Khalida Naseem, Amina Qayyum, Awais Khalid, Maha S.I Wizrah, Madiha Khan, Asad Aziz, Zaid M. Aldhafeeri
Polyurethane (PU) belongs to a unique class of polymers. Different properties of PU such as mechanical strength and biocompatibility can be enhanced by co-polymerizing it with different bio and synthetic polymers. It finds huge applications as micro-reactors for the fabrication of metal nanoparticles (MNPs) owing to the synergistic properties of both polyurethane and fabricated metal nanoparticles. Metal nanoparticles fabricated polyurethane have gained much attention in the last few years. These types of nanocomposites hyphenate the mechanical properties of polyurethane with the high surface-to-volume ratio of metal nanoparticles. Here, this review article briefly evaluates different methods of synthesis of polyurethane-based metal nanocomposites and their characterization via different techniques to evaluate their properties. Applications of these polyurethane based nanocomposite materials have also been described critically in different fields depending upon their catalytic, antimicrobial and antifungal potential. Future directions of these nanocomposite materials have also been described in the field of designing of nano-filters and nano-devices in order to attain environmental remediation and sustainability.
{"title":"Metal nanoparticles loaded polyurethane nano-composites and their catalytic/antimicrobial applications: a critical review","authors":"Khalida Naseem, Amina Qayyum, Awais Khalid, Maha S.I Wizrah, Madiha Khan, Asad Aziz, Zaid M. Aldhafeeri","doi":"10.1515/revce-2024-0006","DOIUrl":"https://doi.org/10.1515/revce-2024-0006","url":null,"abstract":"Polyurethane (PU) belongs to a unique class of polymers. Different properties of PU such as mechanical strength and biocompatibility can be enhanced by co-polymerizing it with different bio and synthetic polymers. It finds huge applications as micro-reactors for the fabrication of metal nanoparticles (MNPs) owing to the synergistic properties of both polyurethane and fabricated metal nanoparticles. Metal nanoparticles fabricated polyurethane have gained much attention in the last few years. These types of nanocomposites hyphenate the mechanical properties of polyurethane with the high surface-to-volume ratio of metal nanoparticles. Here, this review article briefly evaluates different methods of synthesis of polyurethane-based metal nanocomposites and their characterization via different techniques to evaluate their properties. Applications of these polyurethane based nanocomposite materials have also been described critically in different fields depending upon their catalytic, antimicrobial and antifungal potential. Future directions of these nanocomposite materials have also been described in the field of designing of nano-filters and nano-devices in order to attain environmental remediation and sustainability.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"12 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141764257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sergey I. Uskov, Dmitriy I. Potemkin, Artem S. Urlukov, Pavel V. Snytnikov
The problems concerning the insufficient level of associated petroleum gas (APG) processing are discussed. Various models are proposed for the chemical utilization of APG, including the production of synthesis gas, methanol, dimethyl ether, ammonia, as well as the processes of aromatization of hydrocarbons, etc. The possibility of using APG as a fuel for generating electricity is discussed. Attention is paid to the processes of APG purification from sulfur impurities. Difficulties and solutions to the problems of the energy sector of APG utilization are discussed.
讨论了伴生石油气(APG)加工水平不足的问题。为伴生石油气的化学利用提出了各种模式,包括合成气、甲醇、二甲醚、氨的生产,以及碳氢化合物的芳香化过程等。还讨论了将 APG 用作发电燃料的可能性。还关注了从硫杂质中提纯 APG 的过程。讨论了在能源领域使用 APG 的困难和解决方案。
{"title":"Analysis of the state of the art technologies for the utilization and processing of associated petroleum gas into valuable chemical products","authors":"Sergey I. Uskov, Dmitriy I. Potemkin, Artem S. Urlukov, Pavel V. Snytnikov","doi":"10.1515/revce-2023-0068","DOIUrl":"https://doi.org/10.1515/revce-2023-0068","url":null,"abstract":"The problems concerning the insufficient level of associated petroleum gas (APG) processing are discussed. Various models are proposed for the chemical utilization of APG, including the production of synthesis gas, methanol, dimethyl ether, ammonia, as well as the processes of aromatization of hydrocarbons, etc. The possibility of using APG as a fuel for generating electricity is discussed. Attention is paid to the processes of APG purification from sulfur impurities. Difficulties and solutions to the problems of the energy sector of APG utilization are discussed.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"24 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-05-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140890114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nurul Nadiah Abd Razak, Patrick Cognet, Yolande Pérès, Mohamed Kheireddine Aroua, Lai Ti Gew
Glycerol esterification produces a variety of valuable chemicals and has been a subject of great interest in recent years. Lipase-catalysed synthesis of acylglycerols reactions have many potential applications, including in the production of structured lipids, biofuels and pharmaceuticals. It offers several benefits over traditional chemical methods, including higher selectivity, milder reaction conditions and increased sustainability. In this systematic review, we summarize 52 primary research of lipase catalysed synthesis of acylglycerol published from 2012 to 2022. Different types of reactions employed in the synthesis of acylglycerols using various lipases are thoroughly discussed. The use of lipase in as biocatalyst in the synthesis of acylglycerols is safe for consumption and sustainable as it can reduce the utilization of toxic and hazardous organic solvents and chemicals that cause harm to human health and the environment. This review serves as a reference for the research and development of acylglycerols using biocatalysts and reactors. It could be an interest to the food and pharmaceutical industries or individuals who are interested to explore this field. Several limitations associated with the overall research on production of acylglycerols are presented in the conclusion section.
{"title":"A decade development of lipase catalysed synthesis of acylglycerols using reactors: a systematic review","authors":"Nurul Nadiah Abd Razak, Patrick Cognet, Yolande Pérès, Mohamed Kheireddine Aroua, Lai Ti Gew","doi":"10.1515/revce-2023-0050","DOIUrl":"https://doi.org/10.1515/revce-2023-0050","url":null,"abstract":"Glycerol esterification produces a variety of valuable chemicals and has been a subject of great interest in recent years. Lipase-catalysed synthesis of acylglycerols reactions have many potential applications, including in the production of structured lipids, biofuels and pharmaceuticals. It offers several benefits over traditional chemical methods, including higher selectivity, milder reaction conditions and increased sustainability. In this systematic review, we summarize 52 primary research of lipase catalysed synthesis of acylglycerol published from 2012 to 2022. Different types of reactions employed in the synthesis of acylglycerols using various lipases are thoroughly discussed. The use of lipase in as biocatalyst in the synthesis of acylglycerols is safe for consumption and sustainable as it can reduce the utilization of toxic and hazardous organic solvents and chemicals that cause harm to human health and the environment. This review serves as a reference for the research and development of acylglycerols using biocatalysts and reactors. It could be an interest to the food and pharmaceutical industries or individuals who are interested to explore this field. Several limitations associated with the overall research on production of acylglycerols are presented in the conclusion section.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"28 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628096","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wax/paraffin deposition in production wells and oil pipelines is a major challenge for oil production. Extensive research has been conducted to improve understanding of this process. This paper presents a review of experimental work carried out with flow loops. Previous research investigated paraffin deposition process under the influences of temperature, flow rate/velocity, shear stress, water fraction, gas phase, pipe material, asphaltene concentration, and chemical inhibitors. Test results reveal that temperature and shear stress have significant impacts on wax deposition. Limited research has been conducted on wax deposition under multiphase flow. Even though more than 20 years of efforts have been spent on wax deposition studies, unfortunately we have not fully understood this phenomenon.
{"title":"Experimental research of paraffin deposition with flow loops","authors":"Chang Hong Gao","doi":"10.1515/revce-2023-0041","DOIUrl":"https://doi.org/10.1515/revce-2023-0041","url":null,"abstract":"Wax/paraffin deposition in production wells and oil pipelines is a major challenge for oil production. Extensive research has been conducted to improve understanding of this process. This paper presents a review of experimental work carried out with flow loops. Previous research investigated paraffin deposition process under the influences of temperature, flow rate/velocity, shear stress, water fraction, gas phase, pipe material, asphaltene concentration, and chemical inhibitors. Test results reveal that temperature and shear stress have significant impacts on wax deposition. Limited research has been conducted on wax deposition under multiphase flow. Even though more than 20 years of efforts have been spent on wax deposition studies, unfortunately we have not fully understood this phenomenon.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"8 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345906","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Recently, the removal of tetracycline, a toxic material, from aquatic medium has been a trending subject of research. Several different technologies including adsorption, biological removal method, solvent extraction, coagulation, chemical reduction, photocatalysis and ion exchange method for removal of tetracyclines from wastewater have been reported. However, photocatalysis of tetracyclines (TC) has gained huge interest because of more efficient mineralization of TC into CO2 and water. Several different nanomaterial based photocatalytic assemblies for the removal of tetracyclines have been widely reported for the removal of tetracyclines which have not been critically reviewed in the literature. This study provides an overview of recent progress of classification, synthesis, characterizations, mechanism of inorganic and metal organic framework nanocatalytic assemblies on photocatalysis of tetracyclines in aquatic medium. Additionally, kinetics and factors affecting the photocatalysis of tetracyclines have been discussed briefly. Future perspectives have also been presented for further advancement in this area.
{"title":"A critical overview on impact of different nano-catalytic assemblies for photodegradation of tetracycline","authors":"Rida Khalid, Muhammad Imran Din, Zaib Hussain","doi":"10.1515/revce-2023-0029","DOIUrl":"https://doi.org/10.1515/revce-2023-0029","url":null,"abstract":"Recently, the removal of tetracycline, a toxic material, from aquatic medium has been a trending subject of research. Several different technologies including adsorption, biological removal method, solvent extraction, coagulation, chemical reduction, photocatalysis and ion exchange method for removal of tetracyclines from wastewater have been reported. However, photocatalysis of tetracyclines (TC) has gained huge interest because of more efficient mineralization of TC into CO<jats:sub>2</jats:sub> and water. Several different nanomaterial based photocatalytic assemblies for the removal of tetracyclines have been widely reported for the removal of tetracyclines which have not been critically reviewed in the literature. This study provides an overview of recent progress of classification, synthesis, characterizations, mechanism of inorganic and metal organic framework nanocatalytic assemblies on photocatalysis of tetracyclines in aquatic medium. Additionally, kinetics and factors affecting the photocatalysis of tetracyclines have been discussed briefly. Future perspectives have also been presented for further advancement in this area.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"255 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-04-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140345910","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In the world’s rapidly expanding economy, textile industries are recognized as a substantial contributor to economic growth, but they are one of the most significant polluting industrial sectors. Dye-contaminated water sources can pose serious public health concerns, including toxicity, mutagenicity, and carcinogenicity among other adverse health effects. Despite a limited understanding of efficacious decolorization methodologies, the pursuit of a sustainable strategy for the treatment of a wide spectrum of dyes remains a formidable challenge. This article conducted an exhaustive review of extant literature pertaining to diverse physical, chemical, biological, and hybrid processes with the aim of ascertaining their efficacy. It also elucidates the advantages and disadvantages, cost considerations, as well as scalability impediments of the treatment methodologies, thereby facilitating the identification of optimal strategies for establishing techno-economically efficient processes in the sustainable handling of these effluents. The hybrid configuration exhibited superior efficiency and was documented to surmount the limitations and constraints inherent to individual techniques. The study also revealed that most of the proven and established dye removal techniques share a common limitation viz., the generation of secondary pollution (i.e., sludge generation, toxic intermediates, etc.) to the ecosystem.
{"title":"Sustainable approach for the treatment of dye-containing wastewater – a critical review","authors":"Diwakar Kumar, Sunil Kumar Gupta","doi":"10.1515/revce-2023-0030","DOIUrl":"https://doi.org/10.1515/revce-2023-0030","url":null,"abstract":"In the world’s rapidly expanding economy, textile industries are recognized as a substantial contributor to economic growth, but they are one of the most significant polluting industrial sectors. Dye-contaminated water sources can pose serious public health concerns, including toxicity, mutagenicity, and carcinogenicity among other adverse health effects. Despite a limited understanding of efficacious decolorization methodologies, the pursuit of a sustainable strategy for the treatment of a wide spectrum of dyes remains a formidable challenge. This article conducted an exhaustive review of extant literature pertaining to diverse physical, chemical, biological, and hybrid processes with the aim of ascertaining their efficacy. It also elucidates the advantages and disadvantages, cost considerations, as well as scalability impediments of the treatment methodologies, thereby facilitating the identification of optimal strategies for establishing techno-economically efficient processes in the sustainable handling of these effluents. The hybrid configuration exhibited superior efficiency and was documented to surmount the limitations and constraints inherent to individual techniques. The study also revealed that most of the proven and established dye removal techniques share a common limitation viz., the generation of secondary pollution (i.e., sludge generation, toxic intermediates, etc.) to the ecosystem.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"57 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140188789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Nutrient management methods based on ecosystems are crucial for providing agricultural nutrient needs while reducing the environmental impact of fertilizer usage. With increasing agricultural production, the global demand for potassium is increasing, with India importing potassium from countries like Canada, USA, Israel, and Russia. Biomass-fired industries generate biomass ash as a residue so management of the resultant ash is important. Agricultural residue ashes contain abundant potassium so could potentially be used for fertilizer application. This review describes different potassium sources and recovery processes, including chemical precipitation, water extraction, solvent extraction, membrane separation, and ionic exchange. Extraction time, temperature, and solid to solvent ratio affect the recovery of potassium from biomass ash. Water extraction is the most commonly used method for potassium recovery from biomass ash. The environmental impact of potassium fertilizer recovered from biomass ash is less than that of mining source of potash. This paper discusses topics not covered in previous reviews, such as different biosources of potassium, latest recovery methods, and life cycle assessment of these methods. The gaps identified in the reports are addressed, and future research opportunities are presented.
{"title":"Biogenic potassium: sources, method of recovery, and sustainability assessment","authors":"Dipali Gahane, Sachin A. Mandavgane","doi":"10.1515/revce-2023-0035","DOIUrl":"https://doi.org/10.1515/revce-2023-0035","url":null,"abstract":"Nutrient management methods based on ecosystems are crucial for providing agricultural nutrient needs while reducing the environmental impact of fertilizer usage. With increasing agricultural production, the global demand for potassium is increasing, with India importing potassium from countries like Canada, USA, Israel, and Russia. Biomass-fired industries generate biomass ash as a residue so management of the resultant ash is important. Agricultural residue ashes contain abundant potassium so could potentially be used for fertilizer application. This review describes different potassium sources and recovery processes, including chemical precipitation, water extraction, solvent extraction, membrane separation, and ionic exchange. Extraction time, temperature, and solid to solvent ratio affect the recovery of potassium from biomass ash. Water extraction is the most commonly used method for potassium recovery from biomass ash. The environmental impact of potassium fertilizer recovered from biomass ash is less than that of mining source of potash. This paper discusses topics not covered in previous reviews, such as different biosources of potassium, latest recovery methods, and life cycle assessment of these methods. The gaps identified in the reports are addressed, and future research opportunities are presented.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"36 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140164527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In recent years, a significant increase in the amount of research published about the application of eggshells for the removal of metal ions from aqueous solutions has been observed. The paper presents different aspects of metal adsorption from aqueous solutions on untreated eggshells. Pretreatment procedures and tested parameters for the adsorption differ significantly across all the reviewed data, providing a source of variance for the results. For untreated eggshells, the range of the reported BET surface area is from 0.07 m2/g to 8.941 m2/g. Correlation between particle size and BET surface area has been highlighted. Reported removal efficiencies for the untreated eggshell have been compared. Reported results show that eggshell is most employed for the removal of Pb(II), Cd(II), and Cu(II) from aqueous solutions. Eggshell capacity to remove metal ions from the main group elements has also been demonstrated. While results look promising, not enough data are present to make reliable conclusions about its efficiency with other (mainly transition) metal ions – which makes it a possible research direction. Based on the reported data, multiple removal pathways are involved. Several eggshell modification methods and possibilities of creating new adsorbents using eggshells only as a part of the raw material have been assessed. Finally reported eggshell modification methods have been assessed and it is clear that to compare different material’s effectiveness as an adsorbent, comparing only materials adsorption capacities is insufficient. Certain environmental water pollution removal studies using adsorption demand further study, such as metal ion specification in aqueous solution, in different processing water, and even in wastewater.
近年来,有关应用蛋壳去除水溶液中金属离子的研究成果大幅增加。本文介绍了未经处理的蛋壳从水溶液中吸附金属的不同方面。在所有审查的数据中,预处理程序和测试的吸附参数差异很大,这为结果提供了差异来源。对于未经处理的蛋壳,报告的 BET 表面积范围从 0.07 m2/g 到 8.941 m2/g。颗粒大小与 BET 表面积之间的相关性已得到强调。比较了未经处理的蛋壳的去除率。报告结果表明,蛋壳最适用于去除水溶液中的铅(II)、镉(II)和铜(II)。蛋壳去除主族元素金属离子的能力也得到了证实。虽然结果看起来很有希望,但目前还没有足够的数据来对蛋壳去除其他(主要是过渡)金属离子的效率做出可靠的结论,因此这也是一个可能的研究方向。根据报告的数据,涉及多种去除途径。已对几种蛋壳改性方法和仅使用蛋壳作为部分原材料制造新吸附剂的可能性进行了评估。最后,对已报道的蛋壳改性方法进行了评估,很明显,要比较不同材料作为吸附剂的效果,仅比较材料的吸附能力是不够的。某些利用吸附去除环境水污染的研究需要进一步研究,如水溶液、不同加工用水甚至废水中的金属离子规格。
{"title":"Pattern identification in data about unmodified waste eggshell application as an adsorbent for metal ion removal from aqueous media","authors":"Pavels Sics, Daina Kalnina, Aviva Levina","doi":"10.1515/revce-2023-0025","DOIUrl":"https://doi.org/10.1515/revce-2023-0025","url":null,"abstract":"In recent years, a significant increase in the amount of research published about the application of eggshells for the removal of metal ions from aqueous solutions has been observed. The paper presents different aspects of metal adsorption from aqueous solutions on untreated eggshells. Pretreatment procedures and tested parameters for the adsorption differ significantly across all the reviewed data, providing a source of variance for the results. For untreated eggshells, the range of the reported BET surface area is from 0.07 m<jats:sup>2</jats:sup>/g to 8.941 m<jats:sup>2</jats:sup>/g. Correlation between particle size and BET surface area has been highlighted. Reported removal efficiencies for the untreated eggshell have been compared. Reported results show that eggshell is most employed for the removal of Pb(II), Cd(II), and Cu(II) from aqueous solutions. Eggshell capacity to remove metal ions from the main group elements has also been demonstrated. While results look promising, not enough data are present to make reliable conclusions about its efficiency with other (mainly transition) metal ions – which makes it a possible research direction. Based on the reported data, multiple removal pathways are involved. Several eggshell modification methods and possibilities of creating new adsorbents using eggshells only as a part of the raw material have been assessed. Finally reported eggshell modification methods have been assessed and it is clear that to compare different material’s effectiveness as an adsorbent, comparing only materials adsorption capacities is insufficient. Certain environmental water pollution removal studies using adsorption demand further study, such as metal ion specification in aqueous solution, in different processing water, and even in wastewater.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"2 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140135942","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hebatullah H. Farghal, Marianne Nebsen, Lee Blaney, Mayyada M. H. El-Sayed
Carbamazepine (CBZ) is a contaminant of emerging concern that is persistent in water and wastewater. At low concentrations, prolonged exposure to CBZ-containing water causes detrimental health effects to humans and may also have negative impacts on the environment. Here we critically review new treatment approaches to decrease CBZ concentrations in water and wastewater. First, we summarize the transformation pathways of CBZ in the aquatic environment and identify the corresponding products. Then, we describe the removal of CBZ and structurally-related pharmaceuticals by phototransformation, biotransformation, and adsorption processes, with an emphasis on the application of naturally- and biologically-derived nanoporous adsorbents, such as agricultural wastes, natural polymers, activated carbon, metal organic frameworks, silicas, and molecularly imprinted polymers. Biologically-derived activated carbons exhibited the highest adsorption capacities for CBZ, with adsorption predominantly occurring through hydrophobic and π–π interactions. CBZ was also effectively treated using titanium dioxide and other inorganic photocatalysts. This review not only provides a critical synthesis of state-of-the-art adsorption and degradation processes for CBZ and structurally-related pharmaceuticals, but also proposes knowledge gaps and future research directions.
{"title":"Treatment of carbamazepine and other structurally-related pharmaceuticals in water and wastewater by nanoporous adsorbents and photocatalysts: a critical review","authors":"Hebatullah H. Farghal, Marianne Nebsen, Lee Blaney, Mayyada M. H. El-Sayed","doi":"10.1515/revce-2023-0038","DOIUrl":"https://doi.org/10.1515/revce-2023-0038","url":null,"abstract":"Carbamazepine (CBZ) is a contaminant of emerging concern that is persistent in water and wastewater. At low concentrations, prolonged exposure to CBZ-containing water causes detrimental health effects to humans and may also have negative impacts on the environment. Here we critically review new treatment approaches to decrease CBZ concentrations in water and wastewater. First, we summarize the transformation pathways of CBZ in the aquatic environment and identify the corresponding products. Then, we describe the removal of CBZ and structurally-related pharmaceuticals by phototransformation, biotransformation, and adsorption processes, with an emphasis on the application of naturally- and biologically-derived nanoporous adsorbents, such as agricultural wastes, natural polymers, activated carbon, metal organic frameworks, silicas, and molecularly imprinted polymers. Biologically-derived activated carbons exhibited the highest adsorption capacities for CBZ, with adsorption predominantly occurring through hydrophobic and π–π interactions. CBZ was also effectively treated using titanium dioxide and other inorganic photocatalysts. This review not only provides a critical synthesis of state-of-the-art adsorption and degradation processes for CBZ and structurally-related pharmaceuticals, but also proposes knowledge gaps and future research directions.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"39 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139945333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The polymer obtained from hydrophilic monomers can be transformed into a hydrogel via cross-linking by different cross-linkers. Hydrogels are three-dimensional networks that can absorb several times their weight and swell in water/swelling media, improving the media’s viscosity as a thickener. The cross-linked poly(acrylic acid) microparticles prepared via precipitation polymerization technique are often synthesized by radical polymerization and have carboxylic functional groups in their structure, which make the hydrogel properties such as swelling capacity, particle morphology, and viscosity be controlled by physical factors such as solvent, neutralizer, pH, pKa, zeta potential, and ionic strength of the swelling media, as well as synthetic factors including comonomer, cross-linker, and network type. In this paper, the effects of crucial factors on the synthetic and swelling steps are elaborated to facilitate the achievement of poly(acrylic acid)-based xerogels having desirable rheological properties, such as swelling/viscosity optimization, which is the primary purpose of a thickener in any swelling media.
{"title":"The effects of synthetic and physical factors on the properties of poly(acrylic acid)-based hydrogels synthesized by precipitation polymerization technique: a review","authors":"Sahar Farqazrazi, Manouchehr Khorasani","doi":"10.1515/revce-2023-0052","DOIUrl":"https://doi.org/10.1515/revce-2023-0052","url":null,"abstract":"The polymer obtained from hydrophilic monomers can be transformed into a hydrogel via cross-linking by different cross-linkers. Hydrogels are three-dimensional networks that can absorb several times their weight and swell in water/swelling media, improving the media’s viscosity as a thickener. The cross-linked poly(acrylic acid) microparticles prepared via precipitation polymerization technique are often synthesized by radical polymerization and have carboxylic functional groups in their structure, which make the hydrogel properties such as swelling capacity, particle morphology, and viscosity be controlled by physical factors such as solvent, neutralizer, <jats:italic>pH</jats:italic>, <jats:italic>pK</jats:italic> <jats:sub> <jats:italic>a</jats:italic> </jats:sub>, zeta potential, and ionic strength of the swelling media, as well as synthetic factors including comonomer, cross-linker, and network type. In this paper, the effects of crucial factors on the synthetic and swelling steps are elaborated to facilitate the achievement of poly(acrylic acid)-based xerogels having desirable rheological properties, such as swelling/viscosity optimization, which is the primary purpose of a thickener in any swelling media.","PeriodicalId":54485,"journal":{"name":"Reviews in Chemical Engineering","volume":"172 1","pages":""},"PeriodicalIF":4.7,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139909988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}