首页 > 最新文献

Earth and Space Science最新文献

英文 中文
Space Science Research in Africa: Publication Trends, Citation Analysis, and Collaborative Patterns 非洲空间科学研究:出版趋势、引文分析和合作模式
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-14 DOI: 10.1029/2025EA004254
Babatunde O. Adebesin, Akeem B. Rabiu, Bolarinwa J. Adekoya, Elijah O. Falayi, Shola J. Adebiyi, Stephen O. Ikubanni, Tomiwa Akinyemi, Racheal F. Oloruntola, Mathew A. Duhunpar, Ayooluwa Aregbesola

Content assessment of research metrics plays a pivotal role in the evaluation of scientific productivity globally, especially in a selected field and region. Data from 28 Space-Science Journals spanning 2014–2023, from the Scopus-database, based on African publication output, citations, views-counts, and Field-Weighted-Citation-Impact (Field-Weighted Citation Impact (FWCI)) metrics were used. The results revealed that Africa contributes only 3.2% of the world publication volume in Space Science. From the African output, South-Africa leads with 40.9%, followed by Nigeria (14.3%) and Egypt (13.6%). These three countries contribute ≈70% of the African publication volume. For the citation metrics, Africa contributed 5.0% of the world volume. Publication in Journal of Advances in Space Research is more sought after by African Authors, while Astrophysics and Space Science journal recorded the highest African-to-world publication output percentage (11.3%). African authors show a preference for publishing in Journals with high percentile score and citation rates. Citation-wise, South-Africa accounted for 64% of the total volume from Africa. Only seven countries present citation metrics above 1% of the total volume. South Africa (46%), Morocco (10%), Egypt (9%), Namibia (7%), and Nigeria (7%) are the five countries with publication View counts of above 4,000. Only Ethiopia and South-Africa had FWCI above the world average, with values of 1.47 and 1.25 respectively. North Africa region dominated the appearance list of the 10 top countries in publication, citation, counts views and FWCI while Southern Africa leads in volume. The work further situates the uniqueness/global acceptance of the Scopus and Web-of-Science databases as tools for research publication assessment.

研究指标的内容评估在全球科学生产力评估中起着关键作用,特别是在选定的领域和地区。使用了来自scopus数据库的2014-2023年间28种空间科学期刊的数据,基于非洲出版物产出、引用、浏览量和场加权引用影响(Field-Weighted引文影响(FWCI))指标。结果显示,非洲仅贡献了世界空间科学出版物的3.2%。从非洲产量来看,南非以40.9%领先,其次是尼日利亚(14.3%)和埃及(13.6%)。这三个国家的出版物约占非洲出版物总量的70%。在引用指标方面,非洲贡献了世界总量的5.0%。非洲作者更希望在《空间研究进展杂志》上发表文章,而《天体物理学和空间科学》杂志的非洲对世界的出版物产出比例最高(11.3%)。非洲作者倾向于在高百分位分数和高引用率的期刊上发表文章。从引用次数来看,南非占非洲总访问量的64%。只有7个国家的引用指标超过总量的1%。南非(46%)、摩洛哥(10%)、埃及(9%)、纳米比亚(7%)和尼日利亚(7%)是发表浏览量超过4000次的五个国家。只有埃塞俄比亚和南非的FWCI高于世界平均水平,分别为1.47和1.25。北非地区在出版物、引用、访问量和FWCI的前10名国家中占据主导地位,而南部非洲在数量上领先。这项工作进一步表明了Scopus和Web-of-Science数据库作为研究出版物评估工具的独特性/全球接受度。
{"title":"Space Science Research in Africa: Publication Trends, Citation Analysis, and Collaborative Patterns","authors":"Babatunde O. Adebesin,&nbsp;Akeem B. Rabiu,&nbsp;Bolarinwa J. Adekoya,&nbsp;Elijah O. Falayi,&nbsp;Shola J. Adebiyi,&nbsp;Stephen O. Ikubanni,&nbsp;Tomiwa Akinyemi,&nbsp;Racheal F. Oloruntola,&nbsp;Mathew A. Duhunpar,&nbsp;Ayooluwa Aregbesola","doi":"10.1029/2025EA004254","DOIUrl":"https://doi.org/10.1029/2025EA004254","url":null,"abstract":"<p>Content assessment of research metrics plays a pivotal role in the evaluation of scientific productivity globally, especially in a selected field and region. Data from 28 Space-Science Journals spanning 2014–2023, from the Scopus-database, based on African publication output, citations, views-counts, and Field-Weighted-Citation-Impact (Field-Weighted Citation Impact (FWCI)) metrics were used. The results revealed that Africa contributes only 3.2% of the world publication volume in Space Science. From the African output, South-Africa leads with 40.9%, followed by Nigeria (14.3%) and Egypt (13.6%). These three countries contribute ≈70% of the African publication volume. For the citation metrics, Africa contributed 5.0% of the world volume. Publication in Journal of Advances in Space Research is more sought after by African Authors, while Astrophysics and Space Science journal recorded the highest African-to-world publication output percentage (11.3%). African authors show a preference for publishing in Journals with high percentile score and citation rates. Citation-wise, South-Africa accounted for 64% of the total volume from Africa. Only seven countries present citation metrics above 1% of the total volume. South Africa (46%), Morocco (10%), Egypt (9%), Namibia (7%), and Nigeria (7%) are the five countries with publication View counts of above 4,000. Only Ethiopia and South-Africa had FWCI above the world average, with values of 1.47 and 1.25 respectively. North Africa region dominated the appearance list of the 10 top countries in publication, citation, counts views and FWCI while Southern Africa leads in volume. The work further situates the uniqueness/global acceptance of the Scopus and Web-of-Science databases as tools for research publication assessment.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004254","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145521929","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Diurnal Variations of the Electron Density in the Nighttime Lower Ionosphere Derived From a Massive Data Set of Tweek Atmospherics 夜间电离层下层电子密度的日变化——来自一个巨大的两周大气数据集
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-14 DOI: 10.1029/2025EA004682
Mao Zhang, Gaopeng Lu, Ziyi Wang, Zhengwei Cheng, Steven A. Cummer, Yazhou Chen

Tweek atmospherics are ELF/VLF pulse signals with frequency dispersion characteristics that originate from lightning discharges. Previous research has employed tweek atmospherics to examine long-term trends in the lower ionosphere; however, their utility in capturing diurnal-scale variations has been largely unexplored. Based on the machine learning method, we statistically study a massive data set of 48,395 first-order tweeks and obtain the diurnal variations of the nighttime lower ionosphere with a time resolution of 15 min. The variation amplitude of the mean reflection height (Δh ${Delta }h$) in a single night could reach 7 km for the first-order tweeks, with an electron density variation (ΔNe ${Delta }{N}_{e}$) of 2.5 cm−3. By comparison with the ionosonde observations from Wallops Island station and the incoherent scatter radar (ISR) observations from Millstone Hill station, we find that the correlation between the tweek-inferred lower ionosphere and the F2-layer electron density varies systematically with geomagnetic activity. In addition, the state of the tweek-derived lower ionosphere is also related to the E-region ionosphere (110–130 km), suggesting the presence of localized coupling process in this altitude range. Moreover, the comparison provides independent validation of our inversion technique with tweek atmospherics and confirms its potential to build a fully automated monitoring system for the nighttime lower ionosphere.

双周大气是由雷电放电产生的具有频散特性的ELF/VLF脉冲信号。以前的研究采用两周大气来研究电离层下部的长期趋势;然而,它们在捕捉日尺度变化方面的效用在很大程度上尚未得到探索。基于机器学习方法,对48395个一阶周的海量数据集进行统计研究,得到了时间分辨率为15 min的夜间下电离层的日变化。夜间平均反射高度(Δ h$ {Delta}h$)的变化幅度在一阶周内可达7 km;电子密度变化(Δ N e ${Delta}{N}_{e}$)为2.5 cm−3。通过与Wallops岛站的电离层探空观测和Millstone Hill站的非相干散射雷达(ISR)观测结果的比较,我们发现两周推断的低层电离层与f2层电子密度的相关性随着地磁活动的变化而有系统的变化。此外,低电离层的状态也与e区电离层(110 ~ 130 km)有关,表明在该高度范围内存在局域耦合过程。此外,对比提供了我们的两周大气反演技术的独立验证,并证实了其建立夜间低电离层全自动监测系统的潜力。
{"title":"Diurnal Variations of the Electron Density in the Nighttime Lower Ionosphere Derived From a Massive Data Set of Tweek Atmospherics","authors":"Mao Zhang,&nbsp;Gaopeng Lu,&nbsp;Ziyi Wang,&nbsp;Zhengwei Cheng,&nbsp;Steven A. Cummer,&nbsp;Yazhou Chen","doi":"10.1029/2025EA004682","DOIUrl":"https://doi.org/10.1029/2025EA004682","url":null,"abstract":"<p>Tweek atmospherics are ELF/VLF pulse signals with frequency dispersion characteristics that originate from lightning discharges. Previous research has employed tweek atmospherics to examine long-term trends in the lower ionosphere; however, their utility in capturing diurnal-scale variations has been largely unexplored. Based on the machine learning method, we statistically study a massive data set of 48,395 first-order tweeks and obtain the diurnal variations of the nighttime lower ionosphere with a time resolution of 15 min. The variation amplitude of the mean reflection height (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 <mi>h</mi>\u0000 </mrow>\u0000 <annotation> ${Delta }h$</annotation>\u0000 </semantics></math>) in a single night could reach 7 km for the first-order tweeks, with an electron density variation (<span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mi>Δ</mi>\u0000 <msub>\u0000 <mi>N</mi>\u0000 <mi>e</mi>\u0000 </msub>\u0000 </mrow>\u0000 <annotation> ${Delta }{N}_{e}$</annotation>\u0000 </semantics></math>) of 2.5 cm<sup>−3</sup>. By comparison with the ionosonde observations from Wallops Island station and the incoherent scatter radar (ISR) observations from Millstone Hill station, we find that the correlation between the tweek-inferred lower ionosphere and the F2-layer electron density varies systematically with geomagnetic activity. In addition, the state of the tweek-derived lower ionosphere is also related to the E-region ionosphere (110–130 km), suggesting the presence of localized coupling process in this altitude range. Moreover, the comparison provides independent validation of our inversion technique with tweek atmospherics and confirms its potential to build a fully automated monitoring system for the nighttime lower ionosphere.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004682","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145521928","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cosmic Ray Counting Variability From Water-Cherenkov Detectors as a Proxy of Stratospheric Conditions in Antarctica 水-切伦科夫探测器的宇宙射线计数变异性作为南极洲平流层条件的代理
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-14 DOI: 10.1029/2025EA004298
N. A. Santos, N. Gómez, S. Dasso, A. M. Gulisano, L. Rubinstein, M. Pereira, O. Areso, for the LAGO Collaboration

This work examines atmospheric effects on cosmic ray counts observed by a Water-Cherenkov detector at the Argentine Antarctic Marambio Station. We analyze the influence of ground-level barometric pressure and geopotential height at various pressure levels on daily particle rates, finding the strongest association at 100 hPa, linked to effective muon production. This relationship persists across low and high frequencies relative to the annual wave. Using barometric pressure and 100 hPa geopotential height, we developed a multiple linear regression model to describe atmospheric variations in cosmic ray flux, adjusted by meteorological seasons. By inverting the model, we estimate 100 hPa geopotential height from surface observations and validate against ERA5 reanalysis. The model performs best in spring, with reduced precision in other seasons. Further improvements in the signal-to-noise ratio could enhance model performance. Even with these considerations, this approach offers a practical and cost-effective method to track 100 hPa geopotential height variability in Antarctica through daily surface observations from Water-Cherenkov detectors, providing an important resource for Antarctic atmospheric studies.

这项工作研究了大气对阿根廷南极马拉比奥站的水-切伦科夫探测器观测到的宇宙射线计数的影响。我们分析了不同压力水平下的地面气压和位势高度对日粒子率的影响,发现100 hPa时最强的关联与有效的介子产生有关。相对于年波,这种关系在低频率和高频率上持续存在。利用大气压力和100 hPa位势高度,建立了宇宙射线通量随气象季节调整的多元线性回归模型。通过反演模型,我们从地面观测中估计了100 hPa的位势高度,并与ERA5再分析进行了验证。该模型在春季表现最好,其他季节精度较低。进一步提高信噪比可以提高模型的性能。即使考虑到这些因素,这种方法也提供了一种实用和经济的方法,通过Water-Cherenkov探测器的日常地面观测来跟踪南极洲100 hPa的位势高度变化,为南极大气研究提供了重要的资源。
{"title":"Cosmic Ray Counting Variability From Water-Cherenkov Detectors as a Proxy of Stratospheric Conditions in Antarctica","authors":"N. A. Santos,&nbsp;N. Gómez,&nbsp;S. Dasso,&nbsp;A. M. Gulisano,&nbsp;L. Rubinstein,&nbsp;M. Pereira,&nbsp;O. Areso,&nbsp;for the LAGO Collaboration","doi":"10.1029/2025EA004298","DOIUrl":"https://doi.org/10.1029/2025EA004298","url":null,"abstract":"<p>This work examines atmospheric effects on cosmic ray counts observed by a Water-Cherenkov detector at the Argentine Antarctic Marambio Station. We analyze the influence of ground-level barometric pressure and geopotential height at various pressure levels on daily particle rates, finding the strongest association at 100 hPa, linked to effective muon production. This relationship persists across low and high frequencies relative to the annual wave. Using barometric pressure and 100 hPa geopotential height, we developed a multiple linear regression model to describe atmospheric variations in cosmic ray flux, adjusted by meteorological seasons. By inverting the model, we estimate 100 hPa geopotential height from surface observations and validate against ERA5 reanalysis. The model performs best in spring, with reduced precision in other seasons. Further improvements in the signal-to-noise ratio could enhance model performance. Even with these considerations, this approach offers a practical and cost-effective method to track 100 hPa geopotential height variability in Antarctica through daily surface observations from Water-Cherenkov detectors, providing an important resource for Antarctic atmospheric studies.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004298","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145521691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Probabilistic Model for Global EMIC Wave Activity Using Van Allen Probes Observations 利用范艾伦探测器观测全球主波活动的概率模型
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-13 DOI: 10.1029/2025EA004633
Sung Jun Noh, Steven K. Morley, Misa M. Cowee, Vania K. Jordanova

Electromagnetic ion cyclotron (EMIC) waves play a key role in radiation belt dynamics through resonant interactions. However, their low occurrence probability, high variability, and spatial intermittency pose challenges for accurate modeling. In this study, we present a machine learning (ML)-based global EMIC wave model built on the entire data set from the Van Allen Probes mission. To capture the distinct statistical characteristics of wave occurrence and amplitude, the model is separated into two modules: an occurrence model trained using ML techniques, and a wave amplitude model sampled from observed probability distributions. The input parameters are limited to real-time or predictable variables to ensure practical applicability. Our model shows strong performance across the entire test set and demonstrates improved predictive capability over a baseline random occurrence model, particularly during quiet geomagnetic conditions. Evaluation during both quiet and active periods confirms the model's ability to represent the clustered and intermittent nature of EMIC wave activity. Furthermore, the model provides global estimates of wave power, enabling integration with radiation belt electron data and showing signatures consistent with wave-induced scattering. We found a good correlation between the global wave activity from the model and relativistic electron observation by Van Allen Probes, regardless of the availability of in situ wave observations. The modular structure of the model also allows for straightforward expansion for additional wave properties, such as wave frequency, which can be modeled independently. This flexible, event-sensitive approach offers a promising framework for data-driven radiation belt simulations and space weather applications.

电磁离子回旋波通过共振相互作用在辐射带动力学中起着关键作用。然而,它们的低发生概率、高变异性和空间间断性给精确建模带来了挑战。在这项研究中,我们提出了一个基于机器学习(ML)的全球主波模型,该模型建立在范艾伦探测器任务的整个数据集上。为了捕捉波浪发生和振幅的明显统计特征,该模型被分为两个模块:使用ML技术训练的发生率模型和从观测概率分布中采样的振幅模型。输入参数限制为实时或可预测的变量,以确保实际适用性。我们的模型在整个测试集中表现出色,并且在基线随机发生模型的预测能力上有所提高,特别是在安静的地磁条件下。在平静期和活跃期的评估都证实了该模型能够代表主震波活动的聚集性和间歇性。此外,该模型提供了波浪能的全球估计,能够与辐射带电子数据集成,并显示与波致散射一致的特征。我们发现,无论是否存在原位波观测,该模型的全球波活动与范艾伦探测器的相对论性电子观测之间都存在良好的相关性。该模型的模块化结构还允许直接扩展额外的波属性,如波频率,可以独立建模。这种灵活的、事件敏感的方法为数据驱动的辐射带模拟和空间天气应用提供了一个有前途的框架。
{"title":"A Probabilistic Model for Global EMIC Wave Activity Using Van Allen Probes Observations","authors":"Sung Jun Noh,&nbsp;Steven K. Morley,&nbsp;Misa M. Cowee,&nbsp;Vania K. Jordanova","doi":"10.1029/2025EA004633","DOIUrl":"https://doi.org/10.1029/2025EA004633","url":null,"abstract":"<p>Electromagnetic ion cyclotron (EMIC) waves play a key role in radiation belt dynamics through resonant interactions. However, their low occurrence probability, high variability, and spatial intermittency pose challenges for accurate modeling. In this study, we present a machine learning (ML)-based global EMIC wave model built on the entire data set from the Van Allen Probes mission. To capture the distinct statistical characteristics of wave occurrence and amplitude, the model is separated into two modules: an occurrence model trained using ML techniques, and a wave amplitude model sampled from observed probability distributions. The input parameters are limited to real-time or predictable variables to ensure practical applicability. Our model shows strong performance across the entire test set and demonstrates improved predictive capability over a baseline random occurrence model, particularly during quiet geomagnetic conditions. Evaluation during both quiet and active periods confirms the model's ability to represent the clustered and intermittent nature of EMIC wave activity. Furthermore, the model provides global estimates of wave power, enabling integration with radiation belt electron data and showing signatures consistent with wave-induced scattering. We found a good correlation between the global wave activity from the model and relativistic electron observation by Van Allen Probes, regardless of the availability of in situ wave observations. The modular structure of the model also allows for straightforward expansion for additional wave properties, such as wave frequency, which can be modeled independently. This flexible, event-sensitive approach offers a promising framework for data-driven radiation belt simulations and space weather applications.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004633","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145521824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Day-to-Day Temperature Variability in Meteorological Observations and Reanalysis Data Over China 中国气象观测和再分析资料的日温度变化
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-12 DOI: 10.1029/2025EA004573
Xuejie Wang, Kaicun Wang, Yuna Mao, Guocan Wu

Temperature variability on the synoptic scale is most directly related to human perception, and requires more attention from scientists and researchers. This study quantifies the day-to-day temperature variability (DTD) as the absolute value of the difference between the air temperatures from two consecutive days, and analyzes the spatiotemporal variations using meteorological station observations and four reanalysis data sets. Across China, the annual cycle of DTD ranges from 1.4 to 2.5°C with distinct seasonality: spring and winter exhibit a larger DTD magnitude than summer. There are large heterogeneities among different river basin regions, with the highest annual mean DTD observed in the Songliao River Basin (2.18°C) and the lowest in the Southwest River Basin (1.08°C). For the reanalysis data sets, the DTD values from JRA55 are closest to the observations, with a largest correlation of 0.98 in Southwest River Basin and smallest RMSE of 0.01°C in Yangtze River Basin. The DTD trends from JRA55 and ERA5 are comparable to those from the observational data. Further analysis of the top 1, 5 and 10 day-to-day temperature variabilities (DTDmax1, DTDmax5, DTDmax10) reveals that these large DTD values are characterized by rapid cooling, with DTDmax1 exhibiting a fluctuation range of 3.29°C–14.59°C. Additionally, DTDmax1 occurs mainly in spring and winter, with the occurrence date becoming earlier (−8.8 days/10y, p < 0.05) over the study area between 1980 and 2022. These results enhance our understanding of temperature changes at the synoptic scale, providing better services for warning and mitigating disasters.

天气尺度上的温度变率与人类感知最直接相关,需要引起科学家和研究人员的更多关注。本文将逐日温度变率(DTD)量化为连续2天气温差的绝对值,并利用气象站观测资料和4套再分析资料分析了逐日温度变率的时空变化。在中国各地,DTD的年周期在1.4 ~ 2.5°C之间,具有明显的季节性,春季和冬季的DTD幅度大于夏季。不同流域区域间存在较大的异质性,年平均DTD在松辽流域最高(2.18°C),在西南流域最低(1.08°C)。对于再分析数据集,JRA55的DTD值与观测值最接近,西南流域的相关系数最大,为0.98,长江流域的RMSE最小,为0.01°C。JRA55和ERA5的DTD趋势与观测资料相当。进一步分析前1、5和10日温度变化(DTDmax1、DTDmax5、DTDmax10),发现这些大的DTD值具有快速冷却的特征,其中DTDmax1的波动范围为3.29°C - 14.59°C。1980 - 2022年,研究区DTDmax1主要出现在春冬季,出现日期变早(- 8.8天/10y, p < 0.05)。这些结果增强了我们对天气尺度温度变化的认识,为预警和减灾提供了更好的服务。
{"title":"Day-to-Day Temperature Variability in Meteorological Observations and Reanalysis Data Over China","authors":"Xuejie Wang,&nbsp;Kaicun Wang,&nbsp;Yuna Mao,&nbsp;Guocan Wu","doi":"10.1029/2025EA004573","DOIUrl":"https://doi.org/10.1029/2025EA004573","url":null,"abstract":"<p>Temperature variability on the synoptic scale is most directly related to human perception, and requires more attention from scientists and researchers. This study quantifies the day-to-day temperature variability (DTD) as the absolute value of the difference between the air temperatures from two consecutive days, and analyzes the spatiotemporal variations using meteorological station observations and four reanalysis data sets. Across China, the annual cycle of DTD ranges from 1.4 to 2.5°C with distinct seasonality: spring and winter exhibit a larger DTD magnitude than summer. There are large heterogeneities among different river basin regions, with the highest annual mean DTD observed in the Songliao River Basin (2.18°C) and the lowest in the Southwest River Basin (1.08°C). For the reanalysis data sets, the DTD values from JRA55 are closest to the observations, with a largest correlation of 0.98 in Southwest River Basin and smallest RMSE of 0.01°C in Yangtze River Basin. The DTD trends from JRA55 and ERA5 are comparable to those from the observational data. Further analysis of the top 1, 5 and 10 day-to-day temperature variabilities (DTDmax1, DTDmax5, DTDmax10) reveals that these large DTD values are characterized by rapid cooling, with DTDmax1 exhibiting a fluctuation range of 3.29°C–14.59°C. Additionally, DTDmax1 occurs mainly in spring and winter, with the occurrence date becoming earlier (−8.8 days/10y, <i>p</i> &lt; 0.05) over the study area between 1980 and 2022. These results enhance our understanding of temperature changes at the synoptic scale, providing better services for warning and mitigating disasters.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004573","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145521935","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Exploring Machine Learning Capabilities for High Spatiotemporal Resolution Storm Surge Reconstructions 探索高时空分辨率风暴潮重建的机器学习能力
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-04 DOI: 10.1029/2024EA004161
Qi Feng, Taoyong Jin, Lianjun Yang, Jiancheng Li

In storm surge (SS) simulation, data-driven methods can establish the relationship between predictor variables and the predictand, enabling long-term SS level reconstructions. Here, using the U.S. East Coast as an example, we explored the capabilities of four machine learning algorithms, namely Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Light Gradient Boosting Machine (LightGBM), and Extreme Gradient Boosting (XGBoost) in reconstructing hourly SS levels from 1979 to 2018 under an all-site modeling framework. Four atmospheric parameters, time index, and tide gauge coordinates from 51 tide gauges are used as predictors. The model performance was evaluated at both the tide gauge and coastal scales. Results indicate that LightGBM and XGBoost models outperform ANN and LSTM in SS reconstructions, with XGBoost showing better overall performance, especially for extreme SSs and historical extreme events. XGBoost can capture the temporal evolution of SSs with higher accuracy, producing reconstructions comparable to observations under the all-site modeling framework. The model interpretability analysis focusing on XGBoost reveals that the spatial distribution of feature importance varies for each predictor. Mean sea level pressure and the 10 m eastward wind component are the two most important predictors, followed by time index, latitude, and longitude under the all-site modeling framework and selected stations. These results indicate that data-driven models under this framework have the potential to capture region-specific and physically reasonable relationships between SS levels and atmospheric drivers.

在风暴潮模拟中,数据驱动方法可以建立预测变量与预测值之间的关系,从而实现长期的风暴潮水平重建。本文以美国东海岸为例,探讨了人工神经网络(ANN)、长短期记忆(LSTM)、光梯度增强机(LightGBM)和极限梯度增强(XGBoost)四种机器学习算法在全站点建模框架下重建1979 - 2018年每小时SS水平的能力。四个大气参数、时间指数和51个潮汐测量仪的坐标被用作预测。在潮汐计和海岸尺度上对模型的性能进行了评价。结果表明,LightGBM和XGBoost模型在SS重建中优于ANN和LSTM,其中XGBoost模型在极端SS和历史极端事件重建中表现出更好的整体性能。XGBoost可以以更高的精度捕获SSs的时间演变,产生可与全站点建模框架下的观测相媲美的重建结果。以XGBoost为中心的模型可解释性分析表明,各预测因子的特征重要性空间分布各不相同。在全站点模式框架和所选站点下,平均海平面气压和10 m东风分量是最重要的预测因子,其次是时间指数、纬度和经度。这些结果表明,在该框架下的数据驱动模式有可能捕获特定区域和物理合理的SS水平与大气驱动因素之间的关系。
{"title":"Exploring Machine Learning Capabilities for High Spatiotemporal Resolution Storm Surge Reconstructions","authors":"Qi Feng,&nbsp;Taoyong Jin,&nbsp;Lianjun Yang,&nbsp;Jiancheng Li","doi":"10.1029/2024EA004161","DOIUrl":"https://doi.org/10.1029/2024EA004161","url":null,"abstract":"<p>In storm surge (SS) simulation, data-driven methods can establish the relationship between predictor variables and the predictand, enabling long-term SS level reconstructions. Here, using the U.S. East Coast as an example, we explored the capabilities of four machine learning algorithms, namely Artificial Neural Networks (ANN), Long Short-Term Memory (LSTM), Light Gradient Boosting Machine (LightGBM), and Extreme Gradient Boosting (XGBoost) in reconstructing hourly SS levels from 1979 to 2018 under an all-site modeling framework. Four atmospheric parameters, time index, and tide gauge coordinates from 51 tide gauges are used as predictors. The model performance was evaluated at both the tide gauge and coastal scales. Results indicate that LightGBM and XGBoost models outperform ANN and LSTM in SS reconstructions, with XGBoost showing better overall performance, especially for extreme SSs and historical extreme events. XGBoost can capture the temporal evolution of SSs with higher accuracy, producing reconstructions comparable to observations under the all-site modeling framework. The model interpretability analysis focusing on XGBoost reveals that the spatial distribution of feature importance varies for each predictor. Mean sea level pressure and the 10 m eastward wind component are the two most important predictors, followed by time index, latitude, and longitude under the all-site modeling framework and selected stations. These results indicate that data-driven models under this framework have the potential to capture region-specific and physically reasonable relationships between SS levels and atmospheric drivers.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2024EA004161","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145469626","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SWOT Global Bathymetry Modeling Using Deep Neural Networks Trained on Multiple Geophysical Features 基于多个地球物理特征训练的深度神经网络的SWOT全球水深模型
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-04 DOI: 10.1029/2025EA004545
Farshad Salajegheh, Xiaoli Deng, Ole Baltazar Andersen, Richard Coleman, Mehdi Khaki
<p>This paper presents BathDNN25, a global bathymetry model developed using gravity data derived from wide-swath altimetry collected by the Surface Water and Ocean Topography (SWOT) mission, with shipborne bathymetry serving as training data in a deep neural network (DNN) framework. BathDNN25 integrates multiple geophysical inputs, including gravity anomalies <span></span><math> <semantics> <mrow> <mo>(</mo> <mi>G</mi> <mo>)</mo> </mrow> <annotation> $(G)$</annotation> </semantics></math>, vertical gravity gradients <span></span><math> <semantics> <mrow> <mo>(</mo> <mrow> <mi>V</mi> <mi>G</mi> <mi>G</mi> </mrow> <mo>)</mo> </mrow> <annotation> $(VGG)$</annotation> </semantics></math>, their band-pass filtered forms <span></span><math> <semantics> <mrow> <mfenced> <mrow> <mi>V</mi> <mi>G</mi> <msub> <mi>G</mi> <mrow> <mi>B</mi> <mi>P</mi> </mrow> </msub> </mrow> </mfenced> </mrow> <annotation> $left(VG{G}_{BP}right)$</annotation> </semantics></math>, the north and east components derived from the deflection of the vertical (<span></span><math> <semantics> <mrow> <mi>S</mi> <mi>N</mi> </mrow> <annotation> $SN$</annotation> </semantics></math>, <span></span><math> <semantics> <mrow> <mi>SE</mi> </mrow> <annotation> $mathrm{SE}$</annotation> </semantics></math>), their band-pass versions (<span></span><math> <semantics> <mrow> <mi>S</mi> <msub> <mi>N</mi> <mrow> <mi>B</mi> <mi>P</mi> </mrow> </msub> </mrow> <annotation> $S{N}_{BP}$</annotation> </semantics></math>, <span></span><math> <semantics> <mrow> <msub> <mi>SE</mi> <mrow>
本文介绍了BathDNN25,这是一个全球测深模型,利用地表水和海洋地形(SWOT)任务收集的宽波段高度计获得的重力数据开发而成,船载测深作为深度神经网络(DNN)框架中的训练数据。BathDNN25集成了多个地球物理输入,包括重力异常(G)$ (G)$,垂直重力梯度(VGG)$ (VGG)$,它们的带通滤波形式为VG G BP $left(VG{G}_{BP}right)$为垂直偏转引起的北、东分量(SN$ SN$, SE $ mathm {SE}$);它们的带通版本(S N BP $S{N}_{BP}$,${ mathm {SE}}_{BP}$),低通滤波测深B LP $左({B}_{LP}右)$,低通和带通滤波重力(G LP ${G}_{LP}$,G BP ${G}_{BP}$),以捕捉大尺度趋势和精细尺度的水深特征。一个关键的创新在于它使用了多尺度地球物理特征,增强了对山脊、悬崖和海底山等形态复杂性的敏感性,同时能很好地适应不同的地质条件和数据稀疏性。利用独立数据集(包括全球船载测深和海山峰顶)的残差统计量评估模型性能,其中BathDNN25的残差标准差分别为99和167 m。与现有方法相比(Harper & Sandwell, 2024, https://doi.org/10.1029/2023ea003199),这意味着残差减少了51%和113%以上。14个地区的SHAP分析和使用4种模型变体的消融试验进一步证实了swot衍生重力特征的互补价值。总体而言,BathDNN25展示了准确性、稳健性和可扩展性,强调了高质量地球物理输入的重要性,以及swot衍生数据和人工智能在推进全球水深建模方面的潜力。
{"title":"SWOT Global Bathymetry Modeling Using Deep Neural Networks Trained on Multiple Geophysical Features","authors":"Farshad Salajegheh,&nbsp;Xiaoli Deng,&nbsp;Ole Baltazar Andersen,&nbsp;Richard Coleman,&nbsp;Mehdi Khaki","doi":"10.1029/2025EA004545","DOIUrl":"https://doi.org/10.1029/2025EA004545","url":null,"abstract":"&lt;p&gt;This paper presents BathDNN25, a global bathymetry model developed using gravity data derived from wide-swath altimetry collected by the Surface Water and Ocean Topography (SWOT) mission, with shipborne bathymetry serving as training data in a deep neural network (DNN) framework. BathDNN25 integrates multiple geophysical inputs, including gravity anomalies &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $(G)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, vertical gravity gradients &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mo&gt;(&lt;/mo&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;mo&gt;)&lt;/mo&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $(VGG)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, their band-pass filtered forms &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mfenced&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;V&lt;/mi&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;G&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/mfenced&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $left(VG{G}_{BP}right)$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, the north and east components derived from the deflection of the vertical (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $SN$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;SE&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $mathrm{SE}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;), their band-pass versions (&lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;S&lt;/mi&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;N&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 &lt;mi&gt;B&lt;/mi&gt;\u0000 &lt;mi&gt;P&lt;/mi&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;/msub&gt;\u0000 &lt;/mrow&gt;\u0000 &lt;annotation&gt; $S{N}_{BP}$&lt;/annotation&gt;\u0000 &lt;/semantics&gt;&lt;/math&gt;, &lt;span&gt;&lt;/span&gt;&lt;math&gt;\u0000 &lt;semantics&gt;\u0000 &lt;mrow&gt;\u0000 &lt;msub&gt;\u0000 &lt;mi&gt;SE&lt;/mi&gt;\u0000 &lt;mrow&gt;\u0000 ","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004545","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145469611","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Uncertainty-Aware Machine Learning Bias Correction and Filtering for OCO-2. 2 OCO-2的不确定性感知机器学习偏差校正与滤波。2
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-04 DOI: 10.1029/2025EA004329
William Keely, Steffen Mauceri, Robert Nelson, Josh Laughner, Christopher W. O’Dell, Steven Massie, David Baker, Matthäus Kiel, Otto Lamminpää, Jonathan Hobbs, Abhishek Chatterjee, Tommy Taylor, Paul Wennberg, Sean Crowell, Britt Stephens, Vivienne Payne

Quality filtering of satellite XCO2 retrievals is essential for every downstream science application, yet the community still grapples with the trade-off between retaining data availability and suppressing biases. For the Orbiting Carbon Observatory-2 (OCO-2) record in particular, the long-standing binary quality flag targets the single use case of global carbon flux inversion and is often too restrictive for small spatial scale analysis like quantifying emissions from coal-fired power plants. To address the need for flexible quality filtering we introduce a data-driven, ternary (three-state) quality flag constructed from the agreement of three independent sub-filters: two Random Forest classifiers trained on distinct “truth proxy” data sets and a third sub-filter based on the uncertainty estimate from a non-linear machine learning bias correction and the operational uncertainty product. We utilized a Bayesian multi-objective optimization to tune the sub-filters, balancing the competing goals of maximizing data throughput with minimizing error variance and retrieval uncertainty. The proposed ternary quality flag shows an improved reduction in root mean square error (RMSE) (22% for land and 53% for ocean) over the operational flag. This reduction is due in part to an improved ability to remove observations affected by 3D cloud biases. The flexible ternary flag can optionally increase data availability by 21% over land and 18% over ocean but is still competitive with the RMSE of the operational product. The proposed filter addresses the diverse needs of the science community and is generalizable to greenhouse gas monitoring missions such as GOSAT, CO2M and Carbon-I.

卫星XCO2检索的高质量过滤对于每一个下游科学应用都是必不可少的,然而社区仍然在努力保持数据可用性和抑制偏差之间的权衡。特别是对于轨道碳观测站-2 (OCO-2)记录,长期存在的二进制质量标志针对的是全球碳通量反演的单一用例,对于小空间尺度的分析(如量化燃煤电厂的排放)往往过于限制。为了满足灵活质量过滤的需求,我们引入了一个数据驱动的三元(三状态)质量标志,该标志由三个独立子过滤器的协议构建:两个随机森林分类器在不同的“真值代理”数据集上训练,第三个子过滤器基于非线性机器学习偏差校正和操作不确定性乘积的不确定性估计。我们利用贝叶斯多目标优化来调整子过滤器,平衡最大化数据吞吐量与最小化错误方差和检索不确定性的竞争目标。与实际使用的旗面相比,提议的三元质量旗面在均方根误差(RMSE)(陆地为22%,海洋为53%)方面有了更好的降低。这种减少部分是由于改进了消除受三维云偏差影响的观测的能力。灵活的三元标记可以选择性地将数据可用性在陆地上提高21%,在海洋上提高18%,但仍然与运营产品的RMSE相竞争。拟议的过滤器满足了科学界的各种需求,并可推广到诸如GOSAT、CO2M和Carbon-I等温室气体监测任务中。
{"title":"Uncertainty-Aware Machine Learning Bias Correction and Filtering for OCO-2. 2","authors":"William Keely,&nbsp;Steffen Mauceri,&nbsp;Robert Nelson,&nbsp;Josh Laughner,&nbsp;Christopher W. O’Dell,&nbsp;Steven Massie,&nbsp;David Baker,&nbsp;Matthäus Kiel,&nbsp;Otto Lamminpää,&nbsp;Jonathan Hobbs,&nbsp;Abhishek Chatterjee,&nbsp;Tommy Taylor,&nbsp;Paul Wennberg,&nbsp;Sean Crowell,&nbsp;Britt Stephens,&nbsp;Vivienne Payne","doi":"10.1029/2025EA004329","DOIUrl":"https://doi.org/10.1029/2025EA004329","url":null,"abstract":"<p>Quality filtering of satellite XCO<sub>2</sub> retrievals is essential for every downstream science application, yet the community still grapples with the trade-off between retaining data availability and suppressing biases. For the Orbiting Carbon Observatory-2 (OCO-2) record in particular, the long-standing binary quality flag targets the single use case of global carbon flux inversion and is often too restrictive for small spatial scale analysis like quantifying emissions from coal-fired power plants. To address the need for flexible quality filtering we introduce a data-driven, ternary (three-state) quality flag constructed from the agreement of three independent sub-filters: two Random Forest classifiers trained on distinct “truth proxy” data sets and a third sub-filter based on the uncertainty estimate from a non-linear machine learning bias correction and the operational uncertainty product. We utilized a Bayesian multi-objective optimization to tune the sub-filters, balancing the competing goals of maximizing data throughput with minimizing error variance and retrieval uncertainty. The proposed ternary quality flag shows an improved reduction in root mean square error (RMSE) (22% for land and 53% for ocean) over the operational flag. This reduction is due in part to an improved ability to remove observations affected by 3D cloud biases. The flexible ternary flag can optionally increase data availability by 21% over land and 18% over ocean but is still competitive with the RMSE of the operational product. The proposed filter addresses the diverse needs of the science community and is generalizable to greenhouse gas monitoring missions such as GOSAT, CO2M and Carbon-I.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004329","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145469627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parameterization of the Winter Arctic Sea Ice Microwave Emissivity Between 1.4 and 36 GHz, for Large Scale Applications 大规模应用下冬季北极海冰1.4 ~ 36ghz微波发射率的参数化
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-01 DOI: 10.1029/2025EA004259
Lise Kilic, Carlos Jimenez, Catherine Prigent, Anton Korosov, Pierre Rampal, Iris de Gelis, Gilles Garric

Modeling sea ice microwave emissivities at large scales presents challenges, due to complex interactions between the microwave signal and the sea ice environment. For the preparation of the Copernicus Imaging Microwave Radiometer mission (CIMR) that focusses on the monitoring of polar regions, a pragmatic parameterization of the sea ice emissivity over the Arctic in winter is proposed, providing consistent emissivity parameterizations between 1.4 and 36 GHz, for both orthogonal polarizations. Satellite-derived microwave emissivities are calculated from the Advanced Microwave Scanning Radiometer 2, Soil Moisture Active Passive, and Soil Moisture Ocean Salinity observations, subtracting the atmospheric contributions and the surface temperature modulation using ERA5 meteorological reanalysis. The resulting Arctic sea ice emissivities are analyzed, alongside sea ice geophysical parameters from neXtSIM model outputs and ERA5, to identify the variables for the emissivity parameterization. Sea Ice Thickness emerges as a crucial factor, particularly at 18 and 36 GHz. A training database of coincident satellite-derived emissivities and geophysical parameters is set up, to develop a Neural Network parameterization of the emissivities based on the geophysical parameters. This pragmatic methodology establishes a direct link between calculated emissivities and physical sea ice properties, eliminating the need for a priori assumptions. Promising emissivity results are obtained, with Root Mean Square Error below ${sim} $0.03 for most channels, and reaching ${sim} $0.04 at 36 GHz. Part of the error is expected to come from uncertainties in the input geophysical parameters. The emissivity frequency dependence is checked, and the emissivity angular variation of the 1.4 GHz is calculated from SMOS-derived emissivities.

由于微波信号与海冰环境之间复杂的相互作用,在大尺度上模拟海冰微波发射率存在挑战。为了准备哥白尼成像微波辐射计任务(CIMR),重点监测极地地区,提出了一种实用的北极海冰冬季发射率参数化方法,在1.4和36 GHz之间为两个正交极化提供一致的发射率参数化。卫星衍生的微波发射率是根据高级微波扫描辐射计2、土壤水分主动被动和土壤水分海洋盐度观测数据计算的,减去大气贡献和ERA5气象再分析的地表温度调制。将得到的北极海冰发射率与neXtSIM模型输出和ERA5的海冰地球物理参数一起进行分析,以确定发射率参数化的变量。海冰厚度成为关键因素,尤其是在18 GHz和36 GHz频段。建立了卫星发射率与地球物理参数重合的训练数据库,建立了基于地球物理参数的发射率神经网络参数化方法。这种实用的方法在计算的发射率和海冰物理性质之间建立了直接联系,消除了先验假设的需要。获得了有希望的发射率结果,对于大多数信道,均方根误差低于~ ${sim} $ 0.03,在36 GHz时达到~ ${sim} $ 0.04。部分误差预计来自输入地球物理参数的不确定性。检查了发射率与频率的关系,并根据smos导出的发射率计算了1.4 GHz的发射率角变化。
{"title":"Parameterization of the Winter Arctic Sea Ice Microwave Emissivity Between 1.4 and 36 GHz, for Large Scale Applications","authors":"Lise Kilic,&nbsp;Carlos Jimenez,&nbsp;Catherine Prigent,&nbsp;Anton Korosov,&nbsp;Pierre Rampal,&nbsp;Iris de Gelis,&nbsp;Gilles Garric","doi":"10.1029/2025EA004259","DOIUrl":"https://doi.org/10.1029/2025EA004259","url":null,"abstract":"<p>Modeling sea ice microwave emissivities at large scales presents challenges, due to complex interactions between the microwave signal and the sea ice environment. For the preparation of the Copernicus Imaging Microwave Radiometer mission (CIMR) that focusses on the monitoring of polar regions, a pragmatic parameterization of the sea ice emissivity over the Arctic in winter is proposed, providing consistent emissivity parameterizations between 1.4 and 36 GHz, for both orthogonal polarizations. Satellite-derived microwave emissivities are calculated from the Advanced Microwave Scanning Radiometer 2, Soil Moisture Active Passive, and Soil Moisture Ocean Salinity observations, subtracting the atmospheric contributions and the surface temperature modulation using ERA5 meteorological reanalysis. The resulting Arctic sea ice emissivities are analyzed, alongside sea ice geophysical parameters from neXtSIM model outputs and ERA5, to identify the variables for the emissivity parameterization. Sea Ice Thickness emerges as a crucial factor, particularly at 18 and 36 GHz. A training database of coincident satellite-derived emissivities and geophysical parameters is set up, to develop a Neural Network parameterization of the emissivities based on the geophysical parameters. This pragmatic methodology establishes a direct link between calculated emissivities and physical sea ice properties, eliminating the need for a priori assumptions. Promising emissivity results are obtained, with Root Mean Square Error below <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>∼</mo>\u0000 </mrow>\u0000 <annotation> ${sim} $</annotation>\u0000 </semantics></math>0.03 for most channels, and reaching <span></span><math>\u0000 <semantics>\u0000 <mrow>\u0000 <mo>∼</mo>\u0000 </mrow>\u0000 <annotation> ${sim} $</annotation>\u0000 </semantics></math>0.04 at 36 GHz. Part of the error is expected to come from uncertainties in the input geophysical parameters. The emissivity frequency dependence is checked, and the emissivity angular variation of the 1.4 GHz is calculated from SMOS-derived emissivities.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004259","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145406576","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
TEMPO at Night: Lightning Flashes and On-Orbit Instrument Performance 夜间的TEMPO:闪电和在轨仪器性能
IF 2.6 3区 地球科学 Q2 ASTRONOMY & ASTROPHYSICS Pub Date : 2025-11-01 DOI: 10.1029/2025EA004513
Sergey V. Marchenko, James L. Carr, Heesung Chong, John C. Houck, Xiong Liu, David E. Flittner, Joanna Joiner, Brian D. Baker, James K. Lasnik, Dennis K. Nicks

The abundant nighttime (twilight) spectra from October 2024 are used for characterization of on-orbit instrument performance of the Tropospheric Emissions: Monitoring of Pollution (TEMPO, a geostationary imaging spectrometer). We select 250 lightning flashes and measure the flash sizes and flash positions in 6 spectral domains spread across the two TEMPO detectors. Some of the flash sizes come close to ≈1 pixel ground-based estimates of the instantaneous field of view in the North-South direction. On average, spectral measurements across the two detectors are co-registered to better than 0.15 pixels, thus also matching the pre-flight assessments.

2024年10月的大量夜间(黄昏)光谱用于表征对流层排放:污染监测(TEMPO,地球静止成像光谱仪)的在轨仪器性能。我们选择了250次闪电,并测量了分布在两个TEMPO探测器上的6个光谱域的闪光大小和闪光位置。一些闪光尺寸接近于南北方向瞬时视场的地面估计约1像素。平均而言,两个探测器的光谱测量值共同注册到优于0.15像素,因此也符合飞行前评估。
{"title":"TEMPO at Night: Lightning Flashes and On-Orbit Instrument Performance","authors":"Sergey V. Marchenko,&nbsp;James L. Carr,&nbsp;Heesung Chong,&nbsp;John C. Houck,&nbsp;Xiong Liu,&nbsp;David E. Flittner,&nbsp;Joanna Joiner,&nbsp;Brian D. Baker,&nbsp;James K. Lasnik,&nbsp;Dennis K. Nicks","doi":"10.1029/2025EA004513","DOIUrl":"https://doi.org/10.1029/2025EA004513","url":null,"abstract":"<p>The abundant nighttime (twilight) spectra from October 2024 are used for characterization of on-orbit instrument performance of the Tropospheric Emissions: Monitoring of Pollution (TEMPO, a geostationary imaging spectrometer). We select 250 lightning flashes and measure the flash sizes and flash positions in 6 spectral domains spread across the two TEMPO detectors. Some of the flash sizes come close to ≈1 pixel ground-based estimates of the instantaneous field of view in the North-South direction. On average, spectral measurements across the two detectors are co-registered to better than 0.15 pixels, thus also matching the pre-flight assessments.</p>","PeriodicalId":54286,"journal":{"name":"Earth and Space Science","volume":"12 11","pages":""},"PeriodicalIF":2.6,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://agupubs.onlinelibrary.wiley.com/doi/epdf/10.1029/2025EA004513","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145406527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Earth and Space Science
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1