首页 > 最新文献

Topics in Current Chemistry最新文献

英文 中文
Aggregation-Induced Emission: From Small Molecules to Polymers—Historical Background, Mechanisms and Photophysics 聚集诱导发射:从小分子到聚合物——历史背景、机制和光物理
IF 8.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2021-03-16 DOI: 10.1007/s41061-021-00327-9
Ana Clara B. Rodrigues, J. Sérgio Seixas de Melo

The enhancement of photoluminescence through formation of molecular aggregates in organic oligomers and conjugated organic polymers is reviewed. A historical contextualization of aggregation-induced emission (AIE) phenomena is presented. This includes the loose bolt or free rotor effect and J-aggregation phenomena, and discusses their characteristic features, including structures and mechanisms. The basis of both effects is examined in key molecules, with a particular emphasis on the AIE effect occurring in conjugated organic polymers with a polythiophene (PT) skeleton with triphenylethylene (TPE) units. Rigidification of the excited state structure is one of the defining conditions required to obtain AIE, and thus, by changing from a flexible ground state to rigid (quinoidal-like) structures, oligo and PTs are among the most promising emerging molecules alongside?with the more extensively used TPE derivatives. Molecular structures moving away from the domination of aggregation-caused quenching to AIE are presented. Future perspectives for the rational design of AIEgen structures are discussed.

综述了通过在有机低聚物和共轭有机聚合物中形成分子聚集体来增强光致发光的研究进展。介绍了聚集诱导发射(AIE)现象的历史背景。这包括螺栓松动或自由转子效应和j聚集现象,并讨论了它们的特征,包括结构和机理。这两种效应的基础在关键分子中进行了检查,特别强调AIE效应发生在具有三苯基乙烯(TPE)单元的聚噻吩(PT)骨架的共轭有机聚合物中。激发态结构的刚性是获得AIE所需的定义条件之一,因此,通过从柔性基态转变为刚性(类醌)结构,oligo和PTs是最有希望的新兴分子之一?与更广泛使用的TPE衍生物。分子结构从聚集引起的淬火转向AIE。最后讨论了未来AIEgen结构合理设计的前景。
{"title":"Aggregation-Induced Emission: From Small Molecules to Polymers—Historical Background, Mechanisms and Photophysics","authors":"Ana Clara B. Rodrigues,&nbsp;J. Sérgio Seixas de Melo","doi":"10.1007/s41061-021-00327-9","DOIUrl":"https://doi.org/10.1007/s41061-021-00327-9","url":null,"abstract":"<p>The enhancement of photoluminescence through formation of molecular aggregates in organic oligomers and conjugated organic polymers is reviewed. A historical contextualization of aggregation-induced emission (AIE) phenomena is presented. This includes the loose bolt or free rotor effect and J-aggregation phenomena, and discusses their characteristic features, including structures and mechanisms. The basis of both effects is examined in key molecules, with a particular emphasis on the AIE effect occurring in conjugated organic polymers with a polythiophene (PT) skeleton with triphenylethylene (TPE) units. Rigidification of the excited state structure is one of the defining conditions required to obtain AIE, and thus, by changing from a flexible ground state to rigid (quinoidal-like) structures, oligo and PTs are among the most promising emerging molecules alongside?with the more extensively used TPE derivatives. Molecular structures moving away from the domination of aggregation-caused quenching to AIE are presented. Future perspectives for the rational design of AIEgen structures are discussed.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 3","pages":""},"PeriodicalIF":8.6,"publicationDate":"2021-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00327-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4656870","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 21
Quantum Dots and Gd3+ Chelates: Advances and Challenges Towards Bimodal Nanoprobes for Magnetic Resonance and Optical Imaging 量子点和Gd3+螯合物:磁共振和光学成像双峰纳米探针的进展和挑战
IF 8.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2021-02-07 DOI: 10.1007/s41061-021-00325-x
Gabriela M. Albuquerque, Izabel Souza-Sobrinha, Samantha D. Coiado, Beate S. Santos, Adriana Fontes, Giovannia A. L. Pereira, Goreti Pereira

The development of multimodal nanoprobes has been growing?in recent years. Among these novel nanostructures are bimodal systems based on quantum dots (QDs) and low molecular weight Gd3+ chelates, prepared for magnetic resonance imaging (MRI) and optical analyses. MRI is a technique used worldwide that provides anatomic resolution and allows distinguishing of physiological differences at tissue and organ level. On the other hand, optical techniques are very sensitive and allow events to be followed at the cellular or molecular level. Thus, the association of these two techniques has the potential to achieve a more complete comprehension of biological processes. In this review, we present state-of-the-art research concerning the development of potential multimodal optical/paramagnetic nanoprobes based on Gd3+ chelates and QDs, highlighting their preparation strategies and overall properties.

多模态纳米探针的发展日新月异。近年来。在这些新型纳米结构中,有基于量子点(QDs)和低分子量Gd3+螯合物的双峰体系,用于磁共振成像(MRI)和光学分析。MRI是一种世界范围内使用的技术,它提供解剖分辨率,并允许在组织和器官水平上区分生理差异。另一方面,光学技术非常灵敏,可以在细胞或分子水平上跟踪事件。因此,这两种技术的结合有可能实现对生物过程的更全面的理解。本文综述了基于Gd3+螯合物和量子点的多模态光学/顺磁纳米探针的最新研究进展,重点介绍了它们的制备策略和总体性能。
{"title":"Quantum Dots and Gd3+ Chelates: Advances and Challenges Towards Bimodal Nanoprobes for Magnetic Resonance and Optical Imaging","authors":"Gabriela M. Albuquerque,&nbsp;Izabel Souza-Sobrinha,&nbsp;Samantha D. Coiado,&nbsp;Beate S. Santos,&nbsp;Adriana Fontes,&nbsp;Giovannia A. L. Pereira,&nbsp;Goreti Pereira","doi":"10.1007/s41061-021-00325-x","DOIUrl":"https://doi.org/10.1007/s41061-021-00325-x","url":null,"abstract":"<p>The development of multimodal nanoprobes has been growing?in recent years. Among these novel nanostructures are bimodal systems based on quantum dots (QDs) and low molecular weight Gd<sup>3+</sup> chelates, prepared for magnetic resonance imaging (MRI) and optical analyses. MRI is a technique used worldwide that provides anatomic resolution and allows distinguishing of physiological differences at tissue and organ level. On the other hand, optical techniques are very sensitive and allow events to be followed at the cellular or molecular level. Thus, the association of these two techniques has the potential to achieve a more complete comprehension of biological processes. In this review, we present state-of-the-art research concerning the development of potential multimodal optical/paramagnetic nanoprobes based on Gd<sup>3+</sup> chelates and QDs, highlighting their preparation strategies and overall properties.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2021-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00325-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4297010","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 6
Insight into Fluorescence Imaging and Bioorthogonal Reactions in Biological Analysis 荧光成像和生物正交反应在生物分析中的应用
IF 8.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2021-02-05 DOI: 10.1007/s41061-020-00323-5
Yuexiang Ma, Qinhua Chen, Xiaoyan Pan, Jie Zhang

Fluorescence imaging is an important method in the field of biomedicine. Fluorescence imaging is nondestructive, has high efficiency and sensitivity, high resolution and allows real-time dynamic monitoring of living cells. However, it also has some disadvantages, such as high background signals and low selectivity. Bioorthogonal reactions, with the advantages of being both nondestructive and effective, are used to trace and analyze biological interactions in vivo. This review focuses on recent progress in understanding the mechanism of action of fluorescence probes.

荧光成像是生物医学领域的一种重要方法。荧光成像具有无损、高效、灵敏、高分辨率、实时动态监测活细胞等特点。然而,它也有一些缺点,如高背景信号和低选择性。生物正交反应具有无损和有效的优点,可用于体内生物相互作用的追踪和分析。本文就荧光探针的作用机制的研究进展作一综述。
{"title":"Insight into Fluorescence Imaging and Bioorthogonal Reactions in Biological Analysis","authors":"Yuexiang Ma,&nbsp;Qinhua Chen,&nbsp;Xiaoyan Pan,&nbsp;Jie Zhang","doi":"10.1007/s41061-020-00323-5","DOIUrl":"https://doi.org/10.1007/s41061-020-00323-5","url":null,"abstract":"<p>Fluorescence imaging is an important method in the field of biomedicine. Fluorescence imaging is nondestructive, has high efficiency and sensitivity, high resolution and allows real-time dynamic monitoring of living cells. However, it also has some disadvantages, such as high background signals and low selectivity. Bioorthogonal reactions, with the advantages of being both nondestructive and effective, are used to trace and analyze biological interactions in vivo. This review focuses on recent progress in understanding the mechanism of action of fluorescence probes.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00323-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4540915","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Recent Advances in the Engineering of Single-Atom Catalysts Through Metal–Organic Frameworks 金属-有机骨架单原子催化剂工程研究进展
IF 8.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2021-02-05 DOI: 10.1007/s41061-021-00324-y
Qi Xue, Zixuan Zhang, Bryan K. Y. Ng, Pu Zhao, Benedict T. W. Lo

This mini-review highlights some recent progress in the engineering of single-atom catalysts (SACs) through metal–organic frameworks (MOFs) and derivatives. The inherent molecular and chemical specificities within the MOFs and derivatives can offer stabilisation of the SACs with high atomic isolation and dispersion. As MOFs are often considered an infinite array of self-assembled molecular catalysts, specifically designed structures can provide further functionalities to suit the needs of different catalytic applications. In brief, we can divide the preparation approaches into three main categories: (1) fabrication onto functional groups of the ligands, (2) fabrication onto Lewis acid sites of nodal centres, and (3) synthesis via a pyrolysis-mediated technique. Through these approaches, strong metal–support interactions can be established to aid the fine-tuning of the catalytic properties. We also discuss how recent progress in the development of state-of-the-art microscopic, spectroscopic, and crystallographic techniques has enabled scientists to elucidate the structure–activity relationship.

本文综述了近年来利用金属-有机骨架及其衍生物制备单原子催化剂的研究进展。mof及其衍生物固有的分子和化学特性可以为sac提供高原子隔离和分散的稳定性。由于mof通常被认为是一种自组装分子催化剂的无限阵列,专门设计的结构可以提供进一步的功能,以满足不同催化应用的需要。简而言之,我们可以将制备方法分为三大类:(1)在配体官能团上制备,(2)在节点中心的路易斯酸位点上制备,(3)通过热解介导技术合成。通过这些方法,可以建立强金属支撑相互作用,以帮助微调催化性能。我们还讨论了最新的显微镜、光谱学和晶体学技术的发展如何使科学家能够阐明结构-活性关系。
{"title":"Recent Advances in the Engineering of Single-Atom Catalysts Through Metal–Organic Frameworks","authors":"Qi Xue,&nbsp;Zixuan Zhang,&nbsp;Bryan K. Y. Ng,&nbsp;Pu Zhao,&nbsp;Benedict T. W. Lo","doi":"10.1007/s41061-021-00324-y","DOIUrl":"https://doi.org/10.1007/s41061-021-00324-y","url":null,"abstract":"<p>This mini-review highlights some recent progress in the engineering of single-atom catalysts (SACs) through metal–organic frameworks (MOFs) and derivatives. The inherent molecular and chemical specificities within the MOFs and derivatives can offer stabilisation of the SACs with high atomic isolation and dispersion. As MOFs are often considered an infinite array of self-assembled molecular catalysts, specifically designed structures can provide further functionalities to suit the needs of different catalytic applications. In brief, we can divide the preparation approaches into three main categories: (1) fabrication onto functional groups of the ligands, (2) fabrication onto Lewis acid sites of nodal centres, and (3) synthesis via a pyrolysis-mediated technique. Through these approaches, strong metal–support interactions can be established to aid the fine-tuning of the catalytic properties. We also discuss how recent progress in the development of state-of-the-art microscopic, spectroscopic, and crystallographic techniques has enabled scientists to elucidate the structure–activity relationship.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 2","pages":""},"PeriodicalIF":8.6,"publicationDate":"2021-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-021-00324-y","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4540902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19 治疗新型冠状病毒肺炎的小分子生物活性、临床试验及合成进展综述
IF 8.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2021-01-11 DOI: 10.1007/s41061-020-00318-2
Dingzhong Li, Jianbing Hu, Dian Li, Weijun Yang, Shuang-Feng Yin, Renhua Qiu

COVID-19 has broken out rapidly in nearly all countries worldwide, and has blossomed into a pandemic. Since the beginning of the spread of COVID-19, many scientists have been cooperating to study a vast array of old drugs and new clinical trial drugs to discover potent drugs with anti-COVID-19 activity, including antiviral drugs, antimalarial drugs, immunosuppressants, Chinese medicines, Mpro inhibitors, JAK inhibitors, etc. The most commonly used drugs are antiviral compounds, antimalarial drugs and JAK inhibitors. In this review, we summarize mainly the antimalarial drugs chloroquine and hydroxychloroquine, the antiviral drugs Favipiravir and Remdesivir, and JAK inhibitor Ruxolitinib, discussing their biological activities, clinical trials and synthesis progress.

COVID-19在全球几乎所有国家迅速爆发,并已发展成为一场大流行。自COVID-19开始传播以来,许多科学家合作研究了大量的旧药物和新的临床试验药物,发现了具有抗COVID-19活性的强效药物,包括抗病毒药物、抗疟药、免疫抑制剂、中药、Mpro抑制剂、JAK抑制剂等。最常用的药物是抗病毒化合物、抗疟疾药物和JAK抑制剂。本文主要综述了抗疟药物氯喹和羟氯喹,抗病毒药物法匹拉韦和瑞德西韦,以及JAK抑制剂鲁索利替尼的生物活性、临床试验和合成进展。
{"title":"Reviews on Biological Activity, Clinical Trial and Synthesis Progress of Small Molecules for the Treatment of COVID-19","authors":"Dingzhong Li,&nbsp;Jianbing Hu,&nbsp;Dian Li,&nbsp;Weijun Yang,&nbsp;Shuang-Feng Yin,&nbsp;Renhua Qiu","doi":"10.1007/s41061-020-00318-2","DOIUrl":"https://doi.org/10.1007/s41061-020-00318-2","url":null,"abstract":"<p>COVID-19 has broken out rapidly in nearly all countries worldwide, and has blossomed into a pandemic. Since the beginning of the spread of COVID-19, many scientists have been cooperating to study a vast array of old drugs and new clinical trial drugs to discover potent drugs with anti-COVID-19 activity, including antiviral drugs, antimalarial drugs, immunosuppressants, Chinese medicines, M<sup>pro</sup> inhibitors, JAK inhibitors, etc. The most commonly used drugs are antiviral compounds, antimalarial drugs and JAK inhibitors. In this review, we summarize mainly the antimalarial drugs chloroquine and hydroxychloroquine, the antiviral drugs Favipiravir and Remdesivir, and JAK inhibitor Ruxolitinib, discussing their biological activities, clinical trials and synthesis progress.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2021-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00318-2","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4458976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges 烷基酸盐作为过渡金属催化下多种杂环快速组装的多功能和强大的化学工具:最新进展和挑战
IF 8.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2021-01-05 DOI: 10.1007/s41061-020-00316-4
Imtiaz Khan, Aliya Ibrar, Sumera Zaib
{"title":"Alkynoates as Versatile and Powerful Chemical Tools for the Rapid Assembly of Diverse Heterocycles under Transition-Metal Catalysis: Recent Developments and Challenges","authors":"Imtiaz Khan,&nbsp;Aliya Ibrar,&nbsp;Sumera Zaib","doi":"10.1007/s41061-020-00316-4","DOIUrl":"https://doi.org/10.1007/s41061-020-00316-4","url":null,"abstract":"","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"379 1","pages":""},"PeriodicalIF":8.6,"publicationDate":"2021-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00316-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4211557","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Enzymatic Glucose-Based Bio-batteries: Bioenergy to Fuel Next-Generation Devices 酶法葡萄糖基生物电池:下一代设备的生物能源燃料
IF 8.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2020-10-30 DOI: 10.1007/s41061-020-00312-8
Mireia Buaki-Sogó, Laura García-Carmona, Mayte Gil-Agustí, Leire Zubizarreta, Marta García-Pellicer, Alfredo Quijano-López

This article consists of a review of the main concepts and paradigms established in the field of biological fuel cells or biofuel cells. The aim is to provide an overview of the current panorama, basic concepts, and methodologies used in the field of enzymatic biofuel cells, as well as the applications of these bio-systems in flexible electronics and implantable or portable devices. Finally, the challenges needing to be addressed in the development of biofuel cells capable of supplying power to small size devices with applications in areas related to health and well-being or next-generation portable devices are analyzed. The aim of this study is to contribute to biofuel cell technology development; this is a multidisciplinary topic about which review articles related to different scientific areas, from Materials Science to technology applications, can be found. With this article, the authors intend to reach a wide readership in order to spread biofuel cell technology for different scientific profiles and boost new contributions and developments to overcome future challenges.

本文综述了生物燃料电池或生物燃料电池领域的主要概念和模式。目的是提供当前全景,基本概念和方法的概述,用于酶生物燃料电池领域,以及这些生物系统在柔性电子和植入式或便携式设备中的应用。最后,分析了在开发能够为小型设备供电的生物燃料电池中需要解决的挑战,这些设备应用于与健康和福祉有关的领域或下一代便携式设备。本研究旨在促进生物燃料电池技术的发展;这是一个多学科的主题,涉及不同科学领域的评论文章,从材料科学到技术应用,都可以找到。通过这篇文章,作者希望获得广泛的读者,以便将生物燃料电池技术推广到不同的科学领域,并促进新的贡献和发展,以克服未来的挑战。
{"title":"Enzymatic Glucose-Based Bio-batteries: Bioenergy to Fuel Next-Generation Devices","authors":"Mireia Buaki-Sogó,&nbsp;Laura García-Carmona,&nbsp;Mayte Gil-Agustí,&nbsp;Leire Zubizarreta,&nbsp;Marta García-Pellicer,&nbsp;Alfredo Quijano-López","doi":"10.1007/s41061-020-00312-8","DOIUrl":"https://doi.org/10.1007/s41061-020-00312-8","url":null,"abstract":"<p>This article consists of a review of the main concepts and paradigms established in the field of biological fuel cells or biofuel cells. The aim is to provide an overview of the current panorama, basic concepts, and methodologies used in the field of enzymatic biofuel cells, as well as the applications of these bio-systems in flexible electronics and implantable or portable devices. Finally, the challenges needing to be addressed in the development of biofuel cells capable of supplying power to small size devices with applications in areas related to health and well-being or next-generation portable devices are analyzed. The aim of this study is to contribute to biofuel cell technology development; this is a multidisciplinary topic about which review articles related to different scientific areas, from Materials Science to technology applications, can be found. With this article, the authors intend to reach a wide readership in order to spread biofuel cell technology for different scientific profiles and boost new contributions and developments to overcome future challenges.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"378 6","pages":""},"PeriodicalIF":8.6,"publicationDate":"2020-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00312-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5167162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Retraction Note to: Mononuclear Cu Complexes Based on Nitrogen Heterocyclic Carbene: A Comprehensive Review 基于氮杂环卡宾的单核铜配合物:综述
IF 8.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2020-09-02 DOI: 10.1007/s41061-020-00308-4
Sina Matavos-Aramyan, Sadaf Soukhakian, Mohammad Hossein Jazebizadeh
{"title":"Retraction Note to: Mononuclear Cu Complexes Based on Nitrogen Heterocyclic Carbene: A Comprehensive Review","authors":"Sina Matavos-Aramyan,&nbsp;Sadaf Soukhakian,&nbsp;Mohammad Hossein Jazebizadeh","doi":"10.1007/s41061-020-00308-4","DOIUrl":"https://doi.org/10.1007/s41061-020-00308-4","url":null,"abstract":"","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"378 4-5","pages":""},"PeriodicalIF":8.6,"publicationDate":"2020-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00308-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4104310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Recent Advances in the Synthesis of Perimidines and their Applications 邻嘧啶类化合物的合成及其应用研究进展
IF 8.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2020-08-10 DOI: 10.1007/s41061-020-00307-5
Nusrat Sahiba, Shikha Agarwal
{"title":"Recent Advances in the Synthesis of Perimidines and their Applications","authors":"Nusrat Sahiba,&nbsp;Shikha Agarwal","doi":"10.1007/s41061-020-00307-5","DOIUrl":"https://doi.org/10.1007/s41061-020-00307-5","url":null,"abstract":"","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"378 4-5","pages":""},"PeriodicalIF":8.6,"publicationDate":"2020-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00307-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4410078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 16
Proteins-Based Nanocatalysts for Energy Conversion Reactions 基于蛋白质的能量转化反应纳米催化剂
IF 8.6 2区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Pub Date : 2020-06-19 DOI: 10.1007/s41061-020-00306-6
Daily Rodriguez-Padron, Md Ariful Ahsan, Mohamed Fathi Sanad, Rafael Luque, Alain R. Puente Santiago

In recent years, the incorporation of molecular enzymes into nanostructured frameworks to create efficient energy conversion biomaterials has gained increasing interest as a promising strategy owing to both the dynamic behavior of proteins for their electrocatalytic function and the unique properties of the synergistic interactions between proteins and nanosized materials. Herein, we review the impact of proteins on energy conversion fields and the contribution of proteins to the improved activity of the resulting nanocomposites. We address different strategies to fabricate protein-based nanocatalysts as well as current knowledge on the structure–function relationships of enzymes during the catalytic processes. Additionally, a comprehensive review of state-of-the-art bioelectrocatalytic materials for water-splitting reactions such as hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) is afforded. Finally, we briefly envision opportunities to develop a new generation of electrocatalysts towards the electrochemical reduction of N2 to NH3 using theoretical tools to built nature-inspired nitrogen reduction reaction catalysts.

近年来,由于蛋白质电催化功能的动态行为以及蛋白质与纳米材料之间协同作用的独特性质,将分子酶结合到纳米结构框架中以创造高效的能量转换生物材料作为一种有前途的策略受到越来越多的关注。在此,我们回顾了蛋白质对能量转换场的影响以及蛋白质对所得纳米复合材料活性提高的贡献。我们提出了不同的策略来制造基于蛋白质的纳米催化剂,以及在催化过程中酶的结构-功能关系的当前知识。此外,全面回顾了最先进的生物电催化材料的水分解反应,如析氢反应(HER)和析氧反应(OER)。最后,我们简要地展望了利用理论工具构建自然氮还原反应催化剂,开发新一代电化学还原N2到NH3的电催化剂的机会。
{"title":"Proteins-Based Nanocatalysts for Energy Conversion Reactions","authors":"Daily Rodriguez-Padron,&nbsp;Md Ariful Ahsan,&nbsp;Mohamed Fathi Sanad,&nbsp;Rafael Luque,&nbsp;Alain R. Puente Santiago","doi":"10.1007/s41061-020-00306-6","DOIUrl":"https://doi.org/10.1007/s41061-020-00306-6","url":null,"abstract":"<p>In recent years, the incorporation of molecular enzymes into nanostructured frameworks to create efficient energy conversion biomaterials has gained increasing interest as a promising strategy owing to both the dynamic behavior of proteins for their electrocatalytic function and the unique properties of the synergistic interactions between proteins and nanosized materials. Herein, we review the impact of proteins on energy conversion fields and the contribution of proteins to the improved activity of the resulting nanocomposites. We address different strategies to fabricate protein-based nanocatalysts as well as current knowledge on the structure–function relationships of enzymes during the catalytic processes. Additionally, a comprehensive review of state-of-the-art bioelectrocatalytic materials for water-splitting reactions such as hydrogen evolution reaction (HER) and oxygen evolution reactions (OER) is afforded. Finally, we briefly envision opportunities to develop a new generation of electrocatalysts towards the electrochemical reduction of N<sub>2</sub> to NH<sub>3</sub> using theoretical tools to built nature-inspired nitrogen reduction reaction catalysts.</p>","PeriodicalId":54344,"journal":{"name":"Topics in Current Chemistry","volume":"378 4-5","pages":""},"PeriodicalIF":8.6,"publicationDate":"2020-06-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1007/s41061-020-00306-6","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4753737","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
期刊
Topics in Current Chemistry
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1