Pub Date : 2021-03-16DOI: 10.1007/s41061-021-00327-9
Ana Clara B. Rodrigues, J. Sérgio Seixas de Melo
The enhancement of photoluminescence through formation of molecular aggregates in organic oligomers and conjugated organic polymers is reviewed. A historical contextualization of aggregation-induced emission (AIE) phenomena is presented. This includes the loose bolt or free rotor effect and J-aggregation phenomena, and discusses their characteristic features, including structures and mechanisms. The basis of both effects is examined in key molecules, with a particular emphasis on the AIE effect occurring in conjugated organic polymers with a polythiophene (PT) skeleton with triphenylethylene (TPE) units. Rigidification of the excited state structure is one of the defining conditions required to obtain AIE, and thus, by changing from a flexible ground state to rigid (quinoidal-like) structures, oligo and PTs are among the most promising emerging molecules alongside?with the more extensively used TPE derivatives. Molecular structures moving away from the domination of aggregation-caused quenching to AIE are presented. Future perspectives for the rational design of AIEgen structures are discussed.
{"title":"Aggregation-Induced Emission: From Small Molecules to Polymers—Historical Background, Mechanisms and Photophysics","authors":"Ana Clara B. Rodrigues, J. Sérgio Seixas de Melo","doi":"10.1007/s41061-021-00327-9","DOIUrl":"https://doi.org/10.1007/s41061-021-00327-9","url":null,"abstract":"<p>The enhancement of photoluminescence through formation of molecular aggregates in organic oligomers and conjugated organic polymers is reviewed. A historical contextualization of aggregation-induced emission (AIE) phenomena is presented. This includes the loose bolt or free rotor effect and J-aggregation phenomena, and discusses their characteristic features, including structures and mechanisms. The basis of both effects is examined in key molecules, with a particular emphasis on the AIE effect occurring in conjugated organic polymers with a polythiophene (PT) skeleton with triphenylethylene (TPE) units. Rigidification of the excited state structure is one of the defining conditions required to obtain AIE, and thus, by changing from a flexible ground state to rigid (quinoidal-like) structures, oligo and PTs are among the most promising emerging molecules alongside?with the more extensively used TPE derivatives. Molecular structures moving away from the domination of aggregation-caused quenching to AIE are presented. Future perspectives for the rational design of AIEgen structures are discussed.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 3","pages":""},"PeriodicalIF":8.6,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00327-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4656870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-07DOI: 10.1007/s41061-021-00325-x
Gabriela M. Albuquerque, Izabel Souza-Sobrinha, Samantha D. Coiado, Beate S. Santos, Adriana Fontes, Giovannia A. L. Pereira, Goreti Pereira
The development of multimodal nanoprobes has been growing?in recent years. Among these novel nanostructures are bimodal systems based on quantum dots (QDs) and low molecular weight Gd3+ chelates, prepared for magnetic resonance imaging (MRI) and optical analyses. MRI is a technique used worldwide that provides anatomic resolution and allows distinguishing of physiological differences at tissue and organ level. On the other hand, optical techniques are very sensitive and allow events to be followed at the cellular or molecular level. Thus, the association of these two techniques has the potential to achieve a more complete comprehension of biological processes. In this review, we present state-of-the-art research concerning the development of potential multimodal optical/paramagnetic nanoprobes based on Gd3+ chelates and QDs, highlighting their preparation strategies and overall properties.
{"title":"Quantum Dots and Gd3+ Chelates: Advances and Challenges Towards Bimodal Nanoprobes for Magnetic Resonance and Optical Imaging","authors":"Gabriela M. Albuquerque, Izabel Souza-Sobrinha, Samantha D. Coiado, Beate S. Santos, Adriana Fontes, Giovannia A. L. Pereira, Goreti Pereira","doi":"10.1007/s41061-021-00325-x","DOIUrl":"https://doi.org/10.1007/s41061-021-00325-x","url":null,"abstract":"<p>The development of multimodal nanoprobes has been growing?in recent years. Among these novel nanostructures are bimodal systems based on quantum dots (QDs) and low molecular weight Gd<sup>3+</sup> chelates, prepared for magnetic resonance imaging (MRI) and optical analyses. MRI is a technique used worldwide that provides anatomic resolution and allows distinguishing of physiological differences at tissue and organ level. On the other hand, optical techniques are very sensitive and allow events to be followed at the cellular or molecular level. Thus, the association of these two techniques has the potential to achieve a more complete comprehension of biological processes. In this review, we present state-of-the-art research concerning the development of potential multimodal optical/paramagnetic nanoprobes based on Gd<sup>3+</sup> chelates and QDs, highlighting their preparation strategies and overall properties.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00325-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4297010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-05DOI: 10.1007/s41061-020-00323-5
Yuexiang Ma, Qinhua Chen, Xiaoyan Pan, Jie Zhang
Fluorescence imaging is an important method in the field of biomedicine. Fluorescence imaging is nondestructive, has high efficiency and sensitivity, high resolution and allows real-time dynamic monitoring of living cells. However, it also has some disadvantages, such as high background signals and low selectivity. Bioorthogonal reactions, with the advantages of being both nondestructive and effective, are used to trace and analyze biological interactions in vivo. This review focuses on recent progress in understanding the mechanism of action of fluorescence probes.
{"title":"Insight into Fluorescence Imaging and Bioorthogonal Reactions in Biological Analysis","authors":"Yuexiang Ma, Qinhua Chen, Xiaoyan Pan, Jie Zhang","doi":"10.1007/s41061-020-00323-5","DOIUrl":"https://doi.org/10.1007/s41061-020-00323-5","url":null,"abstract":"<p>Fluorescence imaging is an important method in the field of biomedicine. Fluorescence imaging is nondestructive, has high efficiency and sensitivity, high resolution and allows real-time dynamic monitoring of living cells. However, it also has some disadvantages, such as high background signals and low selectivity. Bioorthogonal reactions, with the advantages of being both nondestructive and effective, are used to trace and analyze biological interactions in vivo. This review focuses on recent progress in understanding the mechanism of action of fluorescence probes.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00323-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4540915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-02-05DOI: 10.1007/s41061-021-00324-y
Qi Xue, Zixuan Zhang, Bryan K. Y. Ng, Pu Zhao, Benedict T. W. Lo
This mini-review highlights some recent progress in the engineering of single-atom catalysts (SACs) through metal–organic frameworks (MOFs) and derivatives. The inherent molecular and chemical specificities within the MOFs and derivatives can offer stabilisation of the SACs with high atomic isolation and dispersion. As MOFs are often considered an infinite array of self-assembled molecular catalysts, specifically designed structures can provide further functionalities to suit the needs of different catalytic applications. In brief, we can divide the preparation approaches into three main categories: (1) fabrication onto functional groups of the ligands, (2) fabrication onto Lewis acid sites of nodal centres, and (3) synthesis via a pyrolysis-mediated technique. Through these approaches, strong metal–support interactions can be established to aid the fine-tuning of the catalytic properties. We also discuss how recent progress in the development of state-of-the-art microscopic, spectroscopic, and crystallographic techniques has enabled scientists to elucidate the structure–activity relationship.
{"title":"Recent Advances in the Engineering of Single-Atom Catalysts Through Metal–Organic Frameworks","authors":"Qi Xue, Zixuan Zhang, Bryan K. Y. Ng, Pu Zhao, Benedict T. W. Lo","doi":"10.1007/s41061-021-00324-y","DOIUrl":"https://doi.org/10.1007/s41061-021-00324-y","url":null,"abstract":"<p>This mini-review highlights some recent progress in the engineering of single-atom catalysts (SACs) through metal–organic frameworks (MOFs) and derivatives. The inherent molecular and chemical specificities within the MOFs and derivatives can offer stabilisation of the SACs with high atomic isolation and dispersion. As MOFs are often considered an infinite array of self-assembled molecular catalysts, specifically designed structures can provide further functionalities to suit the needs of different catalytic applications. In brief, we can divide the preparation approaches into three main categories: (1) fabrication onto functional groups of the ligands, (2) fabrication onto Lewis acid sites of nodal centres, and (3) synthesis via a pyrolysis-mediated technique. Through these approaches, strong metal–support interactions can be established to aid the fine-tuning of the catalytic properties. We also discuss how recent progress in the development of state-of-the-art microscopic, spectroscopic, and crystallographic techniques has enabled scientists to elucidate the structure–activity relationship.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00324-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4540902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
COVID-19 has broken out rapidly in nearly all countries worldwide, and has blossomed into a pandemic. Since the beginning of the spread of COVID-19, many scientists have been cooperating to study a vast array of old drugs and new clinical trial drugs to discover potent drugs with anti-COVID-19 activity, including antiviral drugs, antimalarial drugs, immunosuppressants, Chinese medicines, Mpro inhibitors, JAK inhibitors, etc. The most commonly used drugs are antiviral compounds, antimalarial drugs and JAK inhibitors. In this review, we summarize mainly the antimalarial drugs chloroquine and hydroxychloroquine, the antiviral drugs Favipiravir and Remdesivir, and JAK inhibitor Ruxolitinib, discussing their biological activities, clinical trials and synthesis progress.
{"title":"Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19","authors":"Dingzhong Li, Jianbing Hu, Dian Li, Weijun Yang, Shuang-Feng Yin, Renhua Qiu","doi":"10.1007/s41061-020-00318-2","DOIUrl":"https://doi.org/10.1007/s41061-020-00318-2","url":null,"abstract":"<p>COVID-19 has broken out rapidly in nearly all countries worldwide, and has blossomed into a pandemic. Since the beginning of the spread of COVID-19, many scientists have been cooperating to study a vast array of old drugs and new clinical trial drugs to discover potent drugs with anti-COVID-19 activity, including antiviral drugs, antimalarial drugs, immunosuppressants, Chinese medicines, M<sup>pro</sup> inhibitors, JAK inhibitors, etc. The most commonly used drugs are antiviral compounds, antimalarial drugs and JAK inhibitors. In this review, we summarize mainly the antimalarial drugs chloroquine and hydroxychloroquine, the antiviral drugs Favipiravir and Remdesivir, and JAK inhibitor Ruxolitinib, discussing their biological activities, clinical trials and synthesis progress.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00318-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4458976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2021-01-05DOI: 10.1007/s41061-020-00316-4
Imtiaz Khan, Aliya Ibrar, Sumera Zaib
{"title":"Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges","authors":"Imtiaz Khan, Aliya Ibrar, Sumera Zaib","doi":"10.1007/s41061-020-00316-4","DOIUrl":"https://doi.org/10.1007/s41061-020-00316-4","url":null,"abstract":"","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00316-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4211557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-10-30DOI: 10.1007/s41061-020-00312-8
Mireia Buaki-Sogó, Laura García-Carmona, Mayte Gil-Agustí, Leire Zubizarreta, Marta García-Pellicer, Alfredo Quijano-López
This article consists of a review of the main concepts and paradigms established in the field of biological fuel cells or biofuel cells. The aim is to provide an overview of the current panorama, basic concepts, and methodologies used in the field of enzymatic biofuel cells, as well as the applications of these bio-systems in flexible electronics and implantable or portable devices. Finally, the challenges needing to be addressed in the development of biofuel cells capable of supplying power to small size devices with applications in areas related to health and well-being or next-generation portable devices are analyzed. The aim of this study is to contribute to biofuel cell technology development; this is a multidisciplinary topic about which review articles related to different scientific areas, from Materials Science to technology applications, can be found. With this article, the authors intend to reach a wide readership in order to spread biofuel cell technology for different scientific profiles and boost new contributions and developments to overcome future challenges.
{"title":"Enzymatic Glucose-Based Bio-batteries: Bioenergy to Fuel Next-Generation Devices","authors":"Mireia Buaki-Sogó, Laura García-Carmona, Mayte Gil-Agustí, Leire Zubizarreta, Marta García-Pellicer, Alfredo Quijano-López","doi":"10.1007/s41061-020-00312-8","DOIUrl":"https://doi.org/10.1007/s41061-020-00312-8","url":null,"abstract":"<p>This article consists of a review of the main concepts and paradigms established in the field of biological fuel cells or biofuel cells. The aim is to provide an overview of the current panorama, basic concepts, and methodologies used in the field of enzymatic biofuel cells, as well as the applications of these bio-systems in flexible electronics and implantable or portable devices. Finally, the challenges needing to be addressed in the development of biofuel cells capable of supplying power to small size devices with applications in areas related to health and well-being or next-generation portable devices are analyzed. The aim of this study is to contribute to biofuel cell technology development; this is a multidisciplinary topic about which review articles related to different scientific areas, from Materials Science to technology applications, can be found. With this article, the authors intend to reach a wide readership in order to spread biofuel cell technology for different scientific profiles and boost new contributions and developments to overcome future challenges.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"378 6","pages":""},"PeriodicalIF":8.6,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00312-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5167162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-09-02DOI: 10.1007/s41061-020-00308-4
Sina Matavos-Aramyan, Sadaf Soukhakian, Mohammad Hossein Jazebizadeh
{"title":"Retraction Note to: Mononuclear Cu Complexes Based on Nitrogen Heterocyclic Carbene: A Comprehensive Review","authors":"Sina Matavos-Aramyan, Sadaf Soukhakian, Mohammad Hossein Jazebizadeh","doi":"10.1007/s41061-020-00308-4","DOIUrl":"https://doi.org/10.1007/s41061-020-00308-4","url":null,"abstract":"","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"378 4-5","pages":""},"PeriodicalIF":8.6,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00308-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4104310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-08-10DOI: 10.1007/s41061-020-00307-5
Nusrat Sahiba, Shikha Agarwal
{"title":"Recent Advances in the Synthesis of Perimidines and their Applications","authors":"Nusrat Sahiba, Shikha Agarwal","doi":"10.1007/s41061-020-00307-5","DOIUrl":"https://doi.org/10.1007/s41061-020-00307-5","url":null,"abstract":"","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"378 4-5","pages":""},"PeriodicalIF":8.6,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00307-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4410078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2020-06-19DOI: 10.1007/s41061-020-00306-6
Daily Rodriguez-Padron, Md Ariful Ahsan, Mohamed Fathi Sanad, Rafael Luque, Alain R. Puente Santiago
In recent years, the incorporation of molecular enzymes into nanostructured frameworks to create efficient energy conversion biomaterials has gained increasing interest as a promising strategy owing to both the dynamic behavior of proteins for their electrocatalytic function and the unique properties of the synergistic interactions between proteins and nanosized materials. Herein, we review the impact of proteins on energy conversion fields and the contribution of proteins to the improved activity of the resulting nanocomposites. We address different strategies to fabricate protein-based nanocatalysts as well as current knowledge on the structure–function relationships of enzymes during the catalytic processes. Additionally, a comprehensive review of state-of-the-art bioelectrocatalytic materials for water-splitting reactions such as hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) is afforded. Finally, we briefly envision opportunities to develop a new generation of electrocatalysts towards the electrochemical reduction of N2 to NH3 using theoretical tools to built nature-inspired nitrogen reduction reaction catalysts.
{"title":"Proteins-Based Nanocatalysts for Energy Conversion Reactions","authors":"Daily Rodriguez-Padron, Md Ariful Ahsan, Mohamed Fathi Sanad, Rafael Luque, Alain R. Puente Santiago","doi":"10.1007/s41061-020-00306-6","DOIUrl":"https://doi.org/10.1007/s41061-020-00306-6","url":null,"abstract":"<p>In recent years, the incorporation of molecular enzymes into nanostructured frameworks to create efficient energy conversion biomaterials has gained increasing interest as a promising strategy owing to both the dynamic behavior of proteins for their electrocatalytic function and the unique properties of the synergistic interactions between proteins and nanosized materials. Herein, we review the impact of proteins on energy conversion fields and the contribution of proteins to the improved activity of the resulting nanocomposites. We address different strategies to fabricate protein-based nanocatalysts as well as current knowledge on the structure–function relationships of enzymes during the catalytic processes. Additionally, a comprehensive review of state-of-the-art bioelectrocatalytic materials for water-splitting reactions such as hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) is afforded. Finally, we briefly envision opportunities to develop a new generation of electrocatalysts towards the electrochemical reduction of N<sub>2</sub> to NH<sub>3</sub> using theoretical tools to built nature-inspired nitrogen reduction reaction catalysts.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"378 4-5","pages":""},"PeriodicalIF":8.6,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00306-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4753737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}