Intan Najihah Musa, A. Arifutzzaman, Mohamed Kheireddine Aroua, Shaukat Ali Mazari
Carbon capture continues to gain attention from researchers especially in light of alarming increase of greenhouse gases in the atmosphere in the recent decades. Among the available carbon capture technologies, both of physical and chemical adsorption is favourably seen with various applicable adsorbents successfully introduced. Such promising CO2 adsorbent candidates include low-dimensional nanomaterials such as graphene, carbon nanotubes (CNTs) and fairly new MXenes. In this review, we will be covering the effects of various types of modifications and functionalization of these materials in enhancing the CO2 adsorption capacities. This includes functionalization with oxygenated and protic functional groups, heteroatoms doping, defect engineering and surface modification. It is observed that doping of graphene, amine-functionalization of CNTs and surface termination modification of MXenes are some of the most widely researched strategies. Since MXenes are a recent addition in the field of CO2 capture, we also covered some fundamental theoretical findings to introduce this new 2D nanomaterial to the readers. With this review, we aim to provide a better understanding on how modifications and functionalization process help to improve CO2 uptake in order to help synthesis of high-performance adsorbents in the future.
{"title":"Modification of advanced low-dimensional nanomaterials towards high performance CO2 adsorption: an interpretative state-of-the-art review","authors":"Intan Najihah Musa, A. Arifutzzaman, Mohamed Kheireddine Aroua, Shaukat Ali Mazari","doi":"10.1515/revce-2022-0071","DOIUrl":"https://doi.org/10.1515/revce-2022-0071","url":null,"abstract":"Carbon capture continues to gain attention from researchers especially in light of alarming increase of greenhouse gases in the atmosphere in the recent decades. Among the available carbon capture technologies, both of physical and chemical adsorption is favourably seen with various applicable adsorbents successfully introduced. Such promising CO<jats:sub>2</jats:sub> adsorbent candidates include low-dimensional nanomaterials such as graphene, carbon nanotubes (CNTs) and fairly new MXenes. In this review, we will be covering the effects of various types of modifications and functionalization of these materials in enhancing the CO<jats:sub>2</jats:sub> adsorption capacities. This includes functionalization with oxygenated and protic functional groups, heteroatoms doping, defect engineering and surface modification. It is observed that doping of graphene, amine-functionalization of CNTs and surface termination modification of MXenes are some of the most widely researched strategies. Since MXenes are a recent addition in the field of CO<jats:sub>2</jats:sub> capture, we also covered some fundamental theoretical findings to introduce this new 2D nanomaterial to the readers. With this review, we aim to provide a better understanding on how modifications and functionalization process help to improve CO<jats:sub>2</jats:sub> uptake in order to help synthesis of high-performance adsorbents in the future.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"53 2","pages":""},"PeriodicalIF":4.7,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138293991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the portfolio of technologies available for net zero-enabling solutions, such as carbon capture and low-carbon production of hydrogen, membrane-based gas separation is a sustainable alternative to energy-intensive processes, such as solvent-based absorption or cryogenic distillation. Detailed knowledge of membrane materials performance in wide operative ranges is a necessary prerequisite for the design of efficient membrane processes. With the increasing popularization of data-driven methods in natural sciences and engineering, the investigation of their potential to support materials and process design for gas separation with membranes has received increasing attention, as it can help compact the lab-to-market cycle. In this work we review several machine learning (ML) strategies for the estimation of the gas separation performance of polymer membranes. New hybrid modelling strategies, in which ML complements physics-based models and simulation methods, are also discussed. Such strategies can enable the fast screening of large databases of existing materials for a specific separation, as well as assist in de-novo materials design. We conclude by highlighting the challenges and future directions envisioned for the ML-assisted design and optimization of membrane materials and processes for traditional, as well as new, membrane separations.
{"title":"A perspective on data-driven screening and discovery of polymer membranes for gas separation, from the molecular structure to the industrial performance","authors":"Eleonora Ricci, Maria Grazia De Angelis","doi":"10.1515/revce-2023-0021","DOIUrl":"https://doi.org/10.1515/revce-2023-0021","url":null,"abstract":"In the portfolio of technologies available for net zero-enabling solutions, such as carbon capture and low-carbon production of hydrogen, membrane-based gas separation is a sustainable alternative to energy-intensive processes, such as solvent-based absorption or cryogenic distillation. Detailed knowledge of membrane materials performance in wide operative ranges is a necessary prerequisite for the design of efficient membrane processes. With the increasing popularization of data-driven methods in natural sciences and engineering, the investigation of their potential to support materials and process design for gas separation with membranes has received increasing attention, as it can help compact the lab-to-market cycle. In this work we review several machine learning (ML) strategies for the estimation of the gas separation performance of polymer membranes. New hybrid modelling strategies, in which ML complements physics-based models and simulation methods, are also discussed. Such strategies can enable the fast screening of large databases of existing materials for a specific separation, as well as assist in <jats:italic>de-novo</jats:italic> materials design. We conclude by highlighting the challenges and future directions envisioned for the ML-assisted design and optimization of membrane materials and processes for traditional, as well as new, membrane separations.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"14 2","pages":""},"PeriodicalIF":4.7,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138294032","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Reviewer acknowledgement <i>Reviews in Chemical Engineering</i> volume 39 (2023)","authors":"","doi":"10.1515/revce-2023-0062","DOIUrl":"https://doi.org/10.1515/revce-2023-0062","url":null,"abstract":"","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":" 0","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135192012","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Christopher Wagstaff, Mohammed Al-Juaied, Deoras Prabhudharwadkar, William L. Roberts
Wetted wires are a unique column internal with several advantages compared to spray and packed columns. These include near-perfect liquid distribution, extremely low pressure drops, and better heat or mass transfer due to droplet circulation. Currently, wetted-wire columns remain within the laboratory prototyping stage. The primary goal of this review is to present the current research on wetted-wire columns and to highlight the gaps that impede scale-up and commercialization. Initially, wetted-wire columns were proposed as an alternative to spray towers. However, wetted-wire columns occupy a space in between spray towers and packed columns. Therefore, wetted-wire columns should also be analyzed more like packed columns to increase the speed of technological translation. Wetted-wire column literature is presented by defining features (wire diameter, nozzle diameter, pitch, and material) and by performance indicators (operating range, pressure drop, hold-up, and separation efficiency). In addition, adjacent literature on wire-like structures is discussed.
{"title":"Wetted-wire columns: a potential alternative to packed or spray columns","authors":"Christopher Wagstaff, Mohammed Al-Juaied, Deoras Prabhudharwadkar, William L. Roberts","doi":"10.1515/revce-2023-0008","DOIUrl":"https://doi.org/10.1515/revce-2023-0008","url":null,"abstract":"Wetted wires are a unique column internal with several advantages compared to spray and packed columns. These include near-perfect liquid distribution, extremely low pressure drops, and better heat or mass transfer due to droplet circulation. Currently, wetted-wire columns remain within the laboratory prototyping stage. The primary goal of this review is to present the current research on wetted-wire columns and to highlight the gaps that impede scale-up and commercialization. Initially, wetted-wire columns were proposed as an alternative to spray towers. However, wetted-wire columns occupy a space in between spray towers and packed columns. Therefore, wetted-wire columns should also be analyzed more like packed columns to increase the speed of technological translation. Wetted-wire column literature is presented by defining features (wire diameter, nozzle diameter, pitch, and material) and by performance indicators (operating range, pressure drop, hold-up, and separation efficiency). In addition, adjacent literature on wire-like structures is discussed.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"10 10","pages":""},"PeriodicalIF":4.7,"publicationDate":"2023-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71524365","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-30DOI: 10.1515/revce-2023-frontmatter8
{"title":"Frontmatter","authors":"","doi":"10.1515/revce-2023-frontmatter8","DOIUrl":"https://doi.org/10.1515/revce-2023-frontmatter8","url":null,"abstract":"","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"41 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136107058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-10-01DOI: 10.1515/revce-2023-frontmatter7
{"title":"Frontmatter","authors":"","doi":"10.1515/revce-2023-frontmatter7","DOIUrl":"https://doi.org/10.1515/revce-2023-frontmatter7","url":null,"abstract":"","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"12 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134935174","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract The natural vortex length is a complex turbulent dynamic phenomenon of cyclone separator, which can provide reference for the height design. It is calculated by the axial distance between the vortex end and the bottom of vortex finder. At present, scholars mainly attribute the influencing factors of natural vortex length to cylinder diameter, inlet area and vortex finder diameter, ignoring the influence of other structural parameters and operating parameters, so the accuracy and applicability of empirical formula are poor. This study described the mechanism of the vortex end and analyzed the PVC phenomenon. Then, an example was provided to illustrate the limitations and shortcomings of empirical formula. In addition, the influences of some geometric parameters and operating parameters on natural vortex length were summarized. Therefore, this work could provide an important reference for design optimization of cyclone separator height.
{"title":"A review on complex turbulent dynamic phenomenon of natural vortex length in cyclone separator","authors":"Zhuwei Gao, Yaodong Wei, Zhongxin Liu","doi":"10.1515/revce-2022-0050","DOIUrl":"https://doi.org/10.1515/revce-2022-0050","url":null,"abstract":"Abstract The natural vortex length is a complex turbulent dynamic phenomenon of cyclone separator, which can provide reference for the height design. It is calculated by the axial distance between the vortex end and the bottom of vortex finder. At present, scholars mainly attribute the influencing factors of natural vortex length to cylinder diameter, inlet area and vortex finder diameter, ignoring the influence of other structural parameters and operating parameters, so the accuracy and applicability of empirical formula are poor. This study described the mechanism of the vortex end and analyzed the PVC phenomenon. Then, an example was provided to illustrate the limitations and shortcomings of empirical formula. In addition, the influences of some geometric parameters and operating parameters on natural vortex length were summarized. Therefore, this work could provide an important reference for design optimization of cyclone separator height.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"62 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134958285","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Karolina Kula, J. Klemeš, Y. Fan, P. Varbanov, G. Gaurav, R. Jasiński
Abstract This paper assesses various approaches that use captured greenhouse gases (GHG) as feedstocks for chemical synthesis. The analysis focuses mainly on the two most abundant anthropogenic GHG, such as carbon dioxide (CO2) and methane (CH4), as well, their conversion technologies to obtain methanol (MeOH), formic acid (FA) and dimethyl carbonate (DMC). These GHG conversions to chemicals technologies are compared with the conventional industrial methods based on fossil feedstocks. The essential information, such as the ranges of energy requirements, environmental footprint and economic production aspects, are summarised. According to the collected information and analysis, the conventional, non-GHG conversion methods are still more environmentally sustainable. Chemicals production technologies based on CO2, such as direct catalytic synthesis to obtain both MeOH and FA, as well as transesterification with MeOH to obtain DMC, are relatively good candidates for implementation on a large scale when a good source of co-reactants such as hydrogen, ethylene carbonate and urea will be provided. In turn, electrochemical methods to synthesise the target chemicals are less feasible due to energy consumption related to the concentration and purification stages of products being the main hotspots. Chemical synthesis based on captured CH4 is currently difficult to evaluate as too little information is available to draw a credible conclusion. However, it may be a trend in future. The limitations of GHG-based conversion for application are related to the capture and transport stages.
{"title":"Environmental footprints and implications of converting GHG species to value-added chemicals: a review","authors":"Karolina Kula, J. Klemeš, Y. Fan, P. Varbanov, G. Gaurav, R. Jasiński","doi":"10.1515/revce-2023-0010","DOIUrl":"https://doi.org/10.1515/revce-2023-0010","url":null,"abstract":"Abstract This paper assesses various approaches that use captured greenhouse gases (GHG) as feedstocks for chemical synthesis. The analysis focuses mainly on the two most abundant anthropogenic GHG, such as carbon dioxide (CO2) and methane (CH4), as well, their conversion technologies to obtain methanol (MeOH), formic acid (FA) and dimethyl carbonate (DMC). These GHG conversions to chemicals technologies are compared with the conventional industrial methods based on fossil feedstocks. The essential information, such as the ranges of energy requirements, environmental footprint and economic production aspects, are summarised. According to the collected information and analysis, the conventional, non-GHG conversion methods are still more environmentally sustainable. Chemicals production technologies based on CO2, such as direct catalytic synthesis to obtain both MeOH and FA, as well as transesterification with MeOH to obtain DMC, are relatively good candidates for implementation on a large scale when a good source of co-reactants such as hydrogen, ethylene carbonate and urea will be provided. In turn, electrochemical methods to synthesise the target chemicals are less feasible due to energy consumption related to the concentration and purification stages of products being the main hotspots. Chemical synthesis based on captured CH4 is currently difficult to evaluate as too little information is available to draw a credible conclusion. However, it may be a trend in future. The limitations of GHG-based conversion for application are related to the capture and transport stages.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2023-08-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41845952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Coal and biomass are important feedstocks for carbon energy from thermochemical conversion process. Fully understanding the analytical technology that characterizes the changes in physicochemical properties and structural characteristics of coal and biomass during the thermochemical reactions is a key prerequisite for the realization of appropriate utilization of energy fuels. Modern in-situ process analysis technology can accomplish the in-situ detection of the experimental process, and therefore reflect the experimental process more accurately. Moreover, it is developing towards automation, intelligentization, and comprehensive detection. Based on the characteristics of each detection technology, this paper summarizes the basic principles, application scope and performance characteristics of the three advanced in-situ process analysis technologies: hyphenated technology, synchrotron radiation, and online analysis. The practicability and accuracy of each detection technology in coal and biomass research are compared and analyzed, and its latest application and development trend are elucidated. These tools not only make up for the shortcomings of traditional detection techniques in characterizing the in-situ reaction, but also provide complementary information on molecular microscopic changes during fuel thermal conversion. This review paper can provide insights for relevant researchers in the selection of analytical techniques, and promote in-depth study on microcosmic mechanism of fuel conversion.
{"title":"A review on in-situ process analytical techniques for the thermochemical conversion of coal and biomass","authors":"Jie Chen, Yongping Wu, Tao Xu, S. Bhattacharya","doi":"10.1515/revce-2023-0003","DOIUrl":"https://doi.org/10.1515/revce-2023-0003","url":null,"abstract":"Abstract Coal and biomass are important feedstocks for carbon energy from thermochemical conversion process. Fully understanding the analytical technology that characterizes the changes in physicochemical properties and structural characteristics of coal and biomass during the thermochemical reactions is a key prerequisite for the realization of appropriate utilization of energy fuels. Modern in-situ process analysis technology can accomplish the in-situ detection of the experimental process, and therefore reflect the experimental process more accurately. Moreover, it is developing towards automation, intelligentization, and comprehensive detection. Based on the characteristics of each detection technology, this paper summarizes the basic principles, application scope and performance characteristics of the three advanced in-situ process analysis technologies: hyphenated technology, synchrotron radiation, and online analysis. The practicability and accuracy of each detection technology in coal and biomass research are compared and analyzed, and its latest application and development trend are elucidated. These tools not only make up for the shortcomings of traditional detection techniques in characterizing the in-situ reaction, but also provide complementary information on molecular microscopic changes during fuel thermal conversion. This review paper can provide insights for relevant researchers in the selection of analytical techniques, and promote in-depth study on microcosmic mechanism of fuel conversion.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":" ","pages":""},"PeriodicalIF":4.7,"publicationDate":"2023-08-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43334664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Abstract Catalytic dehydrogenation of saturated hydrocarbons to corresponding alkenes by the release of the stoichiometric amount of hydrogen is the paramount solution for safe storage of hydrogen. The utilization of a catalytic membrane reactor for this process enhances the reaction yield beyond thermodynamic equilibrium by selectively and simultaneously removing the produced H2 during the reaction. To this end, the present review is focused on the integration of H2 permeable membranes with the catalysts for dehydrogenation of lighter alkanes for coproduction of olefins and high-purity hydrogen in a single step. Besides, this review also covers dehydrogenation of liquid organic hydrogen carriers for safe storage of hydrogen. Herein, different types of H2 perm-selective membranes used for the dehydrogenation reaction are highlighted and the effect of hydrocarbon on H2 permeation through these membranes are discussed in detail. Furthermore, the simulation studies along with the experimental investigation performed on the membrane reactors for dehydrogenation of linear and cyclic alkanes are critically reviewed to find the coherence between simulation and experimental findings. Systematic discussion is done on the different types of alkane dehydrogenation reactions and the parameters affecting the reaction performance. Finally, directions are provided to prepare a cheaper and large industrial scale membrane reactor for dehydrogenation reaction. The concept of coupling an exothermic reaction with the endothermic dehydrogenation reaction is provided as a future direction study to enhance the overall yield and energy efficiency of the integrated membrane reactor.
{"title":"Catalytic membrane reactors for alkane dehydrogenation applications: an integration of catalysis and separation process","authors":"S. Pati, N. Dewangan, A. Jangam, S. Kawi","doi":"10.1515/revce-2022-0006","DOIUrl":"https://doi.org/10.1515/revce-2022-0006","url":null,"abstract":"Abstract Catalytic dehydrogenation of saturated hydrocarbons to corresponding alkenes by the release of the stoichiometric amount of hydrogen is the paramount solution for safe storage of hydrogen. The utilization of a catalytic membrane reactor for this process enhances the reaction yield beyond thermodynamic equilibrium by selectively and simultaneously removing the produced H2 during the reaction. To this end, the present review is focused on the integration of H2 permeable membranes with the catalysts for dehydrogenation of lighter alkanes for coproduction of olefins and high-purity hydrogen in a single step. Besides, this review also covers dehydrogenation of liquid organic hydrogen carriers for safe storage of hydrogen. Herein, different types of H2 perm-selective membranes used for the dehydrogenation reaction are highlighted and the effect of hydrocarbon on H2 permeation through these membranes are discussed in detail. Furthermore, the simulation studies along with the experimental investigation performed on the membrane reactors for dehydrogenation of linear and cyclic alkanes are critically reviewed to find the coherence between simulation and experimental findings. Systematic discussion is done on the different types of alkane dehydrogenation reactions and the parameters affecting the reaction performance. Finally, directions are provided to prepare a cheaper and large industrial scale membrane reactor for dehydrogenation reaction. The concept of coupling an exothermic reaction with the endothermic dehydrogenation reaction is provided as a future direction study to enhance the overall yield and energy efficiency of the integrated membrane reactor.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"0 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2023-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41603075","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}