well-trained clinicians, the heterogeneous nature of ADHD, and combined comorbidities. Therefore, alternative ways to increase the efficiency of early diagnosis are needed. Previous studies used behavioral and neurophysiological data to assess patients with ADHD, yielding an accuracy range from 56.6% to 92%. Several factors were shown to affect the detection rate, including methods and tasks used and the number of electroencephalogram (EEG) channels. Given that children with ADHD have difficulty sustaining attention, in this study, we tested whether data from multiple tasks with different difficulties and prolonged experiment times can probe the levels of brain resources engaged during task performance and increase ADHD detection. Specifically, we proposed a Deep Neural Network-based (DNN) fusion model of multiple tasks to enhance the detection of ADHD. Methods & Results: Forty-nine children with ADHD and thirty-two typically developing children were recruited. Analytic results show that the fusion of multi-task neurophysiological data can increase the separation rate to 89%, whereas a single data type can only achieve a best accuracy of 81%. Moreover, the use of multiple tasks helps distinguish between children with ADHD and typically developing children. Our results suggest that different neurophysiological models from multiple tasks can provide essential information to assist in ADHD screening. In conclusion, the proposed model offers a more efficient, and accurate alternative for early clinical diagnosis and management of ADHD. The application of artificial intelligence and multimodal neurophysiological data in clinical settings sets a precedent for digital health, paving the way for future advancements in the field.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"668-674"},"PeriodicalIF":3.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1109/JTEHM.2024.3433448
Dong Hyun Choi;Yoon Ha Joo;Ki Hong Kim;Jeong Ho Park;Hyunjin Joo;Hyoun-Joong Kong;Hyunju Lee;Kyoung Jun Song;Sungwan Kim
The objective of this study was to develop a sound recognition-based cardiopulmonary resuscitation (CPR) training system that is accessible, cost-effective, easy-to-maintain and provides accurate CPR feedback. Beep-CPR, a novel device with accordion squeakers that emit high-pitched sounds during compression, was developed. The sounds emitted by Beep-CPR were recorded using a smartphone, segmented into 2-second audio fragments, and then transformed into spectrograms. A total of 6,065 spectrograms were generated from approximately 40 minutes of audio data, which were then randomly split into training, validation, and test datasets. Each spectrogram was matched with the depth, rate, and release velocity of the compression measured at the same time interval by the ZOLL X Series monitor/defibrillator. Deep learning models utilizing spectrograms as input were trained using transfer learning based on EfficientNet to predict the depth (Depth model), rate (Rate model), and release velocity (Recoil model) of compressions. Results: The mean absolute error (MAE) for the Depth model was 0.30 cm (95% confidence interval [CI]: 0.27–0.33). The MAE of the Rate model was 3.6/min (95% CI: 3.2–3.9). For the Recoil model, the MAE was 2.3 cm/s (95% CI: 2.1–2.5). External validation of the models demonstrated acceptable performance across multiple conditions, including the utilization of a newly-manufactured device, a fatigued device, and evaluation in an environment with altered spatial dimensions. We have developed a novel sound recognition-based CPR training system, that accurately measures compression quality during training. Significance: Beep-CPR is a cost-effective and easy-to-maintain solution that can improve the efficacy of CPR training by facilitating decentralized at-home training with performance feedback.
本研究的目的是开发一种基于声音识别的心肺复苏(CPR)培训系统,该系统方便使用、经济实惠、易于维护并能提供准确的心肺复苏反馈。Beep-CPR 是一种新型装置,带有风琴式尖叫器,在按压过程中会发出高亢的声音。Beep-CPR 发出的声音由智能手机录制,分割成 2 秒钟的音频片段,然后转换成频谱图。从大约 40 分钟的音频数据中共生成了 6,065 张频谱图,然后随机分成训练数据集、验证数据集和测试数据集。每张频谱图都与 ZOLL X 系列监护仪/除颤器在相同时间间隔内测量到的压缩深度、速率和释放速度相匹配。以频谱图为输入的深度学习模型通过基于 EfficientNet 的迁移学习进行训练,以预测按压的深度(深度模型)、速率(速率模型)和释放速度(反冲模型)。结果:深度模型的平均绝对误差(MAE)为 0.30 厘米(95% 置信区间 [CI]:0.27-0.33)。速率模型的 MAE 为 3.6/分钟(95% 置信区间:3.2-3.9)。后坐力模型的 MAE 为 2.3 厘米/秒(95% CI:2.1-2.5)。模型的外部验证表明,在多种条件下,包括使用新制造的设备、疲劳设备以及在空间尺寸改变的环境中进行评估,其性能都是可以接受的。我们开发了一种新型的基于声音识别的心肺复苏训练系统,可在训练过程中准确测量按压质量。意义重大:Beep-CPR 是一种成本效益高且易于维护的解决方案,可通过提供性能反馈来促进分散的家庭培训,从而提高心肺复苏术培训的效果。
{"title":"A Development of a Sound Recognition-Based Cardiopulmonary Resuscitation Training System","authors":"Dong Hyun Choi;Yoon Ha Joo;Ki Hong Kim;Jeong Ho Park;Hyunjin Joo;Hyoun-Joong Kong;Hyunju Lee;Kyoung Jun Song;Sungwan Kim","doi":"10.1109/JTEHM.2024.3433448","DOIUrl":"10.1109/JTEHM.2024.3433448","url":null,"abstract":"The objective of this study was to develop a sound recognition-based cardiopulmonary resuscitation (CPR) training system that is accessible, cost-effective, easy-to-maintain and provides accurate CPR feedback. Beep-CPR, a novel device with accordion squeakers that emit high-pitched sounds during compression, was developed. The sounds emitted by Beep-CPR were recorded using a smartphone, segmented into 2-second audio fragments, and then transformed into spectrograms. A total of 6,065 spectrograms were generated from approximately 40 minutes of audio data, which were then randomly split into training, validation, and test datasets. Each spectrogram was matched with the depth, rate, and release velocity of the compression measured at the same time interval by the ZOLL X Series monitor/defibrillator. Deep learning models utilizing spectrograms as input were trained using transfer learning based on EfficientNet to predict the depth (Depth model), rate (Rate model), and release velocity (Recoil model) of compressions. Results: The mean absolute error (MAE) for the Depth model was 0.30 cm (95% confidence interval [CI]: 0.27–0.33). The MAE of the Rate model was 3.6/min (95% CI: 3.2–3.9). For the Recoil model, the MAE was 2.3 cm/s (95% CI: 2.1–2.5). External validation of the models demonstrated acceptable performance across multiple conditions, including the utilization of a newly-manufactured device, a fatigued device, and evaluation in an environment with altered spatial dimensions. We have developed a novel sound recognition-based CPR training system, that accurately measures compression quality during training. Significance: Beep-CPR is a cost-effective and easy-to-maintain solution that can improve the efficacy of CPR training by facilitating decentralized at-home training with performance feedback.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"550-557"},"PeriodicalIF":3.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10613881","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-29DOI: 10.1109/JTEHM.2024.3434460
Lei Guan;Xiaodong Yang;Nan Zhao;Malik Muhammad Arslan;Muneeb Ullah;Qurat Ul Ain;Abbas Ali Shah;Akram Alomainy;Qammer H. Abbasi
Vital signs are important indicators to evaluate the health status of patients. Channel state information (CSI) can sense the displacement of the chest wall caused by cardiorespiratory activity in a non-contact manner. Due to the influence of clutter, DC components, and respiratory harmonics, it is difficult to detect reliable heartbeat signals. To address this problem, this paper proposes a robust and novel method for simultaneously extracting breath and heartbeat signals using software defined radios (SDR). Specifically, we model and analyze the signal and propose singular value decomposition (SVD)-based clutter suppression method to enhance the vital sign signals. The DC is estimated and compensated by the circle fitting method. Then, the heartbeat signal and respiratory signal are obtained by the modified variational modal decomposition (VMD). The experimental results demonstrate that the proposed method can accurately separate the respiratory signal and the heartbeat signal from the filtered signal. The Bland-Altman analysis shows that the proposed system is in good agreement with the medical sensors. In addition, the proposed system can accurately measure the heart rate variability (HRV) within 0.5m. In summary, our system can be used as a preferred contactless alternative to traditional contact medical sensors, which can provide advanced patient-centered healthcare solutions.
{"title":"Non-Contact Measurement of Cardiopulmonary Activity Using Software Defined Radios","authors":"Lei Guan;Xiaodong Yang;Nan Zhao;Malik Muhammad Arslan;Muneeb Ullah;Qurat Ul Ain;Abbas Ali Shah;Akram Alomainy;Qammer H. Abbasi","doi":"10.1109/JTEHM.2024.3434460","DOIUrl":"10.1109/JTEHM.2024.3434460","url":null,"abstract":"Vital signs are important indicators to evaluate the health status of patients. Channel state information (CSI) can sense the displacement of the chest wall caused by cardiorespiratory activity in a non-contact manner. Due to the influence of clutter, DC components, and respiratory harmonics, it is difficult to detect reliable heartbeat signals. To address this problem, this paper proposes a robust and novel method for simultaneously extracting breath and heartbeat signals using software defined radios (SDR). Specifically, we model and analyze the signal and propose singular value decomposition (SVD)-based clutter suppression method to enhance the vital sign signals. The DC is estimated and compensated by the circle fitting method. Then, the heartbeat signal and respiratory signal are obtained by the modified variational modal decomposition (VMD). The experimental results demonstrate that the proposed method can accurately separate the respiratory signal and the heartbeat signal from the filtered signal. The Bland-Altman analysis shows that the proposed system is in good agreement with the medical sensors. In addition, the proposed system can accurately measure the heart rate variability (HRV) within 0.5m. In summary, our system can be used as a preferred contactless alternative to traditional contact medical sensors, which can provide advanced patient-centered healthcare solutions.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"558-568"},"PeriodicalIF":3.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10613608","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brain microstructural changes already occur in the earliest phases of Alzheimer’s disease (AD) as evidenced in diffusion magnetic resonance imaging (dMRI) literature. This study investigates the potential of the novel dMRI Apparent Measures Using Reduced Acquisitions (AMURA) as imaging markers for capturing such tissue modifications.Tract-based spatial statistics (TBSS) and support vector machines (SVMs) based on different measures were exploited to distinguish between amyloid-beta/tau negative (A $beta $