Pub Date : 2024-10-01DOI: 10.1109/JTEHM.2024.3471468
Qiuyang Lin;Haocun Wang;Dwaipayan Biswas;Zheyi Li;Erika Lutin;Chris van Hoof;Mingyi Chen;Nick van Helleputte
Advancements in integrated circuit (IC) technology have accelerated the miniaturization of body-worn sensors and systems, enabling long-term health monitoring. Wearable electrocardiogram (ECG), finger photoplethysmogram (PPG), and wrist-worn PPG have shown great success and significantly improved life quality. Chest-based PPG has the potential to extract multiple vital signs but requires ultra-high dynamic range (DR) IC to read out the small PPG signal among large respiration and artifacts inherent in daily life. This paper presents a dedicated high DR system for wearable chest PPG applications with a small form factor. The whole measurement system is integrated on a 20 cm2 PCB board. We have formulated a comprehensive evaluation protocol to validate the system with on-body chest PPG measurement in the workspace environment. First, chest PPG data was obtained from 6 adults and compared to data from a standard ECG patch. This system showed an average absolute deviation (AD) of 0.41 beats per minute, achieving > 99.53% heart rate (HR) accuracy. Second, chest PPG was recorded and compared to conventional PPG finger clip and PPG wristband, also showing > 98.6% HR matching and an absolute deviation in the standard deviation of NN intervals (SDNN) of < 12.8 ms for HRV monitoring within the protocol. Moreover, it successfully derives other vital parameters such as respiration rate and blood oxygen level (SpO2), showing the advancement among all these three reference modalities. This system can pave the way for new application areas, such as chest patches, to monitor chronic heart and respiratory diseases.
{"title":"A Novel Chest-Based PPG Measurement System","authors":"Qiuyang Lin;Haocun Wang;Dwaipayan Biswas;Zheyi Li;Erika Lutin;Chris van Hoof;Mingyi Chen;Nick van Helleputte","doi":"10.1109/JTEHM.2024.3471468","DOIUrl":"https://doi.org/10.1109/JTEHM.2024.3471468","url":null,"abstract":"Advancements in integrated circuit (IC) technology have accelerated the miniaturization of body-worn sensors and systems, enabling long-term health monitoring. Wearable electrocardiogram (ECG), finger photoplethysmogram (PPG), and wrist-worn PPG have shown great success and significantly improved life quality. Chest-based PPG has the potential to extract multiple vital signs but requires ultra-high dynamic range (DR) IC to read out the small PPG signal among large respiration and artifacts inherent in daily life. This paper presents a dedicated high DR system for wearable chest PPG applications with a small form factor. The whole measurement system is integrated on a 20 cm2 PCB board. We have formulated a comprehensive evaluation protocol to validate the system with on-body chest PPG measurement in the workspace environment. First, chest PPG data was obtained from 6 adults and compared to data from a standard ECG patch. This system showed an average absolute deviation (AD) of 0.41 beats per minute, achieving > 99.53% heart rate (HR) accuracy. Second, chest PPG was recorded and compared to conventional PPG finger clip and PPG wristband, also showing > 98.6% HR matching and an absolute deviation in the standard deviation of NN intervals (SDNN) of < 12.8 ms for HRV monitoring within the protocol. Moreover, it successfully derives other vital parameters such as respiration rate and blood oxygen level (SpO2), showing the advancement among all these three reference modalities. This system can pave the way for new application areas, such as chest patches, to monitor chronic heart and respiratory diseases.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"675-683"},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10701507","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142524193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-19DOI: 10.1109/JTEHM.2024.3463720
Jiwon Chung;Sunghun Kim;Ji Hye Won;Hyunjin Park
Neuroimaging genetics represents a multivariate approach aimed at elucidating the intricate relationships between high-dimensional genetic variations and neuroimaging data. Predominantly, existing methodologies revolve around Sparse Canonical Correlation Analysis (SCCA), a framework we expand to 1) encompass multiple imaging modalities and 2) promote the simultaneous identification of structurally linked features across imaging modalities. The structurally linked brain regions were assessed using diffusion tensor imaging, which quantifies the presence of neuronal fibers, thereby grounding our approach in biologically well-founded prior knowledge within the SCCA model. In our proposed structurally linked SCCA framework, we leverage T1-weighted MRI and functional MRI (fMRI) time series data to delineate both the structural and functional characteristics of the brain. Genetic variations, specifically single nucleotide polymorphisms (SNPs), are also incorporated as a genetic modality. Validation of our methodology was conducted using a simulated dataset and large-scale normative data from the Human Connectome Project (HCP). Our approach demonstrated superior performance compared to existing methods on simulated data and revealed interpretable gene-imaging associations in the real dataset. Thus, our methodology lays the groundwork for elucidating the genetic underpinnings of brain structure and function, thereby providing novel insights into the field of neuroscience. Our code is available at https://github.com/mungegg