首页 > 最新文献

IEEE Journal of Translational Engineering in Health and Medicine-Jtehm最新文献

英文 中文
Concurrent Validity of Motion Parameters Measured With an RGB-D Camera-Based Markerless 3D Motion Tracking Method in Children and Young Adults 使用基于 RGB-D 摄像机的无标记三维运动跟踪方法测量儿童和青少年运动参数的并发有效性
IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-29 DOI: 10.1109/JTEHM.2024.3435334
Nikolas Hesse;Sandra Baumgartner;Anja Gut;Hubertus J. A. Van Hedel
Objective: Low-cost, portable RGB-D cameras with integrated motion tracking functionality enable easy-to-use 3D motion analysis without requiring expensive facilities and specialized personnel. However, the accuracy of existing systems is insufficient for most clinical applications, particularly when applied to children. In previous work, we developed an RGB-D camera-based motion tracking method and showed that it accurately captures body joint positions of children and young adults in 3D. In this study, the validity and accuracy of clinically relevant motion parameters that were computed from kinematics of our motion tracking method are evaluated in children and young adults. Methods: Twenty-three typically developing children and healthy young adults (5-29 years, 110–189 cm) performed five movement tasks while being recorded simultaneously with a marker-based Vicon system and an Azure Kinect RGB-D camera. Motion parameters were computed from the extracted kinematics of both methods: time series measurements, i.e., measurements over time, peak measurements, i.e., measurements at a single time instant, and movement smoothness. The agreement of these parameter values was evaluated using Pearson’s correlation coefficients r for time series data, and mean absolute error (MAE) and Bland-Altman plots with limits of agreement for peak measurements and smoothness. Results: Time series measurements showed strong to excellent correlations (r-values between 0.8 and 1.0), MAE for angles ranged from 1.5 to 5 degrees and for smoothness parameters (SPARC) from 0.02-0.09, while MAE for distance-related parameters ranged from 9 to 15 mm. Conclusion: Extracted motion parameters are valid and accurate for various movement tasks in children and young adults, demonstrating the suitability of our tracking method for clinical motion analysis. Clinical Impact: The low-cost portable hardware in combination with our tracking method enables motion analysis outside of specialized facilities while providing measurements that are close to those of the clinical gold-standard.
目标:低成本的便携式 RGB-D 摄像机集成了运动跟踪功能,无需昂贵的设施和专业人员,即可进行简单易用的三维运动分析。然而,现有系统的精确度不足以满足大多数临床应用的需要,尤其是在应用于儿童时。在之前的工作中,我们开发了一种基于 RGB-D 摄像机的运动跟踪方法,并证明它能准确捕捉儿童和青少年的三维身体关节位置。在本研究中,我们将在儿童和青少年中评估根据运动追踪方法的运动学计算得出的临床相关运动参数的有效性和准确性。研究方法23 名发育正常的儿童和健康的年轻人(5-29 岁,110-189 厘米)在使用基于标记的 Vicon 系统和 Azure Kinect RGB-D 摄像头同时记录的情况下完成了五项运动任务。根据两种方法提取的运动学数据计算出运动参数:时间序列测量(即随时间变化的测量)、峰值测量(即单个时间瞬间的测量)和运动平滑度。对于时间序列数据,使用皮尔逊相关系数 r 评估这些参数值的一致性;对于峰值测量和平滑度,使用平均绝对误差(MAE)和布兰-阿尔特曼图(Bland-Altman plots)评估一致性极限。结果时间序列测量结果显示出很强到极佳的相关性(r 值在 0.8 到 1.0 之间),角度的平均绝对误差在 1.5 到 5 度之间,平滑度参数 (SPARC) 的平均绝对误差在 0.02 到 0.09 之间,而距离相关参数的平均绝对误差在 9 到 15 毫米之间。结论提取的运动参数对于儿童和青少年的各种运动任务都是有效和准确的,这证明了我们的追踪方法适用于临床运动分析。临床影响:低成本的便携式硬件与我们的追踪方法相结合,能够在专业设施之外进行运动分析,同时提供接近临床黄金标准的测量结果。
{"title":"Concurrent Validity of Motion Parameters Measured With an RGB-D Camera-Based Markerless 3D Motion Tracking Method in Children and Young Adults","authors":"Nikolas Hesse;Sandra Baumgartner;Anja Gut;Hubertus J. A. Van Hedel","doi":"10.1109/JTEHM.2024.3435334","DOIUrl":"10.1109/JTEHM.2024.3435334","url":null,"abstract":"Objective: Low-cost, portable RGB-D cameras with integrated motion tracking functionality enable easy-to-use 3D motion analysis without requiring expensive facilities and specialized personnel. However, the accuracy of existing systems is insufficient for most clinical applications, particularly when applied to children. In previous work, we developed an RGB-D camera-based motion tracking method and showed that it accurately captures body joint positions of children and young adults in 3D. In this study, the validity and accuracy of clinically relevant motion parameters that were computed from kinematics of our motion tracking method are evaluated in children and young adults. Methods: Twenty-three typically developing children and healthy young adults (5-29 years, 110–189 cm) performed five movement tasks while being recorded simultaneously with a marker-based Vicon system and an Azure Kinect RGB-D camera. Motion parameters were computed from the extracted kinematics of both methods: time series measurements, i.e., measurements over time, peak measurements, i.e., measurements at a single time instant, and movement smoothness. The agreement of these parameter values was evaluated using Pearson’s correlation coefficients r for time series data, and mean absolute error (MAE) and Bland-Altman plots with limits of agreement for peak measurements and smoothness. Results: Time series measurements showed strong to excellent correlations (r-values between 0.8 and 1.0), MAE for angles ranged from 1.5 to 5 degrees and for smoothness parameters (SPARC) from 0.02-0.09, while MAE for distance-related parameters ranged from 9 to 15 mm. Conclusion: Extracted motion parameters are valid and accurate for various movement tasks in children and young adults, demonstrating the suitability of our tracking method for clinical motion analysis. Clinical Impact: The low-cost portable hardware in combination with our tracking method enables motion analysis outside of specialized facilities while providing measurements that are close to those of the clinical gold-standard.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"580-588"},"PeriodicalIF":3.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873112","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fusion of Multi-Task Neurophysiological Data to Enhance the Detection of Attention- Deficit/Hyperactivity Disorder 融合多任务神经生理学数据,提高注意力缺陷/多动症的检测能力
IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-29 DOI: 10.1109/JTEHM.2024.3435553
Kai-Feng Zhang;Shih-Ching Yeh;Eric Hsiao-Kuang Wu;Xiu Xu;Ho-Jung Tsai;Chun-Chuan Chen
Objective: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neurodevelopmental disorder with a prevalence ranging from 6.1 to 9.4%. The main symptoms of ADHD are inattention, hyperactivity, impulsivity, and even destructive behaviors that may have a long-term negative influence on learning performance or social relationships. Early diagnosis and treatment provide the best chance of reducing and managing symptoms. Currently, ADHD diagnosis relies on behavioral observations and ratings by clinicians and parents. Medical diagnosis of ADHD was reported to be delayed because of a global shortage of well-trained clinicians, the heterogeneous nature of ADHD, and combined comorbidities. Therefore, alternative ways to increase the efficiency of early diagnosis are needed. Previous studies used behavioral and neurophysiological data to assess patients with ADHD, yielding an accuracy range from 56.6% to 92%. Several factors were shown to affect the detection rate, including methods and tasks used and the number of electroencephalogram (EEG) channels. Given that children with ADHD have difficulty sustaining attention, in this study, we tested whether data from multiple tasks with different difficulties and prolonged experiment times can probe the levels of brain resources engaged during task performance and increase ADHD detection. Specifically, we proposed a Deep Neural Network-based (DNN) fusion model of multiple tasks to enhance the detection of ADHD. Methods & Results: Forty-nine children with ADHD and thirty-two typically developing children were recruited. Analytic results show that the fusion of multi-task neurophysiological data can increase the separation rate to 89%, whereas a single data type can only achieve a best accuracy of 81%. Moreover, the use of multiple tasks helps distinguish between children with ADHD and typically developing children. Our results suggest that different neurophysiological models from multiple tasks can provide essential information to assist in ADHD screening. In conclusion, the proposed model offers a more efficient, and accurate alternative for early clinical diagnosis and management of ADHD. The application of artificial intelligence and multimodal neurophysiological data in clinical settings sets a precedent for digital health, paving the way for future advancements in the field.
目的:注意力缺陷/多动障碍(ADHD)是一种儿童期发病的神经发育障碍,发病率为 6.1% 至 9.4%。多动症的主要症状是注意力不集中、多动、冲动,甚至可能对学习成绩或社会关系产生长期负面影响的破坏性行为。早期诊断和治疗为减轻和控制症状提供了最佳机会。目前,多动症的诊断主要依靠临床医生和家长的行为观察和评分。据报道,由于全球缺乏训练有素的临床医生、ADHD 的异质性以及合并症等原因,ADHD 的医学诊断被延迟。因此,需要其他方法来提高早期诊断的效率。以往的研究使用行为学和神经生理学数据对多动症患者进行评估,准确率在 56.6% 到 92% 之间。研究表明,有几个因素会影响检测率,包括使用的方法和任务以及脑电图(EEG)通道的数量。鉴于多动症儿童很难持续保持注意力,在本研究中,我们测试了来自不同难度和延长实验时间的多个任务的数据是否能探查任务执行过程中大脑资源的参与程度,并提高多动症的检测率。具体来说,我们提出了一种基于深度神经网络(DNN)的多任务融合模型,以提高多动症的检测能力。方法与结果:我们招募了 49 名患有多动症的儿童和 32 名发育正常的儿童。分析结果表明,融合多任务神经生理学数据可将分离率提高到 89%,而单一数据类型只能达到 81% 的最佳准确率。此外,多任务的使用有助于区分多动症儿童和发育正常的儿童。我们的研究结果表明,来自多个任务的不同神经生理学模型可以为多动症筛查提供重要的辅助信息。总之,所提出的模型为多动症的早期临床诊断和管理提供了一种更有效、更准确的替代方法。人工智能和多模态神经生理学数据在临床中的应用开创了数字医疗的先河,为该领域未来的发展铺平了道路。
{"title":"Fusion of Multi-Task Neurophysiological Data to Enhance the Detection of Attention- Deficit/Hyperactivity Disorder","authors":"Kai-Feng Zhang;Shih-Ching Yeh;Eric Hsiao-Kuang Wu;Xiu Xu;Ho-Jung Tsai;Chun-Chuan Chen","doi":"10.1109/JTEHM.2024.3435553","DOIUrl":"10.1109/JTEHM.2024.3435553","url":null,"abstract":"Objective: Attention-deficit/hyperactivity disorder (ADHD) is a childhood-onset neurodevelopmental disorder with a prevalence ranging from 6.1 to 9.4%. The main symptoms of ADHD are inattention, hyperactivity, impulsivity, and even destructive behaviors that may have a long-term negative influence on learning performance or social relationships. Early diagnosis and treatment provide the best chance of reducing and managing symptoms. Currently, ADHD diagnosis relies on behavioral observations and ratings by clinicians and parents. Medical diagnosis of ADHD was reported to be delayed because of a global shortage of well-trained clinicians, the heterogeneous nature of ADHD, and combined comorbidities. Therefore, alternative ways to increase the efficiency of early diagnosis are needed. Previous studies used behavioral and neurophysiological data to assess patients with ADHD, yielding an accuracy range from 56.6% to 92%. Several factors were shown to affect the detection rate, including methods and tasks used and the number of electroencephalogram (EEG) channels. Given that children with ADHD have difficulty sustaining attention, in this study, we tested whether data from multiple tasks with different difficulties and prolonged experiment times can probe the levels of brain resources engaged during task performance and increase ADHD detection. Specifically, we proposed a Deep Neural Network-based (DNN) fusion model of multiple tasks to enhance the detection of ADHD. Methods & Results: Forty-nine children with ADHD and thirty-two typically developing children were recruited. Analytic results show that the fusion of multi-task neurophysiological data can increase the separation rate to 89%, whereas a single data type can only achieve a best accuracy of 81%. Moreover, the use of multiple tasks helps distinguish between children with ADHD and typically developing children. Our results suggest that different neurophysiological models from multiple tasks can provide essential information to assist in ADHD screening. In conclusion, the proposed model offers a more efficient, and accurate alternative for early clinical diagnosis and management of ADHD. The application of artificial intelligence and multimodal neurophysiological data in clinical settings sets a precedent for digital health, paving the way for future advancements in the field.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"668-674"},"PeriodicalIF":3.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10614196","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141872990","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Development of a Sound Recognition-Based Cardiopulmonary Resuscitation Training System 开发基于声音识别的心肺复苏培训系统
IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-29 DOI: 10.1109/JTEHM.2024.3433448
Dong Hyun Choi;Yoon Ha Joo;Ki Hong Kim;Jeong Ho Park;Hyunjin Joo;Hyoun-Joong Kong;Hyunju Lee;Kyoung Jun Song;Sungwan Kim
The objective of this study was to develop a sound recognition-based cardiopulmonary resuscitation (CPR) training system that is accessible, cost-effective, easy-to-maintain and provides accurate CPR feedback. Beep-CPR, a novel device with accordion squeakers that emit high-pitched sounds during compression, was developed. The sounds emitted by Beep-CPR were recorded using a smartphone, segmented into 2-second audio fragments, and then transformed into spectrograms. A total of 6,065 spectrograms were generated from approximately 40 minutes of audio data, which were then randomly split into training, validation, and test datasets. Each spectrogram was matched with the depth, rate, and release velocity of the compression measured at the same time interval by the ZOLL X Series monitor/defibrillator. Deep learning models utilizing spectrograms as input were trained using transfer learning based on EfficientNet to predict the depth (Depth model), rate (Rate model), and release velocity (Recoil model) of compressions. Results: The mean absolute error (MAE) for the Depth model was 0.30 cm (95% confidence interval [CI]: 0.27–0.33). The MAE of the Rate model was 3.6/min (95% CI: 3.2–3.9). For the Recoil model, the MAE was 2.3 cm/s (95% CI: 2.1–2.5). External validation of the models demonstrated acceptable performance across multiple conditions, including the utilization of a newly-manufactured device, a fatigued device, and evaluation in an environment with altered spatial dimensions. We have developed a novel sound recognition-based CPR training system, that accurately measures compression quality during training. Significance: Beep-CPR is a cost-effective and easy-to-maintain solution that can improve the efficacy of CPR training by facilitating decentralized at-home training with performance feedback.
本研究的目的是开发一种基于声音识别的心肺复苏(CPR)培训系统,该系统方便使用、经济实惠、易于维护并能提供准确的心肺复苏反馈。Beep-CPR 是一种新型装置,带有风琴式尖叫器,在按压过程中会发出高亢的声音。Beep-CPR 发出的声音由智能手机录制,分割成 2 秒钟的音频片段,然后转换成频谱图。从大约 40 分钟的音频数据中共生成了 6,065 张频谱图,然后随机分成训练数据集、验证数据集和测试数据集。每张频谱图都与 ZOLL X 系列监护仪/除颤器在相同时间间隔内测量到的压缩深度、速率和释放速度相匹配。以频谱图为输入的深度学习模型通过基于 EfficientNet 的迁移学习进行训练,以预测按压的深度(深度模型)、速率(速率模型)和释放速度(反冲模型)。结果:深度模型的平均绝对误差(MAE)为 0.30 厘米(95% 置信区间 [CI]:0.27-0.33)。速率模型的 MAE 为 3.6/分钟(95% 置信区间:3.2-3.9)。后坐力模型的 MAE 为 2.3 厘米/秒(95% CI:2.1-2.5)。模型的外部验证表明,在多种条件下,包括使用新制造的设备、疲劳设备以及在空间尺寸改变的环境中进行评估,其性能都是可以接受的。我们开发了一种新型的基于声音识别的心肺复苏训练系统,可在训练过程中准确测量按压质量。意义重大:Beep-CPR 是一种成本效益高且易于维护的解决方案,可通过提供性能反馈来促进分散的家庭培训,从而提高心肺复苏术培训的效果。
{"title":"A Development of a Sound Recognition-Based Cardiopulmonary Resuscitation Training System","authors":"Dong Hyun Choi;Yoon Ha Joo;Ki Hong Kim;Jeong Ho Park;Hyunjin Joo;Hyoun-Joong Kong;Hyunju Lee;Kyoung Jun Song;Sungwan Kim","doi":"10.1109/JTEHM.2024.3433448","DOIUrl":"10.1109/JTEHM.2024.3433448","url":null,"abstract":"The objective of this study was to develop a sound recognition-based cardiopulmonary resuscitation (CPR) training system that is accessible, cost-effective, easy-to-maintain and provides accurate CPR feedback. Beep-CPR, a novel device with accordion squeakers that emit high-pitched sounds during compression, was developed. The sounds emitted by Beep-CPR were recorded using a smartphone, segmented into 2-second audio fragments, and then transformed into spectrograms. A total of 6,065 spectrograms were generated from approximately 40 minutes of audio data, which were then randomly split into training, validation, and test datasets. Each spectrogram was matched with the depth, rate, and release velocity of the compression measured at the same time interval by the ZOLL X Series monitor/defibrillator. Deep learning models utilizing spectrograms as input were trained using transfer learning based on EfficientNet to predict the depth (Depth model), rate (Rate model), and release velocity (Recoil model) of compressions. Results: The mean absolute error (MAE) for the Depth model was 0.30 cm (95% confidence interval [CI]: 0.27–0.33). The MAE of the Rate model was 3.6/min (95% CI: 3.2–3.9). For the Recoil model, the MAE was 2.3 cm/s (95% CI: 2.1–2.5). External validation of the models demonstrated acceptable performance across multiple conditions, including the utilization of a newly-manufactured device, a fatigued device, and evaluation in an environment with altered spatial dimensions. We have developed a novel sound recognition-based CPR training system, that accurately measures compression quality during training. Significance: Beep-CPR is a cost-effective and easy-to-maintain solution that can improve the efficacy of CPR training by facilitating decentralized at-home training with performance feedback.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"550-557"},"PeriodicalIF":3.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10613881","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141868985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Non-Contact Measurement of Cardiopulmonary Activity Using Software Defined Radios 使用软件无线电对心肺活动进行非接触式测量
IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-29 DOI: 10.1109/JTEHM.2024.3434460
Lei Guan;Xiaodong Yang;Nan Zhao;Malik Muhammad Arslan;Muneeb Ullah;Qurat Ul Ain;Abbas Ali Shah;Akram Alomainy;Qammer H. Abbasi
Vital signs are important indicators to evaluate the health status of patients. Channel state information (CSI) can sense the displacement of the chest wall caused by cardiorespiratory activity in a non-contact manner. Due to the influence of clutter, DC components, and respiratory harmonics, it is difficult to detect reliable heartbeat signals. To address this problem, this paper proposes a robust and novel method for simultaneously extracting breath and heartbeat signals using software defined radios (SDR). Specifically, we model and analyze the signal and propose singular value decomposition (SVD)-based clutter suppression method to enhance the vital sign signals. The DC is estimated and compensated by the circle fitting method. Then, the heartbeat signal and respiratory signal are obtained by the modified variational modal decomposition (VMD). The experimental results demonstrate that the proposed method can accurately separate the respiratory signal and the heartbeat signal from the filtered signal. The Bland-Altman analysis shows that the proposed system is in good agreement with the medical sensors. In addition, the proposed system can accurately measure the heart rate variability (HRV) within 0.5m. In summary, our system can be used as a preferred contactless alternative to traditional contact medical sensors, which can provide advanced patient-centered healthcare solutions.
生命体征是评估病人健康状况的重要指标。通道状态信息(CSI)能以非接触方式感知心肺活动引起的胸壁位移。由于杂波、直流分量和呼吸谐波的影响,很难检测到可靠的心跳信号。为解决这一问题,本文提出了一种利用软件定义无线电(SDR)同时提取呼吸和心跳信号的稳健而新颖的方法。具体来说,我们对信号进行建模和分析,并提出基于奇异值分解(SVD)的杂波抑制方法来增强生命体征信号。通过圆拟合方法对直流电进行估计和补偿。然后,通过改进的变分模态分解(VMD)得到心跳信号和呼吸信号。实验结果表明,所提出的方法能从滤波信号中准确分离出呼吸信号和心跳信号。布兰德-阿尔特曼分析表明,所提出的系统与医疗传感器具有良好的一致性。此外,建议的系统还能准确测量 0.5 米以内的心率变异性(HRV)。总之,我们的系统可作为传统接触式医疗传感器的首选非接触式替代品,提供以患者为中心的先进医疗解决方案。
{"title":"Non-Contact Measurement of Cardiopulmonary Activity Using Software Defined Radios","authors":"Lei Guan;Xiaodong Yang;Nan Zhao;Malik Muhammad Arslan;Muneeb Ullah;Qurat Ul Ain;Abbas Ali Shah;Akram Alomainy;Qammer H. Abbasi","doi":"10.1109/JTEHM.2024.3434460","DOIUrl":"10.1109/JTEHM.2024.3434460","url":null,"abstract":"Vital signs are important indicators to evaluate the health status of patients. Channel state information (CSI) can sense the displacement of the chest wall caused by cardiorespiratory activity in a non-contact manner. Due to the influence of clutter, DC components, and respiratory harmonics, it is difficult to detect reliable heartbeat signals. To address this problem, this paper proposes a robust and novel method for simultaneously extracting breath and heartbeat signals using software defined radios (SDR). Specifically, we model and analyze the signal and propose singular value decomposition (SVD)-based clutter suppression method to enhance the vital sign signals. The DC is estimated and compensated by the circle fitting method. Then, the heartbeat signal and respiratory signal are obtained by the modified variational modal decomposition (VMD). The experimental results demonstrate that the proposed method can accurately separate the respiratory signal and the heartbeat signal from the filtered signal. The Bland-Altman analysis shows that the proposed system is in good agreement with the medical sensors. In addition, the proposed system can accurately measure the heart rate variability (HRV) within 0.5m. In summary, our system can be used as a preferred contactless alternative to traditional contact medical sensors, which can provide advanced patient-centered healthcare solutions.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"558-568"},"PeriodicalIF":3.7,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10613608","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141873113","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
XAI-Based Assessment of the AMURA Model for Detecting Amyloid-β and Tau Microstructural Signatures in Alzheimer’s Disease 基于 XAI 的 AMURA 模型对检测阿尔茨海默病淀粉样蛋白-β 和 Tau 微结构特征的评估
IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-17 DOI: 10.1109/JTEHM.2024.3430035
Lorenza Brusini;Federica Cruciani;Gabriele Dall’Aglio;Tommaso Zajac;Ilaria Boscolo Galazzo;Mauro Zucchelli;Gloria Menegaz
Brain microstructural changes already occur in the earliest phases of Alzheimer’s disease (AD) as evidenced in diffusion magnetic resonance imaging (dMRI) literature. This study investigates the potential of the novel dMRI Apparent Measures Using Reduced Acquisitions (AMURA) as imaging markers for capturing such tissue modifications.Tract-based spatial statistics (TBSS) and support vector machines (SVMs) based on different measures were exploited to distinguish between amyloid-beta/tau negative (A $beta $ -/tau-) and A $beta $ +/tau+ or A $beta $ +/tau- subjects. Moreover, eXplainable Artificial Intelligence (XAI) was used to highlight the most influential features in the SVMs classifications and to validate the results by seeing the explanations’ recurrence across different methods.TBSS analysis revealed significant differences between A $beta $ -/tau- and other groups in line with the literature. The best SVM classification performance reached an accuracy of 0.73 by using advanced measures compared to more standard ones. Moreover, the explainability analysis suggested the results’ stability and the central role of the cingulum to show early sign of AD.By relying on SVM classification and XAI interpretation of the outcomes, AMURA indices can be considered viable markers for amyloid and tau pathology. Clinical impact: This pre-clinical research revealed AMURA indices as viable imaging markers for timely AD diagnosis by acquiring clinically feasible dMR images, with advantages compared to more invasive methods employed nowadays.
正如弥散磁共振成像(dMRI)文献所证实的那样,阿尔茨海默病(AD)的早期阶段已经出现大脑微结构变化。本研究探讨了新型 dMRI 表观测量(Apparent Measures Using Reduced Acquisitions,AMURA)作为成像标记捕捉此类组织变化的潜力。研究人员利用基于不同测量方法的肽段空间统计(Tract-based spatial statistics,TBSS)和支持向量机(Support vector machines,SVMs)来区分淀粉样蛋白-β/tau 阴性(A $beta $ -/tau-)和 A $beta $ +/tau+ 或 A $beta $ +/tau- 受试者。此外,eXplainable 人工智能(XAI)被用来突出 SVMs 分类中最有影响力的特征,并通过查看不同方法中解释的重复性来验证结果。与更标准的方法相比,使用高级方法的 SVM 分类准确率达到了 0.73。此外,可解释性分析表明了结果的稳定性以及蝶鞍在显示 AD 早期迹象方面的核心作用。通过依赖 SVM 分类和 XAI 结果解释,AMURA 指数可被视为淀粉样蛋白和 tau 病理学的可行标记。临床影响:这项临床前研究通过获取临床上可行的dMR图像,揭示了AMURA指数是及时诊断AD的可行成像标记物,与目前采用的更具侵入性的方法相比具有优势。
{"title":"XAI-Based Assessment of the AMURA Model for Detecting Amyloid-β and Tau Microstructural Signatures in Alzheimer’s Disease","authors":"Lorenza Brusini;Federica Cruciani;Gabriele Dall’Aglio;Tommaso Zajac;Ilaria Boscolo Galazzo;Mauro Zucchelli;Gloria Menegaz","doi":"10.1109/JTEHM.2024.3430035","DOIUrl":"10.1109/JTEHM.2024.3430035","url":null,"abstract":"Brain microstructural changes already occur in the earliest phases of Alzheimer’s disease (AD) as evidenced in diffusion magnetic resonance imaging (dMRI) literature. This study investigates the potential of the novel dMRI Apparent Measures Using Reduced Acquisitions (AMURA) as imaging markers for capturing such tissue modifications.Tract-based spatial statistics (TBSS) and support vector machines (SVMs) based on different measures were exploited to distinguish between amyloid-beta/tau negative (A\u0000<inline-formula> <tex-math>$beta $ </tex-math></inline-formula>\u0000-/tau-) and A\u0000<inline-formula> <tex-math>$beta $ </tex-math></inline-formula>\u0000+/tau+ or A\u0000<inline-formula> <tex-math>$beta $ </tex-math></inline-formula>\u0000+/tau- subjects. Moreover, eXplainable Artificial Intelligence (XAI) was used to highlight the most influential features in the SVMs classifications and to validate the results by seeing the explanations’ recurrence across different methods.TBSS analysis revealed significant differences between A\u0000<inline-formula> <tex-math>$beta $ </tex-math></inline-formula>\u0000-/tau- and other groups in line with the literature. The best SVM classification performance reached an accuracy of 0.73 by using advanced measures compared to more standard ones. Moreover, the explainability analysis suggested the results’ stability and the central role of the cingulum to show early sign of AD.By relying on SVM classification and XAI interpretation of the outcomes, AMURA indices can be considered viable markers for amyloid and tau pathology. Clinical impact: This pre-clinical research revealed AMURA indices as viable imaging markers for timely AD diagnosis by acquiring clinically feasible dMR images, with advantages compared to more invasive methods employed nowadays.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"569-579"},"PeriodicalIF":3.7,"publicationDate":"2024-07-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10601188","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141746410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Variable Stiffness and Damping Mechanism for CPR Manikin to Simulate Mechanical Properties of Human Chest 用于心肺复苏人体模型的可变刚度和阻尼机制,以模拟人体胸部的机械特性
IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-16 DOI: 10.1109/JTEHM.2024.3429422
Hyungsoo Lim;Dong Ah Shin;Jaehoon Sim;Jaeheung Park;Taegyun Kim;Kyung Su Kim;Gil Joon Suh;Jung Chan Lee
Objective: This study introduces a novel system that can simulate diverse mechanical properties of the human chest to enhance the experience of CPR training by reflecting realistic chest conditions of patients. Methods: The proposed system consists of Variable stiffness mechanisms (VSMs) and Variable damper (VD) utilizing stretching silicone bands and dashpot dampers with controllable valves to modulate stiffness and damping, respectively. Cyclic loading was applied with a robot manipulator to the system. Compression force and displacement were measured and analyzed to evaluate the system’s mechanical response. Long-term stability of the system was also validated. Results: A non-linear response of the human chest under compression is realized through this design. Test results indicated non-linear force-displacement curves with hysteresis, similar to those observed in the chest of patients. Controlling the VSM and VD allowed for intentional changes in the slope and area of curves that are related to stiffness and damping, respectively. Stiffness and damping of the system were computed using performance test results. The stiffness ranged from 5.34 N/mm to 13.59 N/mm and the damping ranges from 0.127 N $cdot $ s/mm to 0.511 N $cdot $ s/mm. These properties cover a significant portion of the reported mechanical properties of the human chests. The system demonstrated satisfactory stability even when it was subjected to maximum stiffness conditions of the long-term compression test. Conclusion: The system is capable of emulating the mechanical properties and behavior of the human chests, thereby enhancing the CPR training experience.
目的:本研究介绍了一种新型系统,该系统可模拟人体胸部的各种机械特性,通过反映患者胸部的真实情况来增强心肺复苏训练的体验。方法:拟议的系统由可变刚度机构(VSM)和可变阻尼器(VD)组成,分别利用拉伸硅胶带和带可控阀门的仪表盘阻尼器来调节刚度和阻尼。使用机器人机械手对系统施加循环加载。对压缩力和位移进行测量和分析,以评估系统的机械响应。同时还验证了系统的长期稳定性。结果该设计实现了人体胸部在压缩下的非线性响应。测试结果表明,非线性力-位移曲线具有滞后性,与在患者胸部观察到的曲线相似。通过控制 VSM 和 VD,可以有意改变曲线的斜率和面积,这分别与刚度和阻尼有关。系统的刚度和阻尼是根据性能测试结果计算得出的。刚度范围为 5.34 N/mm 至 13.59 N/mm,阻尼范围为 0.127 N $cdot $ s/mm 至 0.511 N $cdot $ s/mm。这些特性涵盖了所报道的人体胸部机械特性的很大一部分。即使在长期压缩试验的最大刚度条件下,该系统也表现出令人满意的稳定性。结论该系统能够模拟人体胸腔的机械特性和行为,从而增强心肺复苏训练体验。
{"title":"Variable Stiffness and Damping Mechanism for CPR Manikin to Simulate Mechanical Properties of Human Chest","authors":"Hyungsoo Lim;Dong Ah Shin;Jaehoon Sim;Jaeheung Park;Taegyun Kim;Kyung Su Kim;Gil Joon Suh;Jung Chan Lee","doi":"10.1109/JTEHM.2024.3429422","DOIUrl":"10.1109/JTEHM.2024.3429422","url":null,"abstract":"Objective: This study introduces a novel system that can simulate diverse mechanical properties of the human chest to enhance the experience of CPR training by reflecting realistic chest conditions of patients. Methods: The proposed system consists of Variable stiffness mechanisms (VSMs) and Variable damper (VD) utilizing stretching silicone bands and dashpot dampers with controllable valves to modulate stiffness and damping, respectively. Cyclic loading was applied with a robot manipulator to the system. Compression force and displacement were measured and analyzed to evaluate the system’s mechanical response. Long-term stability of the system was also validated. Results: A non-linear response of the human chest under compression is realized through this design. Test results indicated non-linear force-displacement curves with hysteresis, similar to those observed in the chest of patients. Controlling the VSM and VD allowed for intentional changes in the slope and area of curves that are related to stiffness and damping, respectively. Stiffness and damping of the system were computed using performance test results. The stiffness ranged from 5.34 N/mm to 13.59 N/mm and the damping ranges from 0.127 N\u0000<inline-formula> <tex-math>$cdot $ </tex-math></inline-formula>\u0000 s/mm to 0.511 N\u0000<inline-formula> <tex-math>$cdot $ </tex-math></inline-formula>\u0000 s/mm. These properties cover a significant portion of the reported mechanical properties of the human chests. The system demonstrated satisfactory stability even when it was subjected to maximum stiffness conditions of the long-term compression test. Conclusion: The system is capable of emulating the mechanical properties and behavior of the human chests, thereby enhancing the CPR training experience.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"542-549"},"PeriodicalIF":3.7,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10599511","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141718120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Equivalent Electrical Circuit Approach to Enhance a Transducer for Insulin Bioavailability Assessment 等效电路法增强胰岛素生物利用度评估传感器
IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-07-08 DOI: 10.1109/JTEHM.2024.3425269
Francesca Mancino;Hanen Nouri;Nicola Moccaldi;Pasquale Arpaia;Olfa Kanoun
The equivalent electrical circuit approach is explored to improve a bioimpedance-based transducer for measuring the bioavailability of synthetic insulin already presented in previous studies. In particular, the electrical parameter most sensitive to the variation of insulin amount injected was identified. Eggplants were used to emulate human electrical behavior under a quasi-static assumption guaranteed by a very low measurement time compared to the estimated insulin absorption time. Measurements were conducted with the EVAL-AD5940BIOZ by applying a sinusoidal voltage signal with an amplitude of 100 mV and acquiring impedance spectra in the range [1–100] kHz. 14 units of insulin were gradually administered using a Lilly’s Insulin Pen having a 0.4 cm long needle. Modified Hayden’s model was adopted as a reference circuit and the electrical component modeling the extracellular fluids was found to be the most insulin-sensitive parameter. The trnasducer achieves a state-of-the-art sensitivity of 225.90 ml1. An improvement of 223 % in sensitivity, 44 % in deterministic error, 7 % in nonlinearity, and 42 % in reproducibility was achieved compared to previous experimental studies. The clinical impact of the transducer was evaluated by projecting its impact on a Smart Insulin Pen for real-time measurement of insulin bioavailability. The wide gain in sensitivity of the bioimpedance-based transducer results in a significant reduction of the uncertainty of the Smart Insulin Pen. Considering the same improvement in in-vivo applications, the uncertainty of the Smart Insulin Pen is decreased from $4.2~mu $ l to $1.3~mu $ l.Clinical and Translational Impact Statement: A Smart Insulin Pen based on impedance spectroscopy and equivalent electrical circuit approach could be an effective solution for the non-invasive and real-time measurement of synthetic insulin uptake after subcutaneous administration.
研究人员探索了等效电路方法,以改进基于生物阻抗的传感器,测量以往研究中已经提出的合成胰岛素的生物利用度。特别是,确定了对胰岛素注射量变化最敏感的电气参数。在准静态假设下,茄子被用来模拟人体的电行为,与估计的胰岛素吸收时间相比,茄子的测量时间非常短。使用 EVAL-AD5940BIOZ 进行测量,施加幅度为 100 mV 的正弦电压信号,并获取 [1-100] kHz 范围内的阻抗谱。使用 0.4 厘米长的礼来胰岛素笔逐渐注射 14 单位的胰岛素。采用修正的海登模型作为参考电路,发现细胞外液建模的电分量是对胰岛素最敏感的参数。胰岛素传感器的灵敏度达到了最先进的 225.90 ml1。与之前的实验研究相比,灵敏度提高了 223%,确定性误差降低了 44%,非线性降低了 7%,可重复性提高了 42%。通过对用于实时测量胰岛素生物利用度的智能胰岛素笔的影响进行预测,评估了该传感器的临床影响。基于生物阻抗的传感器的灵敏度大幅提高,显著降低了智能胰岛素笔的不确定性。考虑到在体内应用中的相同改进,智能胰岛素笔的不确定性从 4.2~mu $ l 美元降至 1.3~mu $ l 美元:基于阻抗光谱和等效电路方法的智能胰岛素笔可以成为皮下注射后无创及实时测量合成胰岛素吸收的有效解决方案。
{"title":"Equivalent Electrical Circuit Approach to Enhance a Transducer for Insulin Bioavailability Assessment","authors":"Francesca Mancino;Hanen Nouri;Nicola Moccaldi;Pasquale Arpaia;Olfa Kanoun","doi":"10.1109/JTEHM.2024.3425269","DOIUrl":"10.1109/JTEHM.2024.3425269","url":null,"abstract":"The equivalent electrical circuit approach is explored to improve a bioimpedance-based transducer for measuring the bioavailability of synthetic insulin already presented in previous studies. In particular, the electrical parameter most sensitive to the variation of insulin amount injected was identified. Eggplants were used to emulate human electrical behavior under a quasi-static assumption guaranteed by a very low measurement time compared to the estimated insulin absorption time. Measurements were conducted with the EVAL-AD5940BIOZ by applying a sinusoidal voltage signal with an amplitude of 100 mV and acquiring impedance spectra in the range [1–100] kHz. 14 units of insulin were gradually administered using a Lilly’s Insulin Pen having a 0.4 cm long needle. Modified Hayden’s model was adopted as a reference circuit and the electrical component modeling the extracellular fluids was found to be the most insulin-sensitive parameter. The trnasducer achieves a state-of-the-art sensitivity of 225.90 ml1. An improvement of 223 % in sensitivity, 44 % in deterministic error, 7 % in nonlinearity, and 42 % in reproducibility was achieved compared to previous experimental studies. The clinical impact of the transducer was evaluated by projecting its impact on a Smart Insulin Pen for real-time measurement of insulin bioavailability. The wide gain in sensitivity of the bioimpedance-based transducer results in a significant reduction of the uncertainty of the Smart Insulin Pen. Considering the same improvement in in-vivo applications, the uncertainty of the Smart Insulin Pen is decreased from \u0000<inline-formula> <tex-math>$4.2~mu $ </tex-math></inline-formula>\u0000l to \u0000<inline-formula> <tex-math>$1.3~mu $ </tex-math></inline-formula>\u0000l.Clinical and Translational Impact Statement: A Smart Insulin Pen based on impedance spectroscopy and equivalent electrical circuit approach could be an effective solution for the non-invasive and real-time measurement of synthetic insulin uptake after subcutaneous administration.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"533-541"},"PeriodicalIF":3.7,"publicationDate":"2024-07-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10589471","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141570091","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Benefits From Different Modes of Slow and Deep Breathing on Vagal Modulation 不同模式的慢速深呼吸对迷走神经调节的益处
IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-27 DOI: 10.1109/JTEHM.2024.3419805
Deshan Ma;Conghui Li;Wenbin Shi;Yong Fan;Hong Liang;Lixuan Li;Zhengbo Zhang;Chien-Hung Yeh
Slow and deep breathing (SDB) is a relaxation technique that can increase vagal activity. Respiratory sinus arrhythmia (RSA) serves as an index of vagal function usually quantified by the high-frequency power of heart rate variability (HRV). However, the low breathing rate during SDB results in deviations when estimating RSA by HRV. Besides, the impact of the inspiration-expiration (I: E) ratio and guidelines ways (fixed breathing rate or intelligent guidance) on SDB is not yet clear. In our study, 30 healthy people (mean age = 26.5 years, 17 females) participated in three SDB modes, including 6 breaths per minute (bpm) with an I:E ratio of 1:1/ 1:2, and intelligent guidance mode (I:E ratio of 1:2 with guiding to gradually lower breathing rate to 6 bpm). Parameters derived from HRV, multimodal coupling analysis (MMCA), Poincaré plot, and detrended fluctuation analysis were introduced to examine the effects of SDB exercises. Besides, multiple machine learning methods were applied to classify breathing patterns (spontaneous breathing vs. SDB) after feature selection by max-relevance and min-redundancy. All vagal-activity markers, especially MMCA-derived RSA, statistically increased during SDB. Among all SDB modes, breathing at 6 bpm with a 1:1 I:E ratio activated the vagal function the most statistically, while the intelligent guidance mode had more indicators that still significantly increased after training, including SDRR and MMCA-derived RSA, etc. About the classification of breathing patterns, the Naive Bayes classifier has the highest accuracy (92.2%) with input features including LFn, CPercent, pNN50, $alpha 2$ , SDRatio, $alpha 1$ , and LF. Our study proposed a system that can be applied to medical devices for automatic SDB identification and real-time feedback on the training effect. We demonstrated that breathing at 6 bpm with an I:E ratio of 1:1 performed best during the training phase, while intelligent guidance mode had a more long-lasting effect.
慢而深的呼吸(SDB)是一种可以增加迷走神经活动的放松技术。呼吸窦性心律失常(RSA)是迷走神经功能的一个指标,通常通过心率变异性(HRV)的高频功率进行量化。然而,SDB 期间的低呼吸频率会导致用心率变异估计 RSA 时出现偏差。此外,吸呼比(I:E)和指导方式(固定呼吸频率或智能指导)对 SDB 的影响也尚未明确。在我们的研究中,30 名健康人(平均年龄 = 26.5 岁,17 名女性)参与了三种 SDB 模式,包括 I:E 比为 1:1/ 1:2 的每分钟 6 次呼吸(bpm)和智能引导模式(I:E 比为 1:2,引导呼吸频率逐渐降低至 6 bpm)。研究人员引入了心率变异、多模态耦合分析(MMCA)、Poincaré图和去趋势波动分析等参数来检验 SDB 运动的效果。此外,在通过最大相关性和最小冗余度选择特征后,多种机器学习方法被用于对呼吸模式(自主呼吸与 SDB)进行分类。所有迷走神经活动标记物,尤其是MMCA衍生的RSA,在SDB期间均有统计学意义的增加。在所有SDB模式中,以1:1的I:E比例进行6 bpm的呼吸在统计学上最能激活迷走神经功能,而智能引导模式有更多的指标在训练后仍显著增加,包括SDRR和MMCA衍生RSA等。关于呼吸模式的分类,Naive Bayes 分类器的准确率最高(92.2%),输入特征包括 LFn、CPercent、pNN50、$alpha 2$ 、SDRatio、$alpha 1$ 和 LF。我们的研究提出了一种可应用于医疗设备的系统,用于自动识别 SDB 并实时反馈训练效果。我们证明,在训练阶段,呼吸频率为 6 bpm、I:E 比为 1:1 的呼吸效果最好,而智能引导模式的效果更持久。
{"title":"Benefits From Different Modes of Slow and Deep Breathing on Vagal Modulation","authors":"Deshan Ma;Conghui Li;Wenbin Shi;Yong Fan;Hong Liang;Lixuan Li;Zhengbo Zhang;Chien-Hung Yeh","doi":"10.1109/JTEHM.2024.3419805","DOIUrl":"10.1109/JTEHM.2024.3419805","url":null,"abstract":"Slow and deep breathing (SDB) is a relaxation technique that can increase vagal activity. Respiratory sinus arrhythmia (RSA) serves as an index of vagal function usually quantified by the high-frequency power of heart rate variability (HRV). However, the low breathing rate during SDB results in deviations when estimating RSA by HRV. Besides, the impact of the inspiration-expiration (I: E) ratio and guidelines ways (fixed breathing rate or intelligent guidance) on SDB is not yet clear. In our study, 30 healthy people (mean age = 26.5 years, 17 females) participated in three SDB modes, including 6 breaths per minute (bpm) with an I:E ratio of 1:1/ 1:2, and intelligent guidance mode (I:E ratio of 1:2 with guiding to gradually lower breathing rate to 6 bpm). Parameters derived from HRV, multimodal coupling analysis (MMCA), Poincaré plot, and detrended fluctuation analysis were introduced to examine the effects of SDB exercises. Besides, multiple machine learning methods were applied to classify breathing patterns (spontaneous breathing vs. SDB) after feature selection by max-relevance and min-redundancy. All vagal-activity markers, especially MMCA-derived RSA, statistically increased during SDB. Among all SDB modes, breathing at 6 bpm with a 1:1 I:E ratio activated the vagal function the most statistically, while the intelligent guidance mode had more indicators that still significantly increased after training, including SDRR and MMCA-derived RSA, etc. About the classification of breathing patterns, the Naive Bayes classifier has the highest accuracy (92.2%) with input features including LFn, CPercent, pNN50, \u0000<inline-formula> <tex-math>$alpha 2$ </tex-math></inline-formula>\u0000, SDRatio, \u0000<inline-formula> <tex-math>$alpha 1$ </tex-math></inline-formula>\u0000, and LF. Our study proposed a system that can be applied to medical devices for automatic SDB identification and real-time feedback on the training effect. We demonstrated that breathing at 6 bpm with an I:E ratio of 1:1 performed best during the training phase, while intelligent guidance mode had a more long-lasting effect.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"520-532"},"PeriodicalIF":3.7,"publicationDate":"2024-06-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10574824","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141501595","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Probabilistic Estimation of Cadence and Walking Speed From Floor Vibrations 从地板振动中概率估计步频和行走速度
IF 3.7 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-06-20 DOI: 10.1109/JTEHM.2024.3415412
Yohanna MejiaCruz;Juan M. Caicedo;Zhaoshuo Jiang;Jean M. Franco
Objective: This research aims to extract human gait parameters from floor vibrations. The proposed approach provides an innovative methodology on occupant activity, contributing to a broader understanding of how human movements interact within their built environment.Methods and Procedures: A multilevel probabilistic model was developed to estimate cadence and walking speed through the analysis of floor vibrations induced by walking. The model addresses challenges related to missing or incomplete information in the floor acceleration signals. Following the Bayesian Analysis Reporting Guidelines (BARG) for reproducibility, the model was evaluated through twenty-seven walking experiments, capturing floor vibration and data from Ambulatory Parkinson’s Disease Monitoring (APDM) wearable sensors. The model was tested in a real-time implementation where ten individuals were recorded walking at their own selected pace.Results: Using a rigorous combined decision criteria of 95% high posterior density (HPD) and the Range of Practical Equivalence (ROPE) following BARG, the results demonstrate satisfactory alignment between estimations and target values for practical purposes. Notably, with over 90% of the 95% HPD falling within the region of practical equivalence, there is a solid basis for accepting the estimations as probabilistically aligned with the estimations using the APDM sensors and video recordings.Conclusion: This research validates the probabilistic multilevel model in estimating cadence and walking speed by analyzing floor vibrations, demonstrating its satisfactory comparability with established technologies such as APDM sensors and video recordings. The close alignment between the estimations and target values emphasizes the approach’s efficacy. The proposed model effectively tackles prevalent challenges associated with missing or incomplete data in real-world scenarios, enhancing the accuracy of gait parameter estimations derived from floor vibrations.Clinical impact: Extracting gait parameters from floor vibrations could provide a non-intrusive and continuous means of monitoring an individual’s gait, offering valuable insights into mobility and potential indicators of neurological conditions. The implications of this research extend to the development of advanced gait analysis tools, offering new perspectives on assessing and understanding walking patterns for improved diagnostics and personalized healthcare.Clinical and Translational Impact Statement: This manuscript introduces an innovative approach for unattended gait assessments with potentially significant implications for clinical decision-making. By utilizing floor vibrations to estimate cadence and walking speed, the technology can provide clinicians with valuable insights into their patients’ mobility and functional abilities in real-life settings. The strategic installation of accelerometers beneath the flooring of homes or care facilities allows for uninterrupted daily activities
研究目的本研究旨在从地板振动中提取人体步态参数。所提出的方法提供了一种关于居住者活动的创新方法,有助于更广泛地了解人类运动如何在建筑环境中相互作用:开发了一种多层次概率模型,通过分析步行引起的地面振动来估算步频和步行速度。该模型解决了地面加速度信号中信息缺失或不完整的难题。按照《贝叶斯分析报告指南》(BARG)的可重复性要求,该模型通过 27 项步行实验进行了评估,实验中采集了地面振动和非卧床帕金森病监测(APDM)可穿戴传感器的数据。该模型在实时实施中进行了测试,记录了十个人按自己选定的步伐行走的情况:结果:使用 95% 高后验密度(HPD)和 BARG 之后的实用等效范围(ROPE)的严格综合决策标准,结果表明估计值和目标值之间的一致性令人满意。值得注意的是,超过 90% 的 95% HPD 都在实际等效区域内,因此有充分的理由认为估计值与使用 APDM 传感器和视频记录的估计值在概率上是一致的:这项研究验证了通过分析地面振动来估算步频和步行速度的概率多层次模型,证明其与 APDM 传感器和视频记录等成熟技术具有令人满意的可比性。估算值与目标值之间的密切吻合强调了该方法的有效性。所提出的模型有效地解决了现实世界中数据缺失或不完整的难题,提高了从地面振动中提取步态参数的准确性:临床影响:从地板振动中提取步态参数可以提供一种非侵入性的连续监测个人步态的方法,为了解活动能力和神经系统疾病的潜在指标提供宝贵的信息。这项研究的意义延伸到先进步态分析工具的开发,为评估和理解行走模式提供了新的视角,从而改善诊断和个性化医疗:本手稿介绍了一种创新的无人值守步态评估方法,对临床决策具有潜在的重大意义。通过利用地面振动来估算步速和行走速度,该技术可为临床医生提供有价值的信息,帮助他们了解患者在现实生活中的行动能力和功能能力。在家庭或护理设施的地板下战略性地安装加速度计,可以在评估期间不间断地进行日常活动,减少对专门临床环境的依赖。这项技术可对步态模式进行长期连续监测,并有可能集成到医疗保健平台中。这种整合可以加强远程监控,从而进行及时干预和制定个性化护理计划,最终改善临床疗效。我们的模型具有概率性质,可以对估计参数的不确定性进行量化,让临床医生对数据的可靠性有细致入微的了解。
{"title":"Probabilistic Estimation of Cadence and Walking Speed From Floor Vibrations","authors":"Yohanna MejiaCruz;Juan M. Caicedo;Zhaoshuo Jiang;Jean M. Franco","doi":"10.1109/JTEHM.2024.3415412","DOIUrl":"https://doi.org/10.1109/JTEHM.2024.3415412","url":null,"abstract":"Objective: This research aims to extract human gait parameters from floor vibrations. The proposed approach provides an innovative methodology on occupant activity, contributing to a broader understanding of how human movements interact within their built environment.Methods and Procedures: A multilevel probabilistic model was developed to estimate cadence and walking speed through the analysis of floor vibrations induced by walking. The model addresses challenges related to missing or incomplete information in the floor acceleration signals. Following the Bayesian Analysis Reporting Guidelines (BARG) for reproducibility, the model was evaluated through twenty-seven walking experiments, capturing floor vibration and data from Ambulatory Parkinson’s Disease Monitoring (APDM) wearable sensors. The model was tested in a real-time implementation where ten individuals were recorded walking at their own selected pace.Results: Using a rigorous combined decision criteria of 95% high posterior density (HPD) and the Range of Practical Equivalence (ROPE) following BARG, the results demonstrate satisfactory alignment between estimations and target values for practical purposes. Notably, with over 90% of the 95% HPD falling within the region of practical equivalence, there is a solid basis for accepting the estimations as probabilistically aligned with the estimations using the APDM sensors and video recordings.Conclusion: This research validates the probabilistic multilevel model in estimating cadence and walking speed by analyzing floor vibrations, demonstrating its satisfactory comparability with established technologies such as APDM sensors and video recordings. The close alignment between the estimations and target values emphasizes the approach’s efficacy. The proposed model effectively tackles prevalent challenges associated with missing or incomplete data in real-world scenarios, enhancing the accuracy of gait parameter estimations derived from floor vibrations.Clinical impact: Extracting gait parameters from floor vibrations could provide a non-intrusive and continuous means of monitoring an individual’s gait, offering valuable insights into mobility and potential indicators of neurological conditions. The implications of this research extend to the development of advanced gait analysis tools, offering new perspectives on assessing and understanding walking patterns for improved diagnostics and personalized healthcare.Clinical and Translational Impact Statement: This manuscript introduces an innovative approach for unattended gait assessments with potentially significant implications for clinical decision-making. By utilizing floor vibrations to estimate cadence and walking speed, the technology can provide clinicians with valuable insights into their patients’ mobility and functional abilities in real-life settings. The strategic installation of accelerometers beneath the flooring of homes or care facilities allows for uninterrupted daily activities","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"508-519"},"PeriodicalIF":3.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10566478","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141453423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
From Scalp to Ear-EEG: A Generalizable Transfer Learning Model for Automatic Sleep Scoring in Older People 从头皮到耳部电子脑电图:用于老年人自动睡眠评分的通用迁移学习模型
IF 3.4 3区 医学 Q2 ENGINEERING, BIOMEDICAL Pub Date : 2024-04-17 DOI: 10.1109/JTEHM.2024.3388852
Ghena Hammour;Harry Davies;Giuseppe Atzori;Ciro Della Monica;Kiran K. G. Ravindran;Victoria Revell;Derk-Jan Dijk;Danilo P. Mandic
Objective: Sleep monitoring has extensively utilized electroencephalogram (EEG) data collected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of data is lacking for emerging, less intrusive modalities, such as ear-EEG.Methods and procedures: The current study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid, and developed in-house as described in our previous work. Unlike previous studies, our research uniquely focuses on an older cohort (17 subjects aged 65-83, mean age 71.8 years, some with health conditions), and employs LightGBM for transfer learning, diverging from previous deep learning approaches. Results: Results show that the initial accuracy of the pre-trained model on ear-EEG was 70.1%, but fine-tuning the model with ear-EEG data improved its classification accuracy to 73.7%. The fine-tuned model exhibited a statistically significant improvement (p < 0.05, dependent t-test) for 10 out of the 13 participants, as reflected by an enhanced average Cohen’s kappa score (a statistical measure of inter-rater agreement for categorical items) of 0.639, indicating a stronger agreement between automated and expert classifications of sleep stages. Comparative SHAP value analysis revealed a shift in feature importance for the N3 sleep stage, underscoring the effectiveness of the fine-tuning process.Conclusion: Our findings underscore the potential of fine-tuning pre-trained scalp EEG models on ear-EEG data to enhance classification accuracy, particularly within an older population and using feature-based methods for transfer learning. This approach presents a promising avenue for ear-EEG analysis in sleep studies, offering new insights into the applicability of transfer learning across different populations and computational techniques.Clinical impact: An enhanced ear-EEG method could be pivotal in remote monitoring settings, allowing for continuous, non-invasive sleep quality assessment in elderly patients with conditions like dementia or sleep apnea.
目的:睡眠监测广泛使用了从头皮收集的脑电图(EEG)数据,从而产生了非常庞大的数据存储库和训练有素的分析模型。然而,对于新兴的、侵入性较低的模式,如耳部脑电图,却缺乏这种丰富的数据:目前的研究试图通过直接或通过最小微调应用数据预训练模型来利用大量的开源头皮脑电图数据集;这是在使用单个耳内电极记录的耳部脑电图数据进行有效睡眠分析的背景下实现的,该数据以同侧乳突为参照,并在我们之前的工作中进行了内部开发。与之前的研究不同,我们的研究独特地将重点放在了老年人群(17 名受试者,年龄在 65-83 岁之间,平均年龄为 71.8 岁,其中一些人患有健康疾病)上,并采用 LightGBM 进行迁移学习,与之前的深度学习方法有所不同。结果结果显示,预训练模型在耳-EEG 上的初始准确率为 70.1%,但利用耳-EEG 数据对模型进行微调后,其分类准确率提高到 73.7%。微调后的模型对 13 位参与者中的 10 位有显著的统计学改进(P < 0.05,依赖性 t 检验),这体现在平均科恩卡帕分数(衡量分类项目中评分者之间一致性的统计学指标)提高到了 0.639,表明睡眠阶段的自动分类与专家分类之间的一致性更强了。SHAP值比较分析表明,N3睡眠阶段的特征重要性发生了变化,凸显了微调过程的有效性:我们的研究结果凸显了在耳部脑电图数据上微调预训练头皮脑电图模型以提高分类准确性的潜力,尤其是在老年人群中使用基于特征的迁移学习方法。这种方法为睡眠研究中的耳部脑电图分析提供了一个前景广阔的途径,为迁移学习在不同人群和计算技术中的适用性提供了新的见解:临床影响:增强型耳部电子脑电图方法在远程监测设置中可能会起到关键作用,可对患有痴呆症或睡眠呼吸暂停等疾病的老年患者进行连续、无创的睡眠质量评估。
{"title":"From Scalp to Ear-EEG: A Generalizable Transfer Learning Model for Automatic Sleep Scoring in Older People","authors":"Ghena Hammour;Harry Davies;Giuseppe Atzori;Ciro Della Monica;Kiran K. G. Ravindran;Victoria Revell;Derk-Jan Dijk;Danilo P. Mandic","doi":"10.1109/JTEHM.2024.3388852","DOIUrl":"10.1109/JTEHM.2024.3388852","url":null,"abstract":"Objective: Sleep monitoring has extensively utilized electroencephalogram (EEG) data collected from the scalp, yielding very large data repositories and well-trained analysis models. Yet, this wealth of data is lacking for emerging, less intrusive modalities, such as ear-EEG.Methods and procedures: The current study seeks to harness the abundance of open-source scalp EEG datasets by applying models pre-trained on data, either directly or with minimal fine-tuning; this is achieved in the context of effective sleep analysis from ear-EEG data that was recorded using a single in-ear electrode, referenced to the ipsilateral mastoid, and developed in-house as described in our previous work. Unlike previous studies, our research uniquely focuses on an older cohort (17 subjects aged 65-83, mean age 71.8 years, some with health conditions), and employs LightGBM for transfer learning, diverging from previous deep learning approaches. Results: Results show that the initial accuracy of the pre-trained model on ear-EEG was 70.1%, but fine-tuning the model with ear-EEG data improved its classification accuracy to 73.7%. The fine-tuned model exhibited a statistically significant improvement (p < 0.05, dependent t-test) for 10 out of the 13 participants, as reflected by an enhanced average Cohen’s kappa score (a statistical measure of inter-rater agreement for categorical items) of 0.639, indicating a stronger agreement between automated and expert classifications of sleep stages. Comparative SHAP value analysis revealed a shift in feature importance for the N3 sleep stage, underscoring the effectiveness of the fine-tuning process.Conclusion: Our findings underscore the potential of fine-tuning pre-trained scalp EEG models on ear-EEG data to enhance classification accuracy, particularly within an older population and using feature-based methods for transfer learning. This approach presents a promising avenue for ear-EEG analysis in sleep studies, offering new insights into the applicability of transfer learning across different populations and computational techniques.Clinical impact: An enhanced ear-EEG method could be pivotal in remote monitoring settings, allowing for continuous, non-invasive sleep quality assessment in elderly patients with conditions like dementia or sleep apnea.","PeriodicalId":54255,"journal":{"name":"IEEE Journal of Translational Engineering in Health and Medicine-Jtehm","volume":"12 ","pages":"448-456"},"PeriodicalIF":3.4,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10504255","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140612025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
IEEE Journal of Translational Engineering in Health and Medicine-Jtehm
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1