首页 > 最新文献

Proceedings of the Royal Society of Edinburgh Section A-Mathematics最新文献

英文 中文
Regular matrices of unbounded linear operators 无界线性算子的正规矩阵
IF 1.3 3区 数学 Q1 Mathematics Pub Date : 2024-01-31 DOI: 10.1017/prm.2024.1
Paolo Leonetti

Let $X,,Y$ be Banach spaces and fix a linear operator $T in mathcal {L}(X,,Y)$ and ideals $mathcal {I},, mathcal {J}$ on the nonnegative integers. We obtain Silverman–Toeplitz type theorems on matrices $A=(A_{n,k}: n,,k in omega )$ of linear operators in $mathcal {L}(X,,Y)$, so that[ mathcal{J}text{-}lim Aboldsymbol{x}=T(mathcal{I}text{-}lim boldsymbol{x}) ]for every $X$-valued sequence $boldsymbol {x}=(x_0,,x_1,,ldots )$ which is $mathcal {I}$-convergent (and bounded). This allows us to establish the relationship between the classical Silv

让 $X,,Y$ 是巴拿赫空间,并在mathcal {L}(X,,Y)$ 中固定一个线性算子 $T 和在非负整数上的理想 $mathcal {I},, mathcal {J}$ 。我们得到了关于矩阵 $A=(A_{n,k}:在$mathcal{L}(X,,Y)$中的线性算子的$A=(A_{n,k}: (n,,k 在omega中))$,所以[mathcal{J}text{-}lim Aboldsymbol{x}=T(mathcal{I}text{-}limboldsymbol{x}) ]对于每一个$X$值序列$boldsymbol{x}=(x_0、是 $mathcal {I}$ 收敛的(并且是有界的)。这样,我们就可以建立正则矩阵的经典西尔弗曼-托普利兹特征描述与它在双序列中的多维相似性、它在线性算子矩阵中的变体,以及在理想收敛背景下的最新版本(标量情形)之间的关系。作为副产品,我们得到了几个矩阵类的特征和经典哈恩-舒尔定理的广义。在证明中,我们使用了德邦特和韦尔纳夫最近得到的巴纳赫-斯泰恩豪斯定理的理想版本[《数学分析应用》495 (2021)]。
{"title":"Regular matrices of unbounded linear operators","authors":"Paolo Leonetti","doi":"10.1017/prm.2024.1","DOIUrl":"https://doi.org/10.1017/prm.2024.1","url":null,"abstract":"<p>Let <span><span><span data-mathjax-type=\"texmath\"><span>$X,,Y$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline1.png\"/></span></span> be Banach spaces and fix a linear operator <span><span><span data-mathjax-type=\"texmath\"><span>$T in mathcal {L}(X,,Y)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline2.png\"/></span></span> and ideals <span><span><span data-mathjax-type=\"texmath\"><span>$mathcal {I},, mathcal {J}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline3.png\"/></span></span> on the nonnegative integers. We obtain Silverman–Toeplitz type theorems on matrices <span><span><span data-mathjax-type=\"texmath\"><span>$A=(A_{n,k}: n,,k in omega )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline4.png\"/></span></span> of linear operators in <span><span><span data-mathjax-type=\"texmath\"><span>$mathcal {L}(X,,Y)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline5.png\"/></span></span>, so that<span><span data-mathjax-type=\"texmath\"><span>[ mathcal{J}text{-}lim Aboldsymbol{x}=T(mathcal{I}text{-}lim boldsymbol{x}) ]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_eqnU1.png\"/></span>for every <span><span><span data-mathjax-type=\"texmath\"><span>$X$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline6.png\"/></span></span>-valued sequence <span><span><span data-mathjax-type=\"texmath\"><span>$boldsymbol {x}=(x_0,,x_1,,ldots )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline7.png\"/></span></span> which is <span><span><span data-mathjax-type=\"texmath\"><span>$mathcal {I}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240130151803585-0502:S0308210524000015:S0308210524000015_inline8.png\"/></span></span>-convergent (and bounded). This allows us to establish the relationship between the classical Silv","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"32 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139647939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Karamata's theorem for regularized Cauchy transforms 正则化考奇变换的卡拉马塔定理
IF 1.3 3区 数学 Q1 Mathematics Pub Date : 2024-01-26 DOI: 10.1017/prm.2023.128
Matthias Langer, Harald Woracek
We prove Abelian and Tauberian theorems for regularized Cauchy transforms of positive Borel measures on the real line whose distribution functions grow at most polynomially at infinity. In particular, we relate the asymptotics of the distribution functions to the asymptotics of the regularized Cauchy transform.
我们证明了实线上分布函数在无穷大处最多增长的正波罗计量的正则化考希变换的阿贝尔定理和陶伯定理。特别是,我们将分布函数的渐近线与正则化考希变换的渐近线联系起来。
{"title":"Karamata's theorem for regularized Cauchy transforms","authors":"Matthias Langer, Harald Woracek","doi":"10.1017/prm.2023.128","DOIUrl":"https://doi.org/10.1017/prm.2023.128","url":null,"abstract":"We prove Abelian and Tauberian theorems for regularized Cauchy transforms of positive Borel measures on the real line whose distribution functions grow at most polynomially at infinity. In particular, we relate the asymptotics of the distribution functions to the asymptotics of the regularized Cauchy transform.","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"101 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139585133","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
On generalized eigenvalue problems of fractional (p, q)-Laplace operator with two parameters 论带两个参数的分数(p,q)-拉普拉斯算子的广义特征值问题
IF 1.3 3区 数学 Q1 Mathematics Pub Date : 2024-01-22 DOI: 10.1017/prm.2023.134
Nirjan Biswas, Firoj Sk

For $s_1,,s_2in (0,,1)$ and $p,,q in (1,, infty )$, we study the following nonlinear Dirichlet eigenvalue problem with parameters $alpha,, beta in mathbb {R}$ driven by the sum of two nonlocal operators:[ (-Delta)^{s_1}_p u+(-Delta)^{s_2}_q u=alpha|u|^{p-2}u+beta|u|^{q-2}u text{in }Omega, quad u=0 text{in } mathbb{R}^d setminus Omega, quad mathrm{(P)} ]where $Omega subset mathbb {R}^d$ is a bounded open set. Depending on the values of $alpha,,beta$, we completely describe the existence and non-existence of positive solutions to (P). We construct a continuous threshold curve in the two-dimensional $(alpha,, beta )$-plane, which separates the regions of the existence and non-existence of positive solutions. In addition, we prove that the first Dirichlet eigenfunctions of the fractional $p$-Laplace and fractiona

对于 $s_1,s_2in (0,,1)$ 和 $p,,q in (1,, infty )$,我们研究了以下由两个非局部算子之和驱动的参数为 $alpha,, beta in mathbb {R}$ 的非线性迪里夏特特征值问题:(-Delta)^{s_1}_p u+(-Delta)^{s_2}_q u=alpha|u|^{p-2}u+beta|u|^{q-2}utext{in }Omega, quad u=0text{in }mathbb{R}^d setminus Omega, quad mathrm{(P)} ]其中 $Omega 子集 mathbb {R}^d$ 是一个有界的开集。根据 $alpha,,beta$ 的值,我们完整地描述了 (P) 正解的存在与不存在。我们在二维 $(alpha,,beta )$ 平面上构造了一条连续的阈值曲线,它将正解的存在与不存在区域分开。此外,我们证明了分数 $p$-Laplace 和分数 $q$-Laplace 算子的第一个 Dirichlet 特征函数是线性独立的,这对曲线的形成起着至关重要的作用。此外,我们还确定了 (P) 的每个非负解都是全局有界的。
{"title":"On generalized eigenvalue problems of fractional (p, q)-Laplace operator with two parameters","authors":"Nirjan Biswas, Firoj Sk","doi":"10.1017/prm.2023.134","DOIUrl":"https://doi.org/10.1017/prm.2023.134","url":null,"abstract":"<p>For <span><span><span data-mathjax-type=\"texmath\"><span>$s_1,,s_2in (0,,1)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline2.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$p,,q in (1,, infty )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline3.png\"/></span></span>, we study the following nonlinear Dirichlet eigenvalue problem with parameters <span><span><span data-mathjax-type=\"texmath\"><span>$alpha,, beta in mathbb {R}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline4.png\"/></span></span> driven by the sum of two nonlocal operators:<span><span data-mathjax-type=\"texmath\"><span>[ (-Delta)^{s_1}_p u+(-Delta)^{s_2}_q u=alpha|u|^{p-2}u+beta|u|^{q-2}u text{in }Omega, quad u=0 text{in } mathbb{R}^d setminus Omega, quad mathrm{(P)} ]</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_eqnU1.png\"/></span>where <span><span><span data-mathjax-type=\"texmath\"><span>$Omega subset mathbb {R}^d$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline5.png\"/></span></span> is a bounded open set. Depending on the values of <span><span><span data-mathjax-type=\"texmath\"><span>$alpha,,beta$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline6.png\"/></span></span>, we completely describe the existence and non-existence of positive solutions to (P). We construct a continuous threshold curve in the two-dimensional <span><span><span data-mathjax-type=\"texmath\"><span>$(alpha,, beta )$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline7.png\"/></span></span>-plane, which separates the regions of the existence and non-existence of positive solutions. In addition, we prove that the first Dirichlet eigenfunctions of the fractional <span><span><span data-mathjax-type=\"texmath\"><span>$p$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240120165804277-0267:S0308210523001348:S0308210523001348_inline8.png\"/></span></span>-Laplace and fractiona","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"57 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139517566","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Sharp gradient estimate, rigidity and almost rigidity of Green functions on non-parabolic RCD(0, N) spaces 非抛物线 RCD(0, N) 空间上格林函数的锐梯度估计、刚性和近似刚性
IF 1.3 3区 数学 Q1 Mathematics Pub Date : 2024-01-17 DOI: 10.1017/prm.2024.131
Shouhei Honda, Yuanlin Peng

Inspired by a result in T. H. Colding. (16). Acta. Math. 209(2) (2012), 229-263 [16] of Colding, the present paper studies the Green function $G$ on a non-parabolic $operatorname {RCD}(0,,N)$ space $(X,, mathsf {d},, mathfrak {m})$ for some finite $N>2$. Defining $mathsf {b}_x=G(x,, cdot )^{frac {1}{2-N}}$ for a point $x in X$, which plays a role of a smoothed distance function from $x$, we prove that the gradient $|nabla mathsf {b}_x|$ has the canonical pointwise representative with the sharp upper bound in terms of the $N$

灵感来自 T. H. Colding 的一个结果。(16).Acta.Math.209(2) (2012), 229-263 [16] of Colding, the present paper studies the Green function $G$ on a non-parabolic $operatorname {RCD}(0,,N)$ space $(X,, mathsf {d},, mathfrak {m})$ for some finite $N>2$.对于 X$ 中的点$x,定义$mathsf {b}_x=G(x,, cdot )^{frac {1}{2-N}}$ ,它起着从$x$出发的平滑距离函数的作用、我们证明梯度$|nabla mathsf {b}_x|$ 在$x$处的$mathfrak {m}$ 的$N$-体积密度$nu _x=lim _{rto 0^+}frac {mathfrak {m} (B_r(x))}{r^N}$ 具有具有尖锐上界的典型点代表;|nabla mathsf{b}_x|(y) le left(N(N-2)nu_xright)^{frac{1}{N-2}}, quad text{for any }y in X setminus {x}。]此外,我们还得到了刚性,即只有当且仅当空间与$operatorname {RCD}(N-2,, N-1)$空间上的$N$度量锥同构时,在$y in X setminus {x}$上的点才会达到上界。在 $x$ 是一个 $N$ 不规则点的情况下,刚度与 $N$ 维欧几里得空间 $mathbb {R}^N$ 同构,因此,这将科尔丁的结果扩展到了 $operatorname {RCD}(0,,N)$ 空间。需要强调的是,几乎刚性也得到了证明,这即使在光滑框架中也是新的。
{"title":"Sharp gradient estimate, rigidity and almost rigidity of Green functions on non-parabolic RCD(0, N) spaces","authors":"Shouhei Honda, Yuanlin Peng","doi":"10.1017/prm.2024.131","DOIUrl":"https://doi.org/10.1017/prm.2024.131","url":null,"abstract":"<p>Inspired by a result in T. H. Colding. (16). <span>Acta. Math.</span> <span>209</span>(2) (2012), 229-263 [16] of Colding, the present paper studies the Green function <span><span><span data-mathjax-type=\"texmath\"><span>$G$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline2.png\"/></span></span> on a non-parabolic <span><span><span data-mathjax-type=\"texmath\"><span>$operatorname {RCD}(0,,N)$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline3.png\"/></span></span> space <span><span><span data-mathjax-type=\"texmath\"><span>$(X,, mathsf {d},, mathfrak {m})$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline4.png\"/></span></span> for some finite <span><span><span data-mathjax-type=\"texmath\"><span>$N&gt;2$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline5.png\"/></span></span>. Defining <span><span><span data-mathjax-type=\"texmath\"><span>$mathsf {b}_x=G(x,, cdot )^{frac {1}{2-N}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline6.png\"/></span></span> for a point <span><span><span data-mathjax-type=\"texmath\"><span>$x in X$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline7.png\"/></span></span>, which plays a role of a smoothed distance function from <span><span><span data-mathjax-type=\"texmath\"><span>$x$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline8.png\"/></span></span>, we prove that the gradient <span><span><span data-mathjax-type=\"texmath\"><span>$|nabla mathsf {b}_x|$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_inline9.png\"/></span></span> has the canonical pointwise representative with the sharp upper bound in terms of the <span><span><span data-mathjax-type=\"texmath\"><span>$N$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116102450072-0592:S0308210523001312:S0308210523001312_","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"23 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139481144","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Nonexpansive and noncontractive mappings on the set of quantum pure states 量子纯态集上的非展开映射和非收缩映射
IF 1.3 3区 数学 Q1 Mathematics Pub Date : 2024-01-17 DOI: 10.1017/prm.2024.133
Michiya Mori, Peter Šemrl

Wigner's theorem characterizes isometries of the set of all rank one projections on a Hilbert space. In metric geometry, nonexpansive maps and noncontractive maps are well-studied generalizations of isometries. We show that under certain conditions Wigner symmetries can be characterized as nonexpansive or noncontractive maps on the set of all projections of rank one. The assumptions required for such characterizations are injectivity or surjectivity and they differ in the finite and the infinite-dimensional case. Motivated by a recently obtained optimal version of Uhlhorn's generalization of Wigner's theorem, we also give a description of nonexpansive maps which satisfy a condition that is much weaker than surjectivity. Such maps do not need to be Wigner symmetries. The optimality of all presented results is shown by counterexamples.

维格纳定理描述了希尔伯特空间上所有一阶投影集合的等距性。在度量几何学中,非展开映射和非收缩映射是等距的广义研究。我们证明,在某些条件下,维格纳对称性可以表征为所有秩为 1 的投影集合上的非展开映射或非收缩映射。这种表征所需的假设条件是注入性或投射性,它们在有限维和无限维情况下有所不同。受乌尔霍恩(Uhlhorn)对维格纳(Wigner)定理广义化的最新最优版本的启发,我们还给出了对满足比射出性弱得多的条件的非扩张映射的描述。这些映射不需要是维格纳对称。所有提出的结果的最优性都通过反例得到了证明。
{"title":"Nonexpansive and noncontractive mappings on the set of quantum pure states","authors":"Michiya Mori, Peter Šemrl","doi":"10.1017/prm.2024.133","DOIUrl":"https://doi.org/10.1017/prm.2024.133","url":null,"abstract":"<p>Wigner's theorem characterizes isometries of the set of all rank one projections on a Hilbert space. In metric geometry, nonexpansive maps and noncontractive maps are well-studied generalizations of isometries. We show that under certain conditions Wigner symmetries can be characterized as nonexpansive or noncontractive maps on the set of all projections of rank one. The assumptions required for such characterizations are injectivity or surjectivity and they differ in the finite and the infinite-dimensional case. Motivated by a recently obtained optimal version of Uhlhorn's generalization of Wigner's theorem, we also give a description of nonexpansive maps which satisfy a condition that is much weaker than surjectivity. Such maps do not need to be Wigner symmetries. The optimality of all presented results is shown by counterexamples.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"52 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139481093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Classification of simple smooth modules over the Heisenberg–Virasoro algebra 海森堡-维拉索罗代数上简单光滑模块的分类
IF 1.3 3区 数学 Q1 Mathematics Pub Date : 2024-01-17 DOI: 10.1017/prm.2024.132
Haijun Tan, Yufeng Yao, Kaiming Zhao

In this paper, we classify simple smooth modules over the mirror Heisenberg–Virasoro algebra ${mathfrak {D}}$, and simple smooth modules over the twisted Heisenberg–Virasoro algebra $bar {mathfrak {D}}$ with non-zero level. To this end we generalize Sugawara operators to smooth modules over the Heisenberg algebra, and develop new techniques. As applications, we characterize simple Whittaker modules and simple highest weight modules over ${mathfrak {D}}$. A vertex-algebraic interpretation of our result is the classification of simple weak twisted and untwisted modules over the Heisenberg–Virasoro vertex algebras. We also present a few examples of simple smooth ${mathfrak {D}}$-modules and $bar {mathfrak {D}}$-modules induced from simple modules over finite dimensional solvable Lie algebras, that are not tensor product modules of Virasoro modules and Heisenberg modules. This is very different from the case of simple highest weight modules over $mathfrak {D}$ and $bar {mathfrak {D}}$ which are always tensor products of simple Virasoro modules and simple Heisenberg m

在本文中,我们对镜像海森堡-维拉索罗代数 ${mathfrak {D}}$ 上的简单光滑模组和扭曲海森堡-维拉索罗代数 $bar {mathfrak {D}}$ 上的非零级简单光滑模组进行了分类。为此,我们把菅原算子推广到海森堡代数上的光滑模块,并开发了新技术。作为应用,我们描述了 ${mathfrak {D}}$ 上的简单惠特克模块和简单最高权重模块。我们的结果在顶点代数上的一个解释是海森堡-维拉索罗顶点代数上的简单弱扭曲和非扭曲模块的分类。我们还举例说明了简单光滑的 ${mathfrak {D}$ 模块和由有限维可解李代数上的简单模块诱导的 $bar {mathfrak {D}$ 模块,它们不是 Virasoro 模块和海森堡模块的张量乘积模块。这与 $mathfrak {D}$ 和 $bar {mathfrak {D}}$ 上的简单最高权重模块的情况截然不同,后者总是简单维拉索罗模块和简单海森堡模块的张量乘积。
{"title":"Classification of simple smooth modules over the Heisenberg–Virasoro algebra","authors":"Haijun Tan, Yufeng Yao, Kaiming Zhao","doi":"10.1017/prm.2024.132","DOIUrl":"https://doi.org/10.1017/prm.2024.132","url":null,"abstract":"<p>In this paper, we classify simple smooth modules over the mirror Heisenberg–Virasoro algebra <span><span><span data-mathjax-type=\"texmath\"><span>${mathfrak {D}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline1.png\"/></span></span>, and simple smooth modules over the twisted Heisenberg–Virasoro algebra <span><span><span data-mathjax-type=\"texmath\"><span>$bar {mathfrak {D}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline2.png\"/></span></span> with non-zero level. To this end we generalize Sugawara operators to smooth modules over the Heisenberg algebra, and develop new techniques. As applications, we characterize simple Whittaker modules and simple highest weight modules over <span><span><span data-mathjax-type=\"texmath\"><span>${mathfrak {D}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline3.png\"/></span></span>. A vertex-algebraic interpretation of our result is the classification of simple weak twisted and untwisted modules over the Heisenberg–Virasoro vertex algebras. We also present a few examples of simple smooth <span><span><span data-mathjax-type=\"texmath\"><span>${mathfrak {D}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline4.png\"/></span></span>-modules and <span><span><span data-mathjax-type=\"texmath\"><span>$bar {mathfrak {D}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline5.png\"/></span></span>-modules induced from simple modules over finite dimensional solvable Lie algebras, that are not tensor product modules of Virasoro modules and Heisenberg modules. This is very different from the case of simple highest weight modules over <span><span><span data-mathjax-type=\"texmath\"><span>$mathfrak {D}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline6.png\"/></span></span> and <span><span><span data-mathjax-type=\"texmath\"><span>$bar {mathfrak {D}}$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240116103651863-0511:S0308210523001324:S0308210523001324_inline7.png\"/></span></span> which are always tensor products of simple Virasoro modules and simple Heisenberg m","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"19 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139480944","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Branching patterns of wave trains in mass-in-mass lattices 质中质晶格中波列的分支模式
IF 1.3 3区 数学 Q1 Mathematics Pub Date : 2024-01-11 DOI: 10.1017/prm.2023.130
Ling Zhang, Shangjiang Guo

We investigate the existence and branching patterns of wave trains in the mass-in-mass (MiM) lattice, which is a variant of the Fermi–Pasta–Ulam (FPU) lattice. In contrast to FPU lattice, we have to solve coupled advance-delay differential equations, which are reduced to a finite-dimensional bifurcation equation with an inherited Hamiltonian structure by applying a Lyapunov–Schmidt reduction and invariant theory. We establish a link between the MiM lattice and the monatomic FPU lattice. That is, the monochromatic and bichromatic wave trains persist near $mu =0$ in the nonresonance case and in the resonance case $p:q$ where $q$ is not an integer multiple of $p$. Furthermore, we obtain the multiplicity of bichromatic wave trains in $p:q$ resonance where $q$ is an integer multiple of $p$, based on the singular theorem.

我们研究了质中质(MiM)晶格中波列的存在和分支模式,它是费米-帕斯塔-乌兰(FPU)晶格的一种变体。与 FPU 晶格不同的是,我们必须求解耦合超前延迟微分方程,通过应用 Lyapunov-Schmidt 简化和不变理论,将其简化为具有继承哈密顿结构的有限维分岔方程。我们在 MiM 晶格和单原子 FPU 晶格之间建立了联系。也就是说,在非共振情况和共振情况 $p:q$ (其中 $q$ 不是 $p$ 的整数倍)下,单色和双色波列在 $mu =0$ 附近持续存在。此外,我们还根据奇异定理得到了在 $q$ 是 $p$ 整数倍的 $p:q$ 共振情况下的双色波列的多重性。
{"title":"Branching patterns of wave trains in mass-in-mass lattices","authors":"Ling Zhang, Shangjiang Guo","doi":"10.1017/prm.2023.130","DOIUrl":"https://doi.org/10.1017/prm.2023.130","url":null,"abstract":"<p>We investigate the existence and branching patterns of wave trains in the mass-in-mass (MiM) lattice, which is a variant of the Fermi–Pasta–Ulam (FPU) lattice. In contrast to FPU lattice, we have to solve coupled advance-delay differential equations, which are reduced to a finite-dimensional bifurcation equation with an inherited Hamiltonian structure by applying a Lyapunov–Schmidt reduction and invariant theory. We establish a link between the MiM lattice and the monatomic FPU lattice. That is, the monochromatic and bichromatic wave trains persist near <span><span><span data-mathjax-type=\"texmath\"><span>$mu =0$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline1.png\"/></span></span> in the nonresonance case and in the resonance case <span><span><span data-mathjax-type=\"texmath\"><span>$p:q$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline2.png\"/></span></span> where <span><span><span data-mathjax-type=\"texmath\"><span>$q$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline3.png\"/></span></span> is not an integer multiple of <span><span><span data-mathjax-type=\"texmath\"><span>$p$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline4.png\"/></span></span>. Furthermore, we obtain the multiplicity of bichromatic wave trains in <span><span><span data-mathjax-type=\"texmath\"><span>$p:q$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline5.png\"/></span></span> resonance where <span><span><span data-mathjax-type=\"texmath\"><span>$q$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline6.png\"/></span></span> is an integer multiple of <span><span><span data-mathjax-type=\"texmath\"><span>$p$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161445970-0774:S0308210523001300:S0308210523001300_inline7.png\"/></span></span>, based on the singular theorem.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"51 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423410","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Quasilinear duality and inversion in Banach spaces 巴拿赫空间中的准线性对偶性和反演
IF 1.3 3区 数学 Q1 Mathematics Pub Date : 2024-01-11 DOI: 10.1017/prm.2023.120
Jesús M. F. Castillo, Manuel González

We present a unified approach to the processes of inversion and duality for quasilinear and $1$-quasilinear maps; in particular, for centralizers and differentials generated by interpolation methods.

我们提出了一种统一的方法来处理准线性和 1 美元-准线性映射的反演和对偶过程,特别是插值法产生的中心点和微分。
{"title":"Quasilinear duality and inversion in Banach spaces","authors":"Jesús M. F. Castillo, Manuel González","doi":"10.1017/prm.2023.120","DOIUrl":"https://doi.org/10.1017/prm.2023.120","url":null,"abstract":"<p>We present a unified approach to the processes of inversion and duality for quasilinear and <span><span><span data-mathjax-type=\"texmath\"><span>$1$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240110161145945-0202:S0308210523001208:S0308210523001208_inline1.png\"/></span></span>-quasilinear maps; in particular, for centralizers and differentials generated by interpolation methods.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"119 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139423464","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Cavitation of a spherical body under mechanical and self-gravitational forces 机械力和自重力作用下的球体气蚀
IF 1.3 3区 数学 Q1 Mathematics Pub Date : 2024-01-08 DOI: 10.1017/prm.2023.125
Pablo V. Negrón–Marrero, Jeyabal Sivaloganathan

In this paper, we look for minimizers of the energy functional for isotropic compressible elasticity taking into consideration the effect of a gravitational field induced by the body itself. We consider two types of problems: the displacement problem in which the outer boundary of the body is subjected to a Dirichlet-type boundary condition, and the one with zero traction on the boundary but with an internal pressure function. For a spherically symmetric body occupying the unit ball $mathcal {B}in mathbb {R}^3$, the minimization is done within the class of radially symmetric deformations. We give conditions for the existence of such minimizers, for satisfaction of the Euler–Lagrange equations, and show that for large displacements or large internal pressures, the minimizer must develop a cavity at the centre. We discuss a numerical scheme for approximating the minimizers for the displacement problem, together with some simulations that show the dependence of the cavity radius and minimum energy on the displacement and mass density of the body.

在本文中,我们将各向同性可压缩弹性体的能量函数最小化,同时考虑到体本身引起的重力场的影响。我们考虑了两类问题:体外部边界受德里赫特式边界条件限制的位移问题,以及边界上牵引力为零但内部压力函数为零的问题。对于占据单位球 $mathcal {B}in mathbb {R}^3$ 的球面对称体,最小化是在径向对称变形类中完成的。我们给出了满足欧拉-拉格朗日方程的此类最小化存在的条件,并证明了对于大位移或大内部压力,最小化必须在中心形成空腔。我们讨论了近似位移问题最小值的数值方案,并进行了一些模拟,显示了空腔半径和最小能量对位移和物体质量密度的依赖性。
{"title":"Cavitation of a spherical body under mechanical and self-gravitational forces","authors":"Pablo V. Negrón–Marrero, Jeyabal Sivaloganathan","doi":"10.1017/prm.2023.125","DOIUrl":"https://doi.org/10.1017/prm.2023.125","url":null,"abstract":"<p>In this paper, we look for minimizers of the energy functional for isotropic compressible elasticity taking into consideration the effect of a gravitational field induced by the body itself. We consider two types of problems: the displacement problem in which the outer boundary of the body is subjected to a Dirichlet-type boundary condition, and the one with zero traction on the boundary but with an internal pressure function. For a spherically symmetric body occupying the unit ball <span><span><span data-mathjax-type=\"texmath\"><span>$mathcal {B}in mathbb {R}^3$</span></span><img data-mimesubtype=\"png\" data-type=\"\" src=\"https://static.cambridge.org/binary/version/id/urn:cambridge.org:id:binary:20240106111107785-0833:S0308210523001257:S0308210523001257_inline1.png\"/></span></span>, the minimization is done within the class of radially symmetric deformations. We give conditions for the existence of such minimizers, for satisfaction of the Euler–Lagrange equations, and show that for large displacements or large internal pressures, the minimizer must develop a cavity at the centre. We discuss a numerical scheme for approximating the minimizers for the displacement problem, together with some simulations that show the dependence of the cavity radius and minimum energy on the displacement and mass density of the body.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"45 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139397124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adhesion and volume filling in one-dimensional population dynamics under Dirichlet boundary condition 迪里夏特边界条件下一维种群动力学中的粘附和体积填充
IF 1.3 3区 数学 Q1 Mathematics Pub Date : 2024-01-08 DOI: 10.1017/prm.2023.129
Hyung Jun Choi, Seonghak Kim, Youngwoo Koh

We generalize the one-dimensional population model of Anguige & Schmeiser [1] reflecting the cell-to-cell adhesion and volume filling and classify the resulting equation into the six types. Among these types, we fix one that yields a class of advection-diffusion equations of forward-backward-forward type and prove the existence of infinitely many global-in-time weak solutions to the initial-Dirichlet boundary value problem when the maximum value of an initial population density exceeds a certain threshold. Such solutions are extracted from the method of convex integration by Müller & Šverák [12]; they exhibit fine-scale density mixtures over a finite time interval, then become smooth and identical, and decay exponentially and uniformly to zero as time approaches infinity. TE check: Please check the reference citation in abstract.

我们对 Anguige & Schmeiser [1] 的一维种群模型进行了概括,反映了细胞间的粘附和体积填充,并将由此产生的方程分为六种类型。在这些类型中,我们将其中一种固定下来,得到了一类前向-后向-前向型的平流-扩散方程,并证明了当初始种群密度的最大值超过某个临界值时,存在无穷多个全局-时间弱解的初始-Dirichlet 边界值问题。这些解是从 Müller & Šverák [12] 的凸积分法中提取出来的;它们在有限的时间间隔内表现出细尺度的密度混合物,然后变得平滑和相同,并随着时间接近无穷大而指数式地均匀衰减为零。TE 检查:请检查摘要中的参考文献。
{"title":"Adhesion and volume filling in one-dimensional population dynamics under Dirichlet boundary condition","authors":"Hyung Jun Choi, Seonghak Kim, Youngwoo Koh","doi":"10.1017/prm.2023.129","DOIUrl":"https://doi.org/10.1017/prm.2023.129","url":null,"abstract":"<p>We generalize the one-dimensional population model of Anguige &amp; Schmeiser [1] reflecting the cell-to-cell adhesion and volume filling and classify the resulting equation into the six types. Among these types, we fix one that yields a class of advection-diffusion equations of forward-backward-forward type and prove the existence of infinitely many global-in-time weak solutions to the initial-Dirichlet boundary value problem when the maximum value of an initial population density exceeds a certain threshold. Such solutions are extracted from the method of convex integration by Müller &amp; Šverák [12]; they exhibit fine-scale density mixtures over a finite time interval, then become smooth and identical, and decay exponentially and uniformly to zero as time approaches infinity. TE check: Please check the reference citation in abstract.</p>","PeriodicalId":54560,"journal":{"name":"Proceedings of the Royal Society of Edinburgh Section A-Mathematics","volume":"33 1","pages":""},"PeriodicalIF":1.3,"publicationDate":"2024-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139398466","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Proceedings of the Royal Society of Edinburgh Section A-Mathematics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1