首页 > 最新文献

Earth and Space Science最新文献

英文 中文
Exploring Machine Learning Capabilities for High Spatiotemporal Resolution Storm Surge Reconstructions 探索高时空分辨率风暴潮重建的机器学习能力
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-04 DOI: 10.1029/2024EA004161
Qi Feng, Taoyong Jin, Lianjun Yang, Jiancheng Li

In storm surge (SS) simulation, data-driven methods can establish the relationship between predictor variables and the predictand, enabling long-term SS level reconstructions. Here, using the U.S. East Coast as an example, we explored the capabilities of four machine learning algorithms, namely Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Light Gradient Boosting Machine (LightGBM), and Extreme Gradient Boosting (XGBoost) in reconstructing hourly SS levels from 1979 to 2018 under an all-site modeling framework. Four atmospheric parameters, time index, and tide gauge coordinates from 51 tide gauges are used as predictors. The model performance was evaluated at both the tide gauge and coastal scales. Results indicate that LightGBM and XGBoost models outperform ANN and LSTM in SS reconstructions, with XGBoost showing better overall performance, especially for extreme SSs and historical extreme events. XGBoost can capture the temporal evolution of SSs with higher accuracy, producing reconstructions comparable to observations under the all-site modeling framework. The model interpretability analysis focusing on XGBoost reveals that the spatial distribution of feature importance varies for each predictor. Mean sea level pressure and the 10 m eastward wind component are the two most important predictors, followed by time index, latitude, and longitude under the all-site modeling framework and selected stations. These results indicate that data-driven models under this framework have the potential to capture region-specific and physically reasonable relationships between SS levels and atmospheric drivers.

在风暴潮模拟中,数据驱动方法可以建立预测变量与预测值之间的关系,从而实现长期的风暴潮水平重建。本文以美国东海岸为例,探讨了人工神经网络(ANN)、长短期记忆(LSTM)、光梯度增强机(LightGBM)和极限梯度增强(XGBoost)四种机器学习算法在全站点建模框架下重建1979 - 2018年每小时SS水平的能力。四个大气参数、时间指数和51个潮汐测量仪的坐标被用作预测。在潮汐计和海岸尺度上对模型的性能进行了评价。结果表明,LightGBM和XGBoost模型在SS重建中优于ANN和LSTM,其中XGBoost模型在极端SS和历史极端事件重建中表现出更好的整体性能。XGBoost可以以更高的精度捕获SSs的时间演变,产生可与全站点建模框架下的观测相媲美的重建结果。以XGBoost为中心的模型可解释性分析表明,各预测因子的特征重要性空间分布各不相同。在全站点模式框架和所选站点下,平均海平面气压和10 m东风分量是最重要的预测因子,其次是时间指数、纬度和经度。这些结果表明,在该框架下的数据驱动模式有可能捕获特定区域和物理合理的SS水平与大气驱动因素之间的关系。
{"title":"Exploring Machine Learning Capabilities for High Spatiotemporal Resolution Storm Surge Reconstructions","authors":"Qi Feng,&nbsp;Taoyong Jin,&nbsp;Lianjun Yang,&nbsp;Jiancheng Li","doi":"10.1029/2024EA004161","DOIUrl":"https://doi.org/10.1029/2024EA004161","url":null,"abstract":"<p>In storm surge (SS) simulation, data-driven methods can establish the relationship between predictor variables and the predictand, enabling long-term SS level reconstructions. Here, using the U.S. East Coast as an example, we explored the capabilities of four machine learning algorithms, namely Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Light Gradient Boosting Machine (LightGBM), and Extreme Gradient Boosting (XGBoost) in reconstructing hourly SS levels from 1979 to 2018 under an all-site modeling framework. Four atmospheric parameters, time index, and tide gauge coordinates from 51 tide gauges are used as predictors. The model performance was evaluated at both the tide gauge and coastal scales. Results indicate that LightGBM and XGBoost models outperform ANN and LSTM in SS reconstructions, with XGBoost showing better overall performance, especially for extreme SSs and historical extreme events. XGBoost can capture the temporal evolution of SSs with higher accuracy, producing reconstructions comparable to observations under the all-site modeling framework. The model interpretability analysis focusing on XGBoost reveals that the spatial distribution of feature importance varies for each predictor. Mean sea level pressure and the 10 m eastward wind component are the two most important predictors, followed by time index, latitude, and longitude under the all-site modeling framework and selected stations. These results indicate that data-driven models under this framework have the potential to capture region-specific and physically reasonable relationships between SS levels and atmospheric drivers.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145469626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SWOT Global Bathymetry Modeling Using Deep Neural Networks Trained on Multiple Geophysical Features 基于多个地球物理特征训练的深度神经网络的SWOT全球水深模型
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-04 DOI: 10.1029/2025EA004545
Farshad Salajegheh, Xiaoli Deng, Ole Baltazar Andersen, Richard Coleman, Mehdi Khaki
<p>This paper presents BathDNN25, a global bathymetry model developed using gravity data derived from wide-swath altimetry collected by the Surface Water and Ocean Topography (SWOT) mission, with shipborne bathymetry serving as training data in a deep neural network (DNN) framework. BathDNN25 integrates multiple geophysical inputs, including gravity anomalies <span></span><math> <semantics> <mrow> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> <annotation> $(G)$</annotation> </semantics></math>, vertical gravity gradients <span></span><math> <semantics> <mrow> <mo>(</mo> <mrow> <mi>V</mi> <mi>G</mi> <mi>G</mi> </mrow> <mo>)</mo> </mrow> <annotation> $(VGG)$</annotation> </semantics></math>, their band-pass filtered forms <span></span><math> <semantics> <mrow> <mfenced> <mrow> <mi>V</mi> <mi>G</mi> <msub> <mi>G</mi> <mrow> <mi>B</mi> <mi>P</mi> </mrow> </msub> </mrow> </mfenced> </mrow> <annotation> $left(VG{G}_{BP}right)$</annotation> </semantics></math>, the north and east components derived from the deflection of the vertical (<span></span><math> <semantics> <mrow> <mi>S</mi> <mi>N</mi> </mrow> <annotation> $SN$</annotation> </semantics></math>, <span></span><math> <semantics> <mrow> <mi>SE</mi> </mrow> <annotation> $mathrm{SE}$</annotation> </semantics></math>), their band-pass versions (<span></span><math> <semantics> <mrow> <mi>S</mi> <msub> <mi>N</mi> <mrow> <mi>B</mi> <mi>P</mi> </mrow> </msub> </mrow> <annotation> $S{N}_{BP}$</annotation> </semantics></math>, <span></span><math> <semantics> <mrow> <msub> <mi>SE</mi> <mrow>
本文介绍了BathDNN25,这是一个全球测深模型,利用地表水和海洋地形(SWOT)任务收集的宽波段高度计获得的重力数据开发而成,船载测深作为深度神经网络(DNN)框架中的训练数据。BathDNN25集成了多个地球物理输入,包括重力异常(G)$ (G)$,垂直重力梯度(VGG)$ (VGG)$,它们的带通滤波形式为VG G BP $left(VG{G}_{BP}right)$为垂直偏转引起的北、东分量(SN$ SN$, SE $ mathm {SE}$);它们的带通版本(S N BP $S{N}_{BP}$,${ mathm {SE}}_{BP}$),低通滤波测深B LP $左({B}_{LP}右)$,低通和带通滤波重力(G LP ${G}_{LP}$,G BP ${G}_{BP}$),以捕捉大尺度趋势和精细尺度的水深特征。一个关键的创新在于它使用了多尺度地球物理特征,增强了对山脊、悬崖和海底山等形态复杂性的敏感性,同时能很好地适应不同的地质条件和数据稀疏性。利用独立数据集(包括全球船载测深和海山峰顶)的残差统计量评估模型性能,其中BathDNN25的残差标准差分别为99和167 m。与现有方法相比(Harper & Sandwell, 2024, https://doi.org/10.1029/2023ea003199),这意味着残差减少了51%和113%以上。14个地区的SHAP分析和使用4种模型变体的消融试验进一步证实了swot衍生重力特征的互补价值。总体而言,BathDNN25展示了准确性、稳健性和可扩展性,强调了高质量地球物理输入的重要性,以及swot衍生数据和人工智能在推进全球水深建模方面的潜力。
{"title":"SWOT Global Bathymetry Modeling Using Deep Neural Networks Trained on Multiple Geophysical Features","authors":"Farshad Salajegheh,&nbsp;Xiaoli Deng,&nbsp;Ole Baltazar Andersen,&nbsp;Richard Coleman,&nbsp;Mehdi Khaki","doi":"10.1029/2025EA004545","DOIUrl":"https://doi.org/10.1029/2025EA004545","url":null,"abstract":"&lt;p&gt;This paper presents BathDNN25, a global bathymetry model developed using gravity data derived from wide-swath altimetry collected by the Surface Water and Ocean Topography (SWOT) mission, with shipborne bathymetry serving as training data in a deep neural network (DNN) framework. BathDNN25 integrates multiple geophysical inputs, including gravity anomalies &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $(G)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, vertical gravity gradients &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $(VGG)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, their band-pass filtered forms &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $left(VG{G}_{BP}right)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, the north and east components derived from the deflection of the vertical (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $SN$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;SE&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $mathrm{SE}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;), their band-pass versions (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $S{N}_{BP}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;SE&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004545","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145469611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty-Aware Machine Learning Bias Correction and Filtering for OCO-2. 2 OCO-2的不确定性感知机器学习偏差校正与滤波。2
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-04 DOI: 10.1029/2025EA004329
William Keely, Steffen Mauceri, Robert Nelson, Josh Laughner, Christopher W. O’Dell, Steven Massie, David Baker, Matthäus Kiel, Otto Lamminpää, Jonathan Hobbs, Abhishek Chatterjee, Tommy Taylor, Paul Wennberg, Sean Crowell, Britt Stephens, Vivienne Payne

Quality filtering of satellite XCO2 retrievals is essential for every downstream science application, yet the community still grapples with the trade-off between retaining data availability and suppressing biases. For the Orbiting Carbon Observatory-2 (OCO-2) record in particular, the long-standing binary quality flag targets the single use case of global carbon flux inversion and is often too restrictive for small spatial scale analysis like quantifying emissions from coal-fired power plants. To address the need for flexible quality filtering we introduce a data-driven, ternary (three-state) quality flag constructed from the agreement of three independent sub-filters: two Random Forest classifiers trained on distinct “truth proxy” data sets and a third sub-filter based on the uncertainty estimate from a non-linear machine learning bias correction and the operational uncertainty product. We utilized a Bayesian multi-objective optimization to tune the sub-filters, balancing the competing goals of maximizing data throughput with minimizing error variance and retrieval uncertainty. The proposed ternary quality flag shows an improved reduction in root mean square error (RMSE) (22% for land and 53% for ocean) over the operational flag. This reduction is due in part to an improved ability to remove observations affected by 3D cloud biases. The flexible ternary flag can optionally increase data availability by 21% over land and 18% over ocean but is still competitive with the RMSE of the operational product. The proposed filter addresses the diverse needs of the science community and is generalizable to greenhouse gas monitoring missions such as GOSAT, CO2M and Carbon-I.

卫星XCO2检索的高质量过滤对于每一个下游科学应用都是必不可少的,然而社区仍然在努力保持数据可用性和抑制偏差之间的权衡。特别是对于轨道碳观测站-2 (OCO-2)记录,长期存在的二进制质量标志针对的是全球碳通量反演的单一用例,对于小空间尺度的分析(如量化燃煤电厂的排放)往往过于限制。为了满足灵活质量过滤的需求,我们引入了一个数据驱动的三元(三状态)质量标志,该标志由三个独立子过滤器的协议构建:两个随机森林分类器在不同的“真值代理”数据集上训练,第三个子过滤器基于非线性机器学习偏差校正和操作不确定性乘积的不确定性估计。我们利用贝叶斯多目标优化来调整子过滤器,平衡最大化数据吞吐量与最小化错误方差和检索不确定性的竞争目标。与实际使用的旗面相比,提议的三元质量旗面在均方根误差(RMSE)(陆地为22%,海洋为53%)方面有了更好的降低。这种减少部分是由于改进了消除受三维云偏差影响的观测的能力。灵活的三元标记可以选择性地将数据可用性在陆地上提高21%,在海洋上提高18%,但仍然与运营产品的RMSE相竞争。拟议的过滤器满足了科学界的各种需求,并可推广到诸如GOSAT、CO2M和Carbon-I等温室气体监测任务中。
{"title":"Uncertainty-Aware Machine Learning Bias Correction and Filtering for OCO-2. 2","authors":"William Keely,&nbsp;Steffen Mauceri,&nbsp;Robert Nelson,&nbsp;Josh Laughner,&nbsp;Christopher W. O’Dell,&nbsp;Steven Massie,&nbsp;David Baker,&nbsp;Matthäus Kiel,&nbsp;Otto Lamminpää,&nbsp;Jonathan Hobbs,&nbsp;Abhishek Chatterjee,&nbsp;Tommy Taylor,&nbsp;Paul Wennberg,&nbsp;Sean Crowell,&nbsp;Britt Stephens,&nbsp;Vivienne Payne","doi":"10.1029/2025EA004329","DOIUrl":"https://doi.org/10.1029/2025EA004329","url":null,"abstract":"<p>Quality filtering of satellite XCO<sub>2</sub> retrievals is essential for every downstream science application, yet the community still grapples with the trade-off between retaining data availability and suppressing biases. For the Orbiting Carbon Observatory-2 (OCO-2) record in particular, the long-standing binary quality flag targets the single use case of global carbon flux inversion and is often too restrictive for small spatial scale analysis like quantifying emissions from coal-fired power plants. To address the need for flexible quality filtering we introduce a data-driven, ternary (three-state) quality flag constructed from the agreement of three independent sub-filters: two Random Forest classifiers trained on distinct “truth proxy” data sets and a third sub-filter based on the uncertainty estimate from a non-linear machine learning bias correction and the operational uncertainty product. We utilized a Bayesian multi-objective optimization to tune the sub-filters, balancing the competing goals of maximizing data throughput with minimizing error variance and retrieval uncertainty. The proposed ternary quality flag shows an improved reduction in root mean square error (RMSE) (22% for land and 53% for ocean) over the operational flag. This reduction is due in part to an improved ability to remove observations affected by 3D cloud biases. The flexible ternary flag can optionally increase data availability by 21% over land and 18% over ocean but is still competitive with the RMSE of the operational product. The proposed filter addresses the diverse needs of the science community and is generalizable to greenhouse gas monitoring missions such as GOSAT, CO2M and Carbon-I.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004329","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145469627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameterization of the Winter Arctic Sea Ice Microwave Emissivity Between 1.4 and 36 GHz, for Large Scale Applications 大规模应用下冬季北极海冰1.4 ~ 36ghz微波发射率的参数化
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-01 DOI: 10.1029/2025EA004259
Lise Kilic, Carlos Jimenez, Catherine Prigent, Anton Korosov, Pierre Rampal, Iris de Gelis, Gilles Garric

Modeling sea ice microwave emissivities at large scales presents challenges, due to complex interactions between the microwave signal and the sea ice environment. For the preparation of the Copernicus Imaging Microwave Radiometer mission (CIMR) that focusses on the monitoring of polar regions, a pragmatic parameterization of the sea ice emissivity over the Arctic in winter is proposed, providing consistent emissivity parameterizations between 1.4 and 36 GHz, for both orthogonal polarizations. Satellite-derived microwave emissivities are calculated from the Advanced Microwave Scanning Radiometer 2, Soil Moisture Active Passive, and Soil Moisture Ocean Salinity observations, subtracting the atmospheric contributions and the surface temperature modulation using ERA5 meteorological reanalysis. The resulting Arctic sea ice emissivities are analyzed, alongside sea ice geophysical parameters from neXtSIM model outputs and ERA5, to identify the variables for the emissivity parameterization. Sea Ice Thickness emerges as a crucial factor, particularly at 18 and 36 GHz. A training database of coincident satellite-derived emissivities and geophysical parameters is set up, to develop a Neural Network parameterization of the emissivities based on the geophysical parameters. This pragmatic methodology establishes a direct link between calculated emissivities and physical sea ice properties, eliminating the need for a priori assumptions. Promising emissivity results are obtained, with Root Mean Square Error below ${sim} $0.03 for most channels, and reaching ${sim} $0.04 at 36 GHz. Part of the error is expected to come from uncertainties in the input geophysical parameters. The emissivity frequency dependence is checked, and the emissivity angular variation of the 1.4 GHz is calculated from SMOS-derived emissivities.

由于微波信号与海冰环境之间复杂的相互作用,在大尺度上模拟海冰微波发射率存在挑战。为了准备哥白尼成像微波辐射计任务(CIMR),重点监测极地地区,提出了一种实用的北极海冰冬季发射率参数化方法,在1.4和36 GHz之间为两个正交极化提供一致的发射率参数化。卫星衍生的微波发射率是根据高级微波扫描辐射计2、土壤水分主动被动和土壤水分海洋盐度观测数据计算的,减去大气贡献和ERA5气象再分析的地表温度调制。将得到的北极海冰发射率与neXtSIM模型输出和ERA5的海冰地球物理参数一起进行分析,以确定发射率参数化的变量。海冰厚度成为关键因素,尤其是在18 GHz和36 GHz频段。建立了卫星发射率与地球物理参数重合的训练数据库,建立了基于地球物理参数的发射率神经网络参数化方法。这种实用的方法在计算的发射率和海冰物理性质之间建立了直接联系,消除了先验假设的需要。获得了有希望的发射率结果,对于大多数信道,均方根误差低于~ ${sim} $ 0.03,在36 GHz时达到~ ${sim} $ 0.04。部分误差预计来自输入地球物理参数的不确定性。检查了发射率与频率的关系,并根据smos导出的发射率计算了1.4 GHz的发射率角变化。
{"title":"Parameterization of the Winter Arctic Sea Ice Microwave Emissivity Between 1.4 and 36 GHz, for Large Scale Applications","authors":"Lise Kilic,&nbsp;Carlos Jimenez,&nbsp;Catherine Prigent,&nbsp;Anton Korosov,&nbsp;Pierre Rampal,&nbsp;Iris de Gelis,&nbsp;Gilles Garric","doi":"10.1029/2025EA004259","DOIUrl":"https://doi.org/10.1029/2025EA004259","url":null,"abstract":"<p>Modeling sea ice microwave emissivities at large scales presents challenges, due to complex interactions between the microwave signal and the sea ice environment. For the preparation of the Copernicus Imaging Microwave Radiometer mission (CIMR) that focusses on the monitoring of polar regions, a pragmatic parameterization of the sea ice emissivity over the Arctic in winter is proposed, providing consistent emissivity parameterizations between 1.4 and 36 GHz, for both orthogonal polarizations. Satellite-derived microwave emissivities are calculated from the Advanced Microwave Scanning Radiometer 2, Soil Moisture Active Passive, and Soil Moisture Ocean Salinity observations, subtracting the atmospheric contributions and the surface temperature modulation using ERA5 meteorological reanalysis. The resulting Arctic sea ice emissivities are analyzed, alongside sea ice geophysical parameters from neXtSIM model outputs and ERA5, to identify the variables for the emissivity parameterization. Sea Ice Thickness emerges as a crucial factor, particularly at 18 and 36 GHz. A training database of coincident satellite-derived emissivities and geophysical parameters is set up, to develop a Neural Network parameterization of the emissivities based on the geophysical parameters. This pragmatic methodology establishes a direct link between calculated emissivities and physical sea ice properties, eliminating the need for a priori assumptions. Promising emissivity results are obtained, with Root Mean Square Error below <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>∼</mo>\u0000 </mrow>\u0000 <annotation> ${sim} $</annotation>\u0000 </semantics></math>0.03 for most channels, and reaching <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>∼</mo>\u0000 </mrow>\u0000 <annotation> ${sim} $</annotation>\u0000 </semantics></math>0.04 at 36 GHz. Part of the error is expected to come from uncertainties in the input geophysical parameters. The emissivity frequency dependence is checked, and the emissivity angular variation of the 1.4 GHz is calculated from SMOS-derived emissivities.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004259","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145406576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TEMPO at Night: Lightning Flashes and On-Orbit Instrument Performance 夜间的TEMPO:闪电和在轨仪器性能
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-01 DOI: 10.1029/2025EA004513
Sergey V. Marchenko, James L. Carr, Heesung Chong, John C. Houck, Xiong Liu, David E. Flittner, Joanna Joiner, Brian D. Baker, James K. Lasnik, Dennis K. Nicks

The abundant nighttime (twilight) spectra from October 2024 are used for characterization of on-orbit instrument performance of the Tropospheric Emissions: Monitoring of Pollution (TEMPO, a geostationary imaging spectrometer). We select 250 lightning flashes and measure the flash sizes and flash positions in 6 spectral domains spread across the two TEMPO detectors. Some of the flash sizes come close to ≈1 pixel ground-based estimates of the instantaneous field of view in the North-South direction. On average, spectral measurements across the two detectors are co-registered to better than 0.15 pixels, thus also matching the pre-flight assessments.

2024年10月的大量夜间(黄昏)光谱用于表征对流层排放:污染监测(TEMPO,地球静止成像光谱仪)的在轨仪器性能。我们选择了250次闪电,并测量了分布在两个TEMPO探测器上的6个光谱域的闪光大小和闪光位置。一些闪光尺寸接近于南北方向瞬时视场的地面估计约1像素。平均而言,两个探测器的光谱测量值共同注册到优于0.15像素,因此也符合飞行前评估。
{"title":"TEMPO at Night: Lightning Flashes and On-Orbit Instrument Performance","authors":"Sergey V. Marchenko,&nbsp;James L. Carr,&nbsp;Heesung Chong,&nbsp;John C. Houck,&nbsp;Xiong Liu,&nbsp;David E. Flittner,&nbsp;Joanna Joiner,&nbsp;Brian D. Baker,&nbsp;James K. Lasnik,&nbsp;Dennis K. Nicks","doi":"10.1029/2025EA004513","DOIUrl":"https://doi.org/10.1029/2025EA004513","url":null,"abstract":"<p>The abundant nighttime (twilight) spectra from October 2024 are used for characterization of on-orbit instrument performance of the Tropospheric Emissions: Monitoring of Pollution (TEMPO, a geostationary imaging spectrometer). We select 250 lightning flashes and measure the flash sizes and flash positions in 6 spectral domains spread across the two TEMPO detectors. Some of the flash sizes come close to ≈1 pixel ground-based estimates of the instantaneous field of view in the North-South direction. On average, spectral measurements across the two detectors are co-registered to better than 0.15 pixels, thus also matching the pre-flight assessments.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004513","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145406527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Large-Scale Topographic Changes at Erupting Volcanoes Measured by the TanDEM-X Digital Change Map TanDEM-X数字变化图测量的大尺度火山喷发地形变化
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-01 DOI: 10.1029/2025EA004614
Rebecca Edwards, Juliet Biggs

Volcanic eruptions cause large-scale topographic changes, through the emplacement of lava flows and lava domes, the formation of craters and calderas, and thick ash and pyroclastic deposits. Here we analyze the TanDEM-X Digital Change Map (DCM), which compares the DEM produced during 2010–2015 with satellite acquisitions collected in 2016–2022. The DCM covers 159 eruptions at 103 volcanoes; the data was good quality at 44 of these but not useable at 28. Topographic changes associated with volcanic activity was visible at 58 volcanoes including lava flows, domes, intrusions, pyroclastic flows, lahars, tephra fall, crater formation and landslides. We analyze five case studies in detail: Sierra Negra, Galápagos; Erta Ale, Ethiopia; Sangay, Ecuador; Ebeko, Russia; and Nabro, Eritrea. Our measurements of the lava flows at Sierra Negra and Nabro and crater formation at Ebeko agree to within 15% of previous measurements, confirming the accuracy of the TanDEM-X DCM in volcanic areas. At Erta Ale, we find maximum lava thickness of >40 m, greatly exceeding previous field-based estimates (<2.5 m); consequently, our total volume estimate is an order of magnitude higher. At Sangay, the patterns of height change are consistent with local reports, but our measurements have high uncertainties due to the prevalence of vegetative noise and steep topography. Overall, we demonstrate that the TanDEM-X DCM can measure topographic changes at volcanoes, and in many cases allows us to make new measurements. Finally, we discuss the lessons learned from the TanDEM-X DCM for planning future satellite missions, including the upcoming European Space Agency Harmony Mission.

火山爆发引起大规模的地形变化,通过熔岩流和熔岩穹丘的就位,形成火山口和破火山口,以及厚厚的火山灰和火山碎屑沉积物。在这里,我们分析了TanDEM-X数字变化地图(DCM),该地图将2010-2015年生成的DEM与2016-2022年收集的卫星数据进行了比较。DCM涵盖了103座火山的159次喷发;其中44个项目的数据质量良好,但28个项目的数据不可用。与火山活动相关的地形变化在58座火山中可见,包括熔岩流、圆顶、侵入、火山碎屑流、火山泥流、火山泥流、火山瀑布、火山口形成和山体滑坡。我们详细分析了五个案例研究:Sierra Negra, Galápagos;埃塔阿莱,埃塞俄比亚;桑杰,厄瓜多尔;Ebeko、俄罗斯;以及厄立特里亚的纳布罗。我们对Sierra Negra和Nabro的熔岩流和Ebeko的火山口形成的测量结果与之前的测量结果一致,误差在15%以内,证实了TanDEM-X DCM在火山地区的准确性。在Erta Ale,我们发现最大熔岩厚度为40 m,大大超过了以前基于现场的估计(2.5 m);因此,我们的总体积估计值要高一个数量级。在洛桑格,高度变化的模式与当地报告一致,但由于植物噪声的普遍存在和陡峭的地形,我们的测量具有很高的不确定性。总的来说,我们证明了TanDEM-X DCM可以测量火山的地形变化,并且在许多情况下允许我们进行新的测量。最后,我们讨论了从TanDEM-X DCM中吸取的经验教训,以规划未来的卫星任务,包括即将到来的欧洲航天局和谐任务。
{"title":"Large-Scale Topographic Changes at Erupting Volcanoes Measured by the TanDEM-X Digital Change Map","authors":"Rebecca Edwards,&nbsp;Juliet Biggs","doi":"10.1029/2025EA004614","DOIUrl":"https://doi.org/10.1029/2025EA004614","url":null,"abstract":"<p>Volcanic eruptions cause large-scale topographic changes, through the emplacement of lava flows and lava domes, the formation of craters and calderas, and thick ash and pyroclastic deposits. Here we analyze the TanDEM-X Digital Change Map (DCM), which compares the DEM produced during 2010–2015 with satellite acquisitions collected in 2016–2022. The DCM covers 159 eruptions at 103 volcanoes; the data was good quality at 44 of these but not useable at 28. Topographic changes associated with volcanic activity was visible at 58 volcanoes including lava flows, domes, intrusions, pyroclastic flows, lahars, tephra fall, crater formation and landslides. We analyze five case studies in detail: Sierra Negra, Galápagos; Erta Ale, Ethiopia; Sangay, Ecuador; Ebeko, Russia; and Nabro, Eritrea. Our measurements of the lava flows at Sierra Negra and Nabro and crater formation at Ebeko agree to within 15% of previous measurements, confirming the accuracy of the TanDEM-X DCM in volcanic areas. At Erta Ale, we find maximum lava thickness of &gt;40 m, greatly exceeding previous field-based estimates (&lt;2.5 m); consequently, our total volume estimate is an order of magnitude higher. At Sangay, the patterns of height change are consistent with local reports, but our measurements have high uncertainties due to the prevalence of vegetative noise and steep topography. Overall, we demonstrate that the TanDEM-X DCM can measure topographic changes at volcanoes, and in many cases allows us to make new measurements. Finally, we discuss the lessons learned from the TanDEM-X DCM for planning future satellite missions, including the upcoming European Space Agency Harmony Mission.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004614","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145406528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Climate-Driven Changes in Spring Dust Emissions Over China: WRF-Chem Projections Under SSP2-4.5 and SSP5-8.5 Scenarios 中国春季沙尘排放的气候驱动变化:SSP2-4.5和SSP5-8.5情景下WRF-Chem预估
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-10-31 DOI: 10.1029/2025EA004440
Hongquan Song, Qianlong Xing

Global climate change is significantly impacting dust emission patterns in arid and semi-arid regions, posing challenges to environmental quality and human health. However, the impacts of future climate change on dust emissions in China remain insufficiently understood. This study employed the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model to project future dust emissions in China under two climate scenarios (SSP2-4.5 and SSP5-8.5) for the years 2030, 2060, and 2090. Results indicated that in the near term (2030 and 2060), dust emissions were projected to be higher under the high-emission SSP5-8.5 scenario compared to the moderate-emission SSP2-4.5 scenario. This suggests that increased greenhouse gas concentrations and associated climatic changes may enhance conditions favorable for dust generation, such as elevated temperatures and reduced soil moisture. By 2090, however, this trend may reverse, with SSP2-4.5 exhibiting higher dust emissions than SSP5-8.5. This reversal highlights the complex, non-linear interactions between long-term climate variables and dust emission processes, potentially due to changes in precipitation patterns, atmospheric circulation, and vegetation cover. The spatial distribution of dust emissions consistently remains concentrated in northwestern China and southern Mongolia across all scenarios and time periods, emphasizing the persistent role of major dust source regions like the Taklamakan Desert and the Gobi Desert. These findings underscore the need for targeted mitigation and adaptation strategies to manage the environmental and health impacts associated with dust emissions in the context of climate change.

全球气候变化正在严重影响干旱和半干旱地区的粉尘排放模式,对环境质量和人类健康构成挑战。然而,未来气候变化对中国粉尘排放的影响仍未得到充分认识。本研究采用气象研究与预报耦合化学(WRF-Chem)模式预测了2030、2060和2090年两种气候情景(SSP2-4.5和SSP5-8.5)下中国未来的沙尘排放。结果表明,近期(2030年和2060年),高排放情景下的沙尘排放量高于中等排放情景下的沙尘排放量。这表明温室气体浓度的增加和相关的气候变化可能会增强有利于粉尘产生的条件,例如温度升高和土壤湿度降低。然而,到2090年,这一趋势可能会逆转,SSP2-4.5的粉尘排放量将高于SSP5-8.5。这种逆转强调了长期气候变量与沙尘排放过程之间复杂的非线性相互作用,这可能是由于降水模式、大气环流和植被覆盖的变化。在所有情景和时间段中,沙尘排放的空间分布始终集中在中国西北部和蒙古南部,强调了塔克拉玛干沙漠和戈壁沙漠等主要沙尘源区的持续作用。这些调查结果强调,需要制定有针对性的缓解和适应战略,以管理气候变化背景下与粉尘排放有关的环境和健康影响。
{"title":"Climate-Driven Changes in Spring Dust Emissions Over China: WRF-Chem Projections Under SSP2-4.5 and SSP5-8.5 Scenarios","authors":"Hongquan Song,&nbsp;Qianlong Xing","doi":"10.1029/2025EA004440","DOIUrl":"https://doi.org/10.1029/2025EA004440","url":null,"abstract":"<p>Global climate change is significantly impacting dust emission patterns in arid and semi-arid regions, posing challenges to environmental quality and human health. However, the impacts of future climate change on dust emissions in China remain insufficiently understood. This study employed the Weather Research and Forecasting coupled with Chemistry (WRF-Chem) model to project future dust emissions in China under two climate scenarios (SSP2-4.5 and SSP5-8.5) for the years 2030, 2060, and 2090. Results indicated that in the near term (2030 and 2060), dust emissions were projected to be higher under the high-emission SSP5-8.5 scenario compared to the moderate-emission SSP2-4.5 scenario. This suggests that increased greenhouse gas concentrations and associated climatic changes may enhance conditions favorable for dust generation, such as elevated temperatures and reduced soil moisture. By 2090, however, this trend may reverse, with SSP2-4.5 exhibiting higher dust emissions than SSP5-8.5. This reversal highlights the complex, non-linear interactions between long-term climate variables and dust emission processes, potentially due to changes in precipitation patterns, atmospheric circulation, and vegetation cover. The spatial distribution of dust emissions consistently remains concentrated in northwestern China and southern Mongolia across all scenarios and time periods, emphasizing the persistent role of major dust source regions like the Taklamakan Desert and the Gobi Desert. These findings underscore the need for targeted mitigation and adaptation strategies to manage the environmental and health impacts associated with dust emissions in the context of climate change.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004440","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145407045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Airborne Remote Sensing of Concurrent Submesoscale Dynamics and Phytoplankton 亚中尺度动态与浮游植物同步的航空遥感
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-10-29 DOI: 10.1029/2025EA004285
Sarah E. Lang, Melissa M. Omand, Luc Lenain

Submesoscale dynamics can induce significant vertical fluxes of phytoplankton, nutrients, and carbon, resulting in biological and climatological impacts such as enhanced phytoplankton production, phytoplankton community shifts, and carbon export. However, resolving these dynamics is challenging due to their rapid evolution (hours to days) and small spatial scales (1–10 km) of variability. The Modular Aerial Sensing System (MASS), an airborne instrument package measuring concurrent ocean dynamics and hyperspectral ocean color, provides a powerful tool to study the influence of submesoscale dynamics on phytoplankton and carbon. In this study, we present the first airborne observations pairing snapshots of sub-kilometer ocean velocities and their derivatives (i.e., vorticity, divergence, and strain) with concurrent ocean color and sea surface temperature. We developed airborne proxies of chlorophyll-a and particulate organic carbon, which explained about 66.2% and 56.2% of in situ variability without atmospheric correction, suggesting that MASS can capture phytoplankton variability. We also explored relationships between concurrent vorticity, divergence, strain, sea surface temperature, chlorophyll-a, and hyperspectral variables to illuminate the submesoscale processes that alter phytoplankton distributions. This study demonstrates the value of merging bio-optical and physical airborne remote sensing data to better understand the influence of submesoscale dynamics on oceanic ecosystems and organic carbon. We highlight the potential for suborbital remote sensing for studying processes that impact phytoplankton ecosystems and carbon transport without the spatiotemporal aliasing affecting in situ sensors.

亚中尺度动态可以诱导浮游植物、营养物质和碳的显著垂直通量,从而产生生物和气候影响,如浮游植物产量增加、浮游植物群落转移和碳输出。然而,由于其快速演变(几小时到几天)和小空间尺度(1-10公里)的变异性,解决这些动态是具有挑战性的。模块化航空遥感系统(MASS)是一种可同时测量海洋动力和高光谱海洋颜色的机载仪器包,为研究亚中尺度动力对浮游植物和碳的影响提供了有力的工具。在这项研究中,我们首次提出了亚千米海洋速度及其导数(即涡度、散度和应变)与海洋颜色和海面温度同步的航空观测快照。我们开发了叶绿素-a和颗粒有机碳的空气代用指标,它们分别解释了66.2%和56.2%的原位变异,表明MASS可以捕获浮游植物的变异。我们还探讨了同步涡度、散度、应变、海面温度、叶绿素-a和高光谱变量之间的关系,以阐明改变浮游植物分布的亚中尺度过程。本研究证明了融合生物光学和物理航空遥感数据对更好地了解亚中尺度动力学对海洋生态系统和有机碳的影响的价值。我们强调了亚轨道遥感在研究影响浮游植物生态系统和碳运输的过程中没有时空混叠影响原位传感器的潜力。
{"title":"Airborne Remote Sensing of Concurrent Submesoscale Dynamics and Phytoplankton","authors":"Sarah E. Lang,&nbsp;Melissa M. Omand,&nbsp;Luc Lenain","doi":"10.1029/2025EA004285","DOIUrl":"https://doi.org/10.1029/2025EA004285","url":null,"abstract":"<p>Submesoscale dynamics can induce significant vertical fluxes of phytoplankton, nutrients, and carbon, resulting in biological and climatological impacts such as enhanced phytoplankton production, phytoplankton community shifts, and carbon export. However, resolving these dynamics is challenging due to their rapid evolution (hours to days) and small spatial scales (1–10 km) of variability. The Modular Aerial Sensing System (MASS), an airborne instrument package measuring concurrent ocean dynamics and hyperspectral ocean color, provides a powerful tool to study the influence of submesoscale dynamics on phytoplankton and carbon. In this study, we present the first airborne observations pairing snapshots of sub-kilometer ocean velocities and their derivatives (i.e., vorticity, divergence, and strain) with concurrent ocean color and sea surface temperature. We developed airborne proxies of chlorophyll-a and particulate organic carbon, which explained about 66.2% and 56.2% of in situ variability without atmospheric correction, suggesting that MASS can capture phytoplankton variability. We also explored relationships between concurrent vorticity, divergence, strain, sea surface temperature, chlorophyll-a, and hyperspectral variables to illuminate the submesoscale processes that alter phytoplankton distributions. This study demonstrates the value of merging bio-optical and physical airborne remote sensing data to better understand the influence of submesoscale dynamics on oceanic ecosystems and organic carbon. We highlight the potential for suborbital remote sensing for studying processes that impact phytoplankton ecosystems and carbon transport without the spatiotemporal aliasing affecting in situ sensors.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004285","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145406859","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Impact of SRTM and ASTER Terrain Models on Geoid Determination: A Case Study in the High-Mountainous Region SRTM和ASTER地形模型对高山区大地水准面确定的影响
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-10-29 DOI: 10.1029/2024EA004000
Leyla Cakir

An accurate geoid has important consequences for many fields such as engineering applications, underground resource exploration, geophysical surveys, etc. Its precise determination relies on two key data sets: gravity measurements and high-resolution elevation data, both of which are critical for achieving reliable results. In particular, accurate elevation data is indispensable for geoid modeling, as it is required for various computational steps, including the prediction of the free-air gravity anomalies, terrain corrections, and the calculation of complete Bouguer gravity anomalies. In the absence of accurate regional elevation data, the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM) is commonly used as a reliable alternative. Additionally, researchers from Japan and the United States have released a new DEM generated from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which provides an alternative to the widely used SRTM DEM. This study explores the consequence of the ASTER DEM on estimating mean free-air gravity anomalies in geoid determination, focusing on the Colorado experiment area, which is characterized by mountainous and rugged terrain. Numerical results indicate that the ASTER DEM yields less favorable statistics compared to the SRTM DEM in terms of height accuracy. The use of ASTER DEM introduces discrepancies (compared to SRTM DEM) ranging from −2 to 4 mGal in the interpolation of free-air gravity anomalies. Furthermore, it is demonstrated that the geoid differences resulting from the use of ASTER DEM are within a few centimeters, remaining below the accuracy level of external GNSS-leveling data.

精确的大地水准面在工程应用、地下资源勘探、地球物理测量等领域具有重要意义。它的精确测定依赖于两个关键数据集:重力测量和高分辨率高程数据,这两个数据集对于获得可靠的结果至关重要。特别是在大地水准面建模中,精确的高程数据是必不可少的,因为在自由空气重力异常的预测、地形修正和完整布格重力异常的计算等各个计算步骤中都需要精确的高程数据。在缺乏精确的区域高程数据的情况下,由航天飞机雷达地形任务(SRTM)生成的数字高程模型(DEM)通常被用作可靠的替代方案。此外,来自日本和美国的研究人员发布了由先进星载热发射和反射辐射计(ASTER)生成的新DEM,该DEM提供了广泛使用的SRTM DEM的替代方案。本研究以科罗拉多实验区为研究对象,探讨了ASTER DEM在大地水准面确定中对平均自由空气重力异常估计的影响。数值结果表明,与SRTM DEM相比,ASTER DEM在高程精度方面的统计数据较差。与SRTM DEM相比,ASTER DEM的使用在自由空气重力异常插值中引入了−2到4 mGal的差异。ASTER DEM的大地水准面差在几厘米以内,仍低于外部gnss水准数据的精度水平。
{"title":"Impact of SRTM and ASTER Terrain Models on Geoid Determination: A Case Study in the High-Mountainous Region","authors":"Leyla Cakir","doi":"10.1029/2024EA004000","DOIUrl":"https://doi.org/10.1029/2024EA004000","url":null,"abstract":"<p>An accurate geoid has important consequences for many fields such as engineering applications, underground resource exploration, geophysical surveys, etc. Its precise determination relies on two key data sets: gravity measurements and high-resolution elevation data, both of which are critical for achieving reliable results. In particular, accurate elevation data is indispensable for geoid modeling, as it is required for various computational steps, including the prediction of the free-air gravity anomalies, terrain corrections, and the calculation of complete Bouguer gravity anomalies. In the absence of accurate regional elevation data, the digital elevation model (DEM) generated by the Shuttle Radar Topography Mission (SRTM) is commonly used as a reliable alternative. Additionally, researchers from Japan and the United States have released a new DEM generated from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which provides an alternative to the widely used SRTM DEM. This study explores the consequence of the ASTER DEM on estimating mean free-air gravity anomalies in geoid determination, focusing on the Colorado experiment area, which is characterized by mountainous and rugged terrain. Numerical results indicate that the ASTER DEM yields less favorable statistics compared to the SRTM DEM in terms of height accuracy. The use of ASTER DEM introduces discrepancies (compared to SRTM DEM) ranging from −2 to 4 mGal in the interpolation of free-air gravity anomalies. Furthermore, it is demonstrated that the geoid differences resulting from the use of ASTER DEM are within a few centimeters, remaining below the accuracy level of external GNSS-leveling data.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-10-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004000","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145407145","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Commentary on Paper by Matoza et al. (2021): Catalog Revision to a Common Depth Datum 对Matoza等人(2021)的论文的评论:对共同深度基准的目录修订
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-10-28 DOI: 10.1029/2025EA004754
Robin S. Matoza, Peter M. Shearer, Jefferson C. Chang, Paul G. Okubo

We present a revision and update to the high-precision relocated seismicity catalog presented by Matoza et al. (2021, https://doi.org/10.1029/2020ea001253) for the Island of Hawai'i from 1986 to 2018. The starting catalog of hypocenters (input data), on which the study by Matoza et al. (2021, https://doi.org/10.1029/2020ea001253) was based, contained an inconsistent depth datum for events before and after 00:00 UT, 29 December 2017. Here we present a recomputed version of the catalog using a consistent reference depth. We corrected the starting catalog to a common depth datum (all events now use the model depth reference datum) and re-ran the entire workflow as described in the paper by Matoza et al. (2021, https://doi.org/10.1029/2020ea001253). This included pairing, cross-correlating, and relocating all seismic events again based on the updated starting catalog. We consider 347,446 events representing 32 years of seismicity on and around the island from 1986 to 2018. We now successfully relocate 299,966 (86%) events using ∼2.53 billion differential times (P and S) from ∼194 million similar-event pairs, derived from cross-correlations between ∼887 million event pairs total, a significant increase from our original analysis. The resolution of fine-scale seismicity features is improved and the median depth of shallow events (<5 km) under Kaluapele (Kīlauea summit caldera) in 2018 is shifted 926 m deeper as a result of the change. The interpretations and other major conclusions in the paper by Matoza et al. (2021, https://doi.org/10.1029/2020ea001253) are unchanged.

我们提出了对Matoza等人(2021,https://doi.org/10.1029/2020ea001253) 1986年至2018年夏威夷岛高精度重新定位地震活动目录的修订和更新。Matoza等人(2021,https://doi.org/10.1029/2020ea001253)的研究所基于的震源起始目录(输入数据)包含了2017年12月29日00:00 UT之前和之后事件的不一致深度数据。在这里,我们提出了一个重新计算版本的目录使用一致的参考深度。我们将起始目录更正为公共深度基准(所有事件现在都使用模型深度参考基准),并重新运行Matoza等人(2021,https://doi.org/10.1029/2020ea001253)在论文中描述的整个工作流程。这包括配对、交叉相关,以及基于更新的起始目录重新定位所有地震事件。我们考虑了347,446次事件,代表了1986年至2018年该岛及其周围32年的地震活动。现在,我们利用~ 25.3亿次差分时间(P和S)从~ 1.94亿个相似事件对中成功地重新定位了299,966个(86%)事件,这些事件来自于总共约8.87亿个事件对之间的相互关联,这比我们最初的分析有了显著的增加。这一变化提高了精细尺度地震活动特征的分辨率,并使2018年Kaluapele (kk - lauea山顶火山口)浅层事件(<5 km)的中位深度深移了926 m。Matoza et al. (2021, https://doi.org/10.1029/2020ea001253)在论文中的解释和其他主要结论保持不变。
{"title":"Commentary on Paper by Matoza et al. (2021): Catalog Revision to a Common Depth Datum","authors":"Robin S. Matoza,&nbsp;Peter M. Shearer,&nbsp;Jefferson C. Chang,&nbsp;Paul G. Okubo","doi":"10.1029/2025EA004754","DOIUrl":"https://doi.org/10.1029/2025EA004754","url":null,"abstract":"<p>We present a revision and update to the high-precision relocated seismicity catalog presented by Matoza et al. (2021, https://doi.org/10.1029/2020ea001253) for the Island of Hawai'i from 1986 to 2018. The starting catalog of hypocenters (input data), on which the study by Matoza et al. (2021, https://doi.org/10.1029/2020ea001253) was based, contained an inconsistent depth datum for events before and after 00:00 UT, 29 December 2017. Here we present a recomputed version of the catalog using a consistent reference depth. We corrected the starting catalog to a common depth datum (all events now use the model depth reference datum) and re-ran the entire workflow as described in the paper by Matoza et al. (2021, https://doi.org/10.1029/2020ea001253). This included pairing, cross-correlating, and relocating all seismic events again based on the updated starting catalog. We consider 347,446 events representing 32 years of seismicity on and around the island from 1986 to 2018. We now successfully relocate 299,966 (86%) events using ∼2.53 billion differential times (<i>P</i> and <i>S</i>) from ∼194 million similar-event pairs, derived from cross-correlations between ∼887 million event pairs total, a significant increase from our original analysis. The resolution of fine-scale seismicity features is improved and the median depth of shallow events (&lt;5 km) under Kaluapele (Kīlauea summit caldera) in 2018 is shifted 926 m deeper as a result of the change. The interpretations and other major conclusions in the paper by Matoza et al. (2021, https://doi.org/10.1029/2020ea001253) are unchanged.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 10","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-10-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004754","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145407139","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Earth and Space Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1