Pub Date : 2024-05-01DOI: 10.1016/j.paerosci.2024.101017
Chenbao Xue , Han Cai , Steve Gehly , Moriba Jah , Jingrui Zhang
To ensure the secure operation of space assets, it is crucial to employ ground and/or space-based surveillance sensors to observe a diverse array of anthropogenic space objects (ASOs). This enables the monitoring of abnormal behavior and facilitates the timely identification of potential risks, thereby enabling the provision of continuous and effective Space Situational Awareness (SSA) services. One of the primary challenges in this endeavor lies in optimizing the tasking of surveillance sensors to maximize SSA capabilities. However, the complexity of the space environment, the vast number of ASOs, and the limitations imposed by available sensor resources present significant obstacles to effective sensor management. To tackle these challenges, various sensor tasking methods have been developed over the past few decades. In this paper, we comprehensively outline the fundamental characteristics of sensor tasking missions, and later examine the corresponding objective functions and algorithms employed for efficient optimization, respectively. Furthermore, we explore the practical application of sensor tasking methods in diverse organizations and provide insights into potential directions for future research, aiming to stimulate further advancements in this field.
{"title":"Review of sensor tasking methods in Space Situational Awareness","authors":"Chenbao Xue , Han Cai , Steve Gehly , Moriba Jah , Jingrui Zhang","doi":"10.1016/j.paerosci.2024.101017","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101017","url":null,"abstract":"<div><p>To ensure the secure operation of space assets, it is crucial to employ ground and/or space-based surveillance sensors to observe a diverse array of anthropogenic space objects (ASOs). This enables the monitoring of abnormal behavior and facilitates the timely identification of potential risks, thereby enabling the provision of continuous and effective Space Situational Awareness (SSA) services. One of the primary challenges in this endeavor lies in optimizing the tasking of surveillance sensors to maximize SSA capabilities. However, the complexity of the space environment, the vast number of ASOs, and the limitations imposed by available sensor resources present significant obstacles to effective sensor management. To tackle these challenges, various sensor tasking methods have been developed over the past few decades. In this paper, we comprehensively outline the fundamental characteristics of sensor tasking missions, and later examine the corresponding objective functions and algorithms employed for efficient optimization, respectively. Furthermore, we explore the practical application of sensor tasking methods in diverse organizations and provide insights into potential directions for future research, aiming to stimulate further advancements in this field.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101017"},"PeriodicalIF":9.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141323366","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.paerosci.2024.101019
Brian Baker-McEvilly , Surabhi Bhadauria , David Canales , Carolin Frueh
The Cislunar region is crucial for expanding human presence in space in the forthcoming decades. This paper presents a comprehensive review of recent and anticipated Earth–Moon missions, and ongoing space domain awareness initiatives. An introduction to the dynamics as well as periodic trajectories in the Cislunar realm is presented. Then, a review of modern Cislunar programs as well as smaller missions are compiled to provide insights into the key players pushing towards the Moon. Trends of Cislunar missions and practices are identified, including the identification of regions of interest, such as the South Pole and the Near-rectilinear halo orbit. Finally, a review of the current state and short-comings of space domain awareness (SDA) in the region is included, utilizing the regions of interest as focal points for required improvement. The SDA review is completed through the analysis of the Artemis 1 trajectory.
{"title":"A comprehensive review on Cislunar expansion and space domain awareness","authors":"Brian Baker-McEvilly , Surabhi Bhadauria , David Canales , Carolin Frueh","doi":"10.1016/j.paerosci.2024.101019","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101019","url":null,"abstract":"<div><p>The Cislunar region is crucial for expanding human presence in space in the forthcoming decades. This paper presents a comprehensive review of recent and anticipated Earth–Moon missions, and ongoing space domain awareness initiatives. An introduction to the dynamics as well as periodic trajectories in the Cislunar realm is presented. Then, a review of modern Cislunar programs as well as smaller missions are compiled to provide insights into the key players pushing towards the Moon. Trends of Cislunar missions and practices are identified, including the identification of regions of interest, such as the South Pole and the Near-rectilinear halo orbit. Finally, a review of the current state and short-comings of space domain awareness (SDA) in the region is included, utilizing the regions of interest as focal points for required improvement. The SDA review is completed through the analysis of the Artemis 1 trajectory.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101019"},"PeriodicalIF":11.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141541311","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.paerosci.2024.100998
James M. Luckring , Arthur Rizzi
Concentrated vortex flows contribute to the aerodynamic performance of aircraft at elevated load conditions. For military interests, the vortex flows are exploited at maneuver conditions of combat aircraft and missiles. For transport interests, the vortex flows are exploited at takeoff and landing conditions as well as at select transonic conditions. Aircraft applications of these vortex flows are reviewed with a historical perspective followed by a discussion of the underlying physics of a concentrated vortex flow. A hierarchy of computational fluid dynamics simulation technology is then presented followed by findings from a capability survey for predicting concentrated vortex flows with computational fluid dynamics. Results are focused on military and civil fixed-wing aircraft; only limited results are included for missiles, and rotary-wing applications are not assessed. Opportunities for predictive capability advancement are then reported with comments related to digital transformation interests. A hierarchical approach that merges a physics-based perspective of the concentrated vortex flows with a systems engineering viewpoint of the air vehicle is also used to frame much of the discussion.
{"title":"Prediction of concentrated vortex aerodynamics: Current CFD capability survey","authors":"James M. Luckring , Arthur Rizzi","doi":"10.1016/j.paerosci.2024.100998","DOIUrl":"10.1016/j.paerosci.2024.100998","url":null,"abstract":"<div><p>Concentrated vortex flows contribute to the aerodynamic performance of aircraft at elevated load conditions. For military interests, the vortex flows are exploited at maneuver conditions of combat aircraft and missiles. For transport interests, the vortex flows are exploited at takeoff and landing conditions as well as at select transonic conditions. Aircraft applications of these vortex flows are reviewed with a historical perspective followed by a discussion of the underlying physics of a concentrated vortex flow. A hierarchy of computational fluid dynamics simulation technology is then presented followed by findings from a capability survey for predicting concentrated vortex flows with computational fluid dynamics. Results are focused on military and civil fixed-wing aircraft; only limited results are included for missiles, and rotary-wing applications are not assessed. Opportunities for predictive capability advancement are then reported with comments related to digital transformation interests. A hierarchical approach that merges a physics-based perspective of the concentrated vortex flows with a systems engineering viewpoint of the air vehicle is also used to frame much of the discussion.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 100998"},"PeriodicalIF":11.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042124000241/pdfft?md5=574b1e6a49905460d7e136edfe935f5f&pid=1-s2.0-S0376042124000241-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141557057","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.paerosci.2024.101008
A. Zolghadri
The academic community has extensively studied fault management in dynamical and cyber-physical systems, leading to the development of various model-based and data-driven/learning-enabled methods. Although these advanced designs show promise for improving conventional practices in aircraft systems, there is a noticeable disparity between academic methodologies and the specific needs of the aviation industry. The paper begins with an examination of the current practices within the aviation industry alongside the academic state of the art. It highlights commonly overlooked issues that hinder the transition from laboratory development to practical flight applications. Looking ahead, the paper anticipates evolving needs driven by the transition towards greater autonomy and intelligence within connected and distributed cyber-physical flight environments. This includes the emerging trend towards the introduction of Single Pilot Operations (SPO). The paper presents an outline of a combined model-based/data-driven vision, under human oversight, to navigate this complex transition.
{"title":"A review of fault management issues in aircraft systems: Current status and future directions","authors":"A. Zolghadri","doi":"10.1016/j.paerosci.2024.101008","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101008","url":null,"abstract":"<div><p>The academic community has extensively studied fault management in dynamical and cyber-physical systems, leading to the development of various model-based and data-driven/learning-enabled methods. Although these advanced designs show promise for improving conventional practices in aircraft systems, there is a noticeable disparity between academic methodologies and the specific needs of the aviation industry. The paper begins with an examination of the current practices within the aviation industry alongside the academic state of the art. It highlights commonly overlooked issues that hinder the transition from laboratory development to practical flight applications. Looking ahead, the paper anticipates evolving needs driven by the transition towards greater autonomy and intelligence within connected and distributed cyber-physical flight environments. This includes the emerging trend towards the introduction of Single Pilot Operations (SPO). The paper presents an outline of a combined model-based/data-driven vision, under human oversight, to navigate this complex transition.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101008"},"PeriodicalIF":9.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140894119","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.paerosci.2024.101020
Bo Zhang
Compared with traditional deflagration-based systems, detonation-based propulsion systems offer significant potential benefits in terms of efficiency and specific impulses in the field of advanced aerospace propulsion technologies. However, the successful implementation of these technologies faces several key challenges, particularly in achieving reliable, stable, and robust detonation wave propagation. This paper examines the use of Jet in Cross-Flow (JICF) as a means of enhancing detonation propulsion performance. The fundamental principles of the three main detonation propulsion systems are first outlined, along with the primary techniques employed to stimulate detonation wave propagation, such as the use of solid and fluidic obstacles. This paper provides an in-depth analysis of how JICF can be leveraged to improve the deflagration-to-detonation transition (DDT) and overall detonation propulsion. The influences of key JICF parameters, including the jet delay time, pressure, temperature, nozzle width, and location, are investigated in detail. The underlying flow physics and mechanisms by which the JICF enhances detonation are also explored, encompassing the formation of precursor shock waves, flow instabilities, flame evolution dynamics, etc. Finally, the practical application of the JICF in different detonation engines is discussed, highlighting the benefits it can provide in terms of improved operation, efficiency, and reliability. The current research challenges and future research directions for the application of JICF in detonation propulsion are discussed. The results present a thorough and up-to-date assessment of the state-of-the-art in utilizing JICF to advance the development of high-performance detonation-based propulsion systems.
{"title":"Enhancing detonation propulsion with jet in cross-flow: A comprehensive review","authors":"Bo Zhang","doi":"10.1016/j.paerosci.2024.101020","DOIUrl":"10.1016/j.paerosci.2024.101020","url":null,"abstract":"<div><p><span>Compared with traditional deflagration-based systems, detonation-based propulsion systems<span><span><span> offer significant potential benefits in terms of efficiency and specific impulses in the field of advanced aerospace propulsion technologies. However, the successful implementation of these technologies faces several key challenges, particularly in achieving reliable, stable, and robust </span>detonation wave<span> propagation. This paper examines the use of Jet in Cross-Flow (JICF) as a means of enhancing detonation propulsion performance. The fundamental principles of the three main detonation propulsion systems are first outlined, along with the primary techniques employed to stimulate detonation wave propagation, such as the use of solid and </span></span>fluidic obstacles. This paper provides an in-depth analysis of how JICF can be leveraged to improve the deflagration-to-detonation transition (DDT) and overall detonation propulsion. The influences of key JICF parameters, including the jet delay time, pressure, temperature, nozzle width, and location, are investigated in detail. The underlying flow </span></span>physics and mechanisms by which the JICF enhances detonation are also explored, encompassing the formation of precursor shock waves, flow instabilities, flame evolution dynamics, etc. Finally, the practical application of the JICF in different detonation engines is discussed, highlighting the benefits it can provide in terms of improved operation, efficiency, and reliability. The current research challenges and future research directions for the application of JICF in detonation propulsion are discussed. The results present a thorough and up-to-date assessment of the state-of-the-art in utilizing JICF to advance the development of high-performance detonation-based propulsion systems.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101020"},"PeriodicalIF":11.5,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141945337","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-05-01DOI: 10.1016/j.paerosci.2024.101018
Jie Yuan , Chiara Gastaldi , Enora Denimal Goy , Benjamin Chouvion
This paper presents a comprehensive review of recent advancements in modelling approaches, design strategies, and testing techniques applied to friction damping in turbomachinery. It critically evaluates experimental testing, design processes, and optimisation studies, along with the latest developments in numerical modelling techniques. The review begins with an overview of vibration mitigation methods and the historical development of friction dampers for bladed disk systems. Subsequent sections explore research efforts aimed at enhancing numerical and simulation modelling capabilities, encompassing contact friction models, reduced-order modelling methods, and numerical solvers suitable for real-world applications and industrial high-fidelity models. The paper also delves into available testing rigs for experimental validation and characterisation of various friction damper types, as well as the literature on uncertainty quantification in friction damping. It concludes by highlighting recent trends in novel concepts, modelling techniques, and testing technologies shaping the design of next-generation friction dampers.
{"title":"Friction damping for turbomachinery: A comprehensive review of modelling, design strategies, and testing capabilities","authors":"Jie Yuan , Chiara Gastaldi , Enora Denimal Goy , Benjamin Chouvion","doi":"10.1016/j.paerosci.2024.101018","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101018","url":null,"abstract":"<div><p>This paper presents a comprehensive review of recent advancements in modelling approaches, design strategies, and testing techniques applied to friction damping in turbomachinery. It critically evaluates experimental testing, design processes, and optimisation studies, along with the latest developments in numerical modelling techniques. The review begins with an overview of vibration mitigation methods and the historical development of friction dampers for bladed disk systems. Subsequent sections explore research efforts aimed at enhancing numerical and simulation modelling capabilities, encompassing contact friction models, reduced-order modelling methods, and numerical solvers suitable for real-world applications and industrial high-fidelity models. The paper also delves into available testing rigs for experimental validation and characterisation of various friction damper types, as well as the literature on uncertainty quantification in friction damping. It concludes by highlighting recent trends in novel concepts, modelling techniques, and testing technologies shaping the design of next-generation friction dampers.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"147 ","pages":"Article 101018"},"PeriodicalIF":9.6,"publicationDate":"2024-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042124000447/pdfft?md5=86f88d315071120aa1d1bdfaa67b6d6e&pid=1-s2.0-S0376042124000447-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141429748","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1016/j.paerosci.2024.100999
Dominique S. Hoskin, R. Loek Van Heyningen, Ngoc Cuong Nguyen, Jordi Vila-Pérez, Wesley L. Harris, Jaime Peraire
In recent years, high-order discontinuous Galerkin (DG) methods have emerged as an attractive approach for numerical simulations of compressible flows. This paper presents an overview of the recent development of DG methods for compressible flows with particular focus on hypersonic flows. First, we survey state-of-the-art DG methods for computational fluid dynamics. Next, we discuss both matrix-based and matrix-free iterative methods for the solution of discrete systems stemming from the spatial DG discretizations of the compressible Navier–Stokes equations. We then describe various shock capturing methods to deal with strong shock waves in hypersonic flows. We discuss adaptivity techniques to refine high-order meshes, and synthetic boundary conditions to simulate free-stream disturbances in hypersonic boundary layers. We present a few examples to demonstrate the ability of high-order DG methods to provide accurate solutions of hypersonic laminar flows. Furthermore, we present direct numerical simulations of hypersonic transitional flow past a flared cone at Reynolds number , and hypersonic transitional shock wave boundary layer interaction flow over a flat plate at Reynolds number . These simulations run entirely on hundreds of graphics processing units (GPUs) and demonstrate the ability of DG methods to directly resolve hypersonic transitional flows, even at high Reynolds numbers, without relying on transition or turbulence models. We end the paper by offering our perspectives on error estimation, turbulence modeling, and real gas effects in hypersonic flows.
{"title":"Discontinuous Galerkin methods for hypersonic flows","authors":"Dominique S. Hoskin, R. Loek Van Heyningen, Ngoc Cuong Nguyen, Jordi Vila-Pérez, Wesley L. Harris, Jaime Peraire","doi":"10.1016/j.paerosci.2024.100999","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.100999","url":null,"abstract":"<div><p>In recent years, high-order discontinuous Galerkin (DG) methods have emerged as an attractive approach for numerical simulations of compressible flows. This paper presents an overview of the recent development of DG methods for compressible flows with particular focus on hypersonic flows. First, we survey state-of-the-art DG methods for computational fluid dynamics. Next, we discuss both matrix-based and matrix-free iterative methods for the solution of discrete systems stemming from the spatial DG discretizations of the compressible Navier–Stokes equations. We then describe various shock capturing methods to deal with strong shock waves in hypersonic flows. We discuss adaptivity techniques to refine high-order meshes, and synthetic boundary conditions to simulate free-stream disturbances in hypersonic boundary layers. We present a few examples to demonstrate the ability of high-order DG methods to provide accurate solutions of hypersonic laminar flows. Furthermore, we present direct numerical simulations of hypersonic transitional flow past a flared cone at Reynolds number <span><math><mrow><mn>10</mn><mo>.</mo><mn>8</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>, and hypersonic transitional shock wave boundary layer interaction flow over a flat plate at Reynolds number <span><math><mrow><mn>3</mn><mo>.</mo><mn>97</mn><mo>×</mo><mn>1</mn><msup><mrow><mn>0</mn></mrow><mrow><mn>6</mn></mrow></msup></mrow></math></span>. These simulations run entirely on hundreds of graphics processing units (GPUs) and demonstrate the ability of DG methods to directly resolve hypersonic transitional flows, even at high Reynolds numbers, without relying on transition or turbulence models. We end the paper by offering our perspectives on error estimation, turbulence modeling, and real gas effects in hypersonic flows.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 100999"},"PeriodicalIF":9.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140619973","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-04-01DOI: 10.1016/j.paerosci.2024.101007
Zhonghua Han , Jianling Qiao , Liwen Zhang , Qing Chen , Han Yang , Yulin Ding , Keshi Zhang , Wenping Song , Bifeng Song
Reducing the sonic boom to a community-acceptable level is a fundamental challenge in the configuration design of the next-generation supersonic transport aircraft. This paper conducts a survey of recent progress in developing efficient low-boom design and optimization methods, and provides a perspective on the state-of-the-art and future directions. First, the low- and high-fidelity sonic boom prediction methods used in metric of low-boom design are briefly introduced. Second, efficient low-boom inverse design methods are reviewed, such as the classic Jones–Seebass–George–Darden (JSGD) method (and its variants), the high-fidelity near-field-overpressure-based method, and the mixed-fidelity method. Third, direct numerical optimization methods for low-boom designs, including the gradient-, surrogate-, and deep-learning-based optimization methods, are reviewed. Fourth, the applications of low-boom design and optimization methods to representative low-boom configurations are discussed, and the challenging demands for commercially viable supersonic transports are presented. In addition to providing a comprehensive summary of the existing research, the practicality and effectiveness of the developed methods are assessed. Finally, key challenges are identified, and further research directions such as full-carpet-low-boom-driven multidisciplinary design optimization considering mission requirements are recommended.
{"title":"Recent progress of efficient low-boom design and optimization methods","authors":"Zhonghua Han , Jianling Qiao , Liwen Zhang , Qing Chen , Han Yang , Yulin Ding , Keshi Zhang , Wenping Song , Bifeng Song","doi":"10.1016/j.paerosci.2024.101007","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101007","url":null,"abstract":"<div><p>Reducing the sonic boom to a community-acceptable level is a fundamental challenge in the configuration design of the next-generation supersonic transport aircraft. This paper conducts a survey of recent progress in developing efficient low-boom design and optimization methods, and provides a perspective on the state-of-the-art and future directions. First, the low- and high-fidelity sonic boom prediction methods used in metric of low-boom design are briefly introduced. Second, efficient low-boom inverse design methods are reviewed, such as the classic Jones–Seebass–George–Darden (JSGD) method (and its variants), the high-fidelity near-field-overpressure-based method, and the mixed-fidelity method. Third, direct numerical optimization methods for low-boom designs, including the gradient-, surrogate-, and deep-learning-based optimization methods, are reviewed. Fourth, the applications of low-boom design and optimization methods to representative low-boom configurations are discussed, and the challenging demands for commercially viable supersonic transports are presented. In addition to providing a comprehensive summary of the existing research, the practicality and effectiveness of the developed methods are assessed. Finally, key challenges are identified, and further research directions such as full-carpet-low-boom-driven multidisciplinary design optimization considering mission requirements are recommended.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 101007"},"PeriodicalIF":9.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0376042124000332/pdfft?md5=1c50a50d52fa19275511969b31171690&pid=1-s2.0-S0376042124000332-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140880158","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The history of satellite development is at an inflection point: around half of all countries have made and launched satellites, while another half has not. In this context, the time appears right to take stock of lessons learnt from the development of country-first domestic satellites. These are defined as the first to have been designed, assembled, integrated, and/or tested with significant input from local engineers. This paper reviews, for the first time, the genealogy of the 90 country-first domestic satellites launched into orbit to date. The comprehensive, trans-disciplinary analysis is based on an extensive literature review in multiple languages. Firstly, a family tree of country-first domestic satellites is constructed, mapping out important stakeholders and lineages. Four major generations are identified. Although country-first domestic satellites are often associated with domestic identity, they are without exception the product of international collaboration and technological exchanges. In parallel, a growing global market for satellite development and launch services has played an increasingly important role in their development even in the absence of official country-to-country collaborations. Secondly, the birth traits, life, death, and legacy of such satellites is reviewed in detail. Sustainability of the Earth’s orbital environment has typically not been prioritised by mission teams. Most countries having developed a first domestic satellite have also developed a second, but there have been more one-off firsts since the 1990s: microsatellites and CubeSats can be used to test the waters of space engineering without having to make a big commitment. Looking to the future, access to a domestic satellite is becoming easier and easier. The challenge is instead shifting towards ensuring that such an initiative is actually aligned with domestic industry, technologies, and STEM education, as well as sustainability of the Earth’s orbital environment. Long-term planning and vision are important in this regard. It is hoped that this review paper will provide a useful reference point for space historians, policymakers, and the pioneers of diverse new satellite missions.
{"title":"Country-first domestic satellites: A family tree","authors":"Maximilien Berthet , Shinichi Nakasuka , Mengu Cho , Kojiro Suzuki","doi":"10.1016/j.paerosci.2024.100997","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.100997","url":null,"abstract":"<div><p>The history of satellite development is at an inflection point: around half of all countries have made and launched satellites, while another half has not. In this context, the time appears right to take stock of lessons learnt from the development of country-first domestic satellites. These are defined as the first to have been designed, assembled, integrated, and/or tested with significant input from local engineers. This paper reviews, for the first time, the genealogy of the 90 country-first domestic satellites launched into orbit to date. The comprehensive, trans-disciplinary analysis is based on an extensive literature review in multiple languages. Firstly, a family tree of country-first domestic satellites is constructed, mapping out important stakeholders and lineages. Four major generations are identified. Although country-first domestic satellites are often associated with domestic identity, they are without exception the product of international collaboration and technological exchanges. In parallel, a growing global market for satellite development and launch services has played an increasingly important role in their development even in the absence of official country-to-country collaborations. Secondly, the birth traits, life, death, and legacy of such satellites is reviewed in detail. Sustainability of the Earth’s orbital environment has typically not been prioritised by mission teams. Most countries having developed a first domestic satellite have also developed a second, but there have been more one-off firsts since the 1990s: microsatellites and CubeSats can be used to test the waters of space engineering without having to make a big commitment. Looking to the future, access to a domestic satellite is becoming easier and easier. The challenge is instead shifting towards ensuring that such an initiative is actually aligned with domestic industry, technologies, and STEM education, as well as sustainability of the Earth’s orbital environment. Long-term planning and vision are important in this regard. It is hoped that this review paper will provide a useful reference point for space historians, policymakers, and the pioneers of diverse new satellite missions.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 100997"},"PeriodicalIF":9.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140547147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
This review article offers an in-depth analysis of cooperative motion planning and control in aerial-ground autonomous systems, emphasizing their methods and applications. It explores the integration of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), focusing on their synchronized planning and control mechanisms that enable efficient task execution in various settings, such as disaster response, environmental monitoring, and urban surveillance. The article addresses the motion planning strategies, and control mechanisms, while also highlighting the challenges and future trends in this domain. It serves as a comprehensive resource, shedding light on both the potentials and limitations of these systems, thereby providing valuable insights for researchers and practitioners in the field of autonomous systems.
{"title":"Cooperative motion planning and control for aerial-ground autonomous systems: Methods and applications","authors":"Runqi Chai , Yunlong Guo , Zongyu Zuo , Kaiyuan Chen , Hyo-Sang Shin , Antonios Tsourdos","doi":"10.1016/j.paerosci.2024.101005","DOIUrl":"https://doi.org/10.1016/j.paerosci.2024.101005","url":null,"abstract":"<div><p>This review article offers an in-depth analysis of cooperative motion planning and control in aerial-ground autonomous systems, emphasizing their methods and applications. It explores the integration of unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs), focusing on their synchronized planning and control mechanisms that enable efficient task execution in various settings, such as disaster response, environmental monitoring, and urban surveillance. The article addresses the motion planning strategies, and control mechanisms, while also highlighting the challenges and future trends in this domain. It serves as a comprehensive resource, shedding light on both the potentials and limitations of these systems, thereby providing valuable insights for researchers and practitioners in the field of autonomous systems.</p></div>","PeriodicalId":54553,"journal":{"name":"Progress in Aerospace Sciences","volume":"146 ","pages":"Article 101005"},"PeriodicalIF":9.6,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140548834","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}