Recently, plasmonic metasurfaces have emerged as a platform for topological photonics, exhibiting both advantages of plasmon‐induced tight confinement of local field and topological robustness. Most of previous works regarding plasmonic systems are limited to the first‐order topologies and only a few studies dealt with higher‐order topological states in honeycomb lattices. Moreover, second‐order topologies of square lattice plasmonic systems have not yet been studied. This work presents second‐order topological corner states in the square lattices of metallic nanoparticles (NPs) with various symmetries, taking two different C4 and glide symmetries as examples. Their unit cells are obtained from non‐primitive cells, consisting of four equal spheroidal NPs, by expanding (or shrinking), rotating, and resizing. Bulk bands and spectral functions of the unit cells calculated by using the coupled dipole method well agree with COMSOL simulation results, revealing the accuracy of the numerical calculations as well as the experimental realizability of the systems. Second‐order topological corner states and their robustness against structural disorder are numerically shown for three different square lattices. This work will trigger the extensive investigations to open a new realm of topological metasurfaces with promising applications.This article is protected by copyright. All rights reserved.
{"title":"Second‐order topological corner states in square lattice plasmonic metasurfaces with C4 and glide symmetries","authors":"Kwang-Kwon Om, Kwang-Hyon Kim","doi":"10.1002/pssr.202400063","DOIUrl":"https://doi.org/10.1002/pssr.202400063","url":null,"abstract":"Recently, plasmonic metasurfaces have emerged as a platform for topological photonics, exhibiting both advantages of plasmon‐induced tight confinement of local field and topological robustness. Most of previous works regarding plasmonic systems are limited to the first‐order topologies and only a few studies dealt with higher‐order topological states in honeycomb lattices. Moreover, second‐order topologies of square lattice plasmonic systems have not yet been studied. This work presents second‐order topological corner states in the square lattices of metallic nanoparticles (NPs) with various symmetries, taking two different C4 and glide symmetries as examples. Their unit cells are obtained from non‐primitive cells, consisting of four equal spheroidal NPs, by expanding (or shrinking), rotating, and resizing. Bulk bands and spectral functions of the unit cells calculated by using the coupled dipole method well agree with COMSOL simulation results, revealing the accuracy of the numerical calculations as well as the experimental realizability of the systems. Second‐order topological corner states and their robustness against structural disorder are numerically shown for three different square lattices. This work will trigger the extensive investigations to open a new realm of topological metasurfaces with promising applications.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"130 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140629423","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Niobium‐based oxides with wide bandgap and high dielectric constant show great potential in the applications of electronic and optoelectronic devices. Herein, the quasi van der Waals epitaxial growth of two‐dimensional (2D) α‐Nb2O5 nanosheets were reported, in which the growth promoter of sulfur and alkali halides have been utilized to catalyze the ultrathin 2D growth. The relatively low Gibbs free energy of α‐Nb2O5 nanosheets could drive the ultrathin growth down to 30 nm on the c‐Al2O3 substrate by the transformation of T‐Nb2O5 powder sources without any doping effects, demonstrating that the diverse α‐Nb2O5 nanostructure morphologies. The as‐grown α‐Nb2O5 nanosheets were characterized with high crystalline quality and specific dominated growth plane indicating the uniform dielectric properties. The metal‐insulator‐metal (MIM) capacitor has confirmed the α‐Nb2O5 nanosheet with a high dielectric constant over 40. Our dual promoters’ growth design strategy provides a universal synthesis method for the 2D nonlayered dielectric materials.This article is protected by copyright. All rights reserved.
{"title":"Synthesis of two‐dimensional nonlayered α‐Nb2O5 nanosheets by the growth promoter of sulfur and alkali halides","authors":"Bo Zhang, Chengyang Niu, Wenlong Chu, Xuehao Guo, Xilong Zhou, Cheng Li, Xiulian Fan, Luwei Zou, Zhaofeng Wu, Yunzhang Lu, Fangping OuYang, Yu Zhou, Hongyan Zhang","doi":"10.1002/pssr.202400054","DOIUrl":"https://doi.org/10.1002/pssr.202400054","url":null,"abstract":"Niobium‐based oxides with wide bandgap and high dielectric constant show great potential in the applications of electronic and optoelectronic devices. Herein, the quasi van der Waals epitaxial growth of two‐dimensional (2D) α‐Nb<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> nanosheets were reported, in which the growth promoter of sulfur and alkali halides have been utilized to catalyze the ultrathin 2D growth. The relatively low Gibbs free energy of α‐Nb<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> nanosheets could drive the ultrathin growth down to 30 nm on the c‐Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> substrate by the transformation of T‐Nb<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> powder sources without any doping effects, demonstrating that the diverse α‐Nb<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> nanostructure morphologies. The as‐grown α‐Nb<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> nanosheets were characterized with high crystalline quality and specific dominated growth plane indicating the uniform dielectric properties. The metal‐insulator‐metal (MIM) capacitor has confirmed the α‐Nb<jats:sub>2</jats:sub>O<jats:sub>5</jats:sub> nanosheet with a high dielectric constant over 40. Our dual promoters’ growth design strategy provides a universal synthesis method for the 2D nonlayered dielectric materials.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"181 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140613581","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Gagik Ayvazyan, Levon Hakhoyan, Arman Vardanyan, Hele Savin, Xiaolong Liu
The wettability of black silicon (BSi) layers fabricated by reactive ion etching (RIE), metal‐assisted chemical etching (MACE), and laser‐induced etching (LIE) techniques was studied. The contact angles of wetting on the samples with deionized water and methylammonium iodide‐based perovskite solutions were determined. It has been found that the element composition and the enlargement area factor of BSi layers have a significant effect on their wettability. When tested with water, the RIE and MACE BSi layers exhibit hydrophobic properties, while the LIE BSi layer demonstrates hydrophilic properties due to the SiOx‐rich surface structures. It is also shown that aging leads to a decrease in the water contact angle. Upon exposure to perovskite solution droplets, BSi layers become highly lyophilic. Based on the Wenzel and Cassie‐Baxter models, the mechanisms responsible for the wetting states of the fabricated samples are identified. The results obtained provide valuable insights into the potential of using these layers in tandem perovskite/silicon solar cells.This article is protected by copyright. All rights reserved.
{"title":"Wetting Properties of Black Silicon Layers Fabricated by Different Techniques","authors":"Gagik Ayvazyan, Levon Hakhoyan, Arman Vardanyan, Hele Savin, Xiaolong Liu","doi":"10.1002/pssr.202400072","DOIUrl":"https://doi.org/10.1002/pssr.202400072","url":null,"abstract":"The wettability of black silicon (BSi) layers fabricated by reactive ion etching (RIE), metal‐assisted chemical etching (MACE), and laser‐induced etching (LIE) techniques was studied. The contact angles of wetting on the samples with deionized water and methylammonium iodide‐based perovskite solutions were determined. It has been found that the element composition and the enlargement area factor of BSi layers have a significant effect on their wettability. When tested with water, the RIE and MACE BSi layers exhibit hydrophobic properties, while the LIE BSi layer demonstrates hydrophilic properties due to the SiOx‐rich surface structures. It is also shown that aging leads to a decrease in the water contact angle. Upon exposure to perovskite solution droplets, BSi layers become highly lyophilic. Based on the Wenzel and Cassie‐Baxter models, the mechanisms responsible for the wetting states of the fabricated samples are identified. The results obtained provide valuable insights into the potential of using these layers in tandem perovskite/silicon solar cells.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"33 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564193","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Hyunsoo Lee, Joe F. McGlone, Sheikh Ifatur Rahman, Christopher Chae, Chandan Joishi, Jinwoo Hwang, Siddharth Rajan
This study investigated the impact of varying the thickness of the Al2O3 interlayer dielectric on the electrical characteristics of BaTiO3/III‐Nitride transistors. The findings revealed that a minimum thickness of 8 nm for the Al2O3 layer is crucial to maintain high device performance and protect against sputtering‐induced damage during BaTiO3 deposition. The fabricated BaTiO3/Al2O3/AlGaN/GaN HEMTs exhibited exceptional electrical properties, including a maximum current density of 700 mA/mm, an on‐resistance of 5 Ω·mm, an ION/IOFF ratio of 107, a subthreshold slope of 119 mV/dec, and significantly reduced gate leakage current. The devices with the optimal 8 nm Al2O3 thickness demonstrated excellent agreement between theoretical and experimental values for effective mobility, achieving a value of 1188 cm2/V·s at a 2DEG density of 1013 cm‐2. Furthermore, the study confirmed that increasing the Al2O3 thickness also improved the quality of interface charge density, as evidenced by the results obtained from capacitance‐voltage (CV) measurements. These findings highlight the critical role of controlling the Al2O3 thickness in optimizing the electrical characteristics and overall performance of BaTiO3/III‐Nitride transistors.This article is protected by copyright. All rights reserved.
{"title":"Investigation of Interlayer Dielectric in BaTiO3/III‐Nitride Transistors","authors":"Hyunsoo Lee, Joe F. McGlone, Sheikh Ifatur Rahman, Christopher Chae, Chandan Joishi, Jinwoo Hwang, Siddharth Rajan","doi":"10.1002/pssr.202400042","DOIUrl":"https://doi.org/10.1002/pssr.202400042","url":null,"abstract":"This study investigated the impact of varying the thickness of the Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> interlayer dielectric on the electrical characteristics of BaTiO<jats:sub>3</jats:sub>/III‐Nitride transistors. The findings revealed that a minimum thickness of 8 nm for the Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> layer is crucial to maintain high device performance and protect against sputtering‐induced damage during BaTiO<jats:sub>3</jats:sub> deposition. The fabricated BaTiO<jats:sub>3</jats:sub>/Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub>/AlGaN/GaN HEMTs exhibited exceptional electrical properties, including a maximum current density of 700 mA/mm, an on‐resistance of 5 Ω·mm, an I<jats:sub>ON</jats:sub>/I<jats:sub>OFF</jats:sub> ratio of 10<jats:sup>7</jats:sup>, a subthreshold slope of 119 mV/dec, and significantly reduced gate leakage current. The devices with the optimal 8 nm Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thickness demonstrated excellent agreement between theoretical and experimental values for effective mobility, achieving a value of 1188 cm<jats:sup>2</jats:sup>/V·s at a 2DEG density of 10<jats:sup>13</jats:sup> cm<jats:sup>‐2</jats:sup>. Furthermore, the study confirmed that increasing the Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thickness also improved the quality of interface charge density, as evidenced by the results obtained from capacitance‐voltage (CV) measurements. These findings highlight the critical role of controlling the Al<jats:sub>2</jats:sub>O<jats:sub>3</jats:sub> thickness in optimizing the electrical characteristics and overall performance of BaTiO<jats:sub>3</jats:sub>/III‐Nitride transistors.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"25 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564310","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Emi Kano, Jun Uzuhashi, Koki Kobayashi, Kosuke Ishikawa, Kyosuke Sawabe, Tetsuo Narita, Kacper Sierakowski, Michal Bockowski, Tadakatsu Ohkubo, Tetsu Kachi, Nobuyuki Ikarashi
In Mg ion implantation doping of GaN, sequential N ion implantation reportedly changes Mg concentrations in the Mg ion‐implanted region and the underlying region after activation annealing. We investigated the impact of sequential N ion implantation on defects and Mg distribution after post‐implantation annealing. Our atomic‐resolution analyses showed that, in the Mg ion‐implanted region, the N ion implantation increases the concentration of MgGa. We thus conclude that the Mg soluble in GaN by Mg ion implantation was increased by N ion implantation. The rest of the Mg atoms agglomerate to form clusters on the extended defects, and their concentration is also increased by the N implantation. The coarsening of extended defects was suppressed by the N ion implantation: the defects in the Mg+N implanted sample were nano‐scale interstitial‐type defects, and they did not grow or annihilate after annealing. This indicates that the N implantation changed the concentrations of interstitials.This article is protected by copyright. All rights reserved.
据报道,在氮化镓的镁离子注入掺杂过程中,连续的 N 离子注入会改变镁离子注入区和活化退火后底层区的镁浓度。我们研究了连续 N 离子植入对植入后退火的缺陷和镁分布的影响。我们的原子分辨率分析表明,在镁离子植入区域,N 离子植入增加了 MgGa 的浓度。因此,我们得出结论:通过镁离子植入,N 离子植入增加了镁在氮化镓中的溶解度。其余的镁原子在扩展缺陷上聚集成团,其浓度也因 N 离子注入而增加。N 离子植入抑制了扩展缺陷的粗大化:Mg+N 植入样品中的缺陷是纳米级的间隙型缺陷,退火后它们没有长大或湮灭。这表明 N 植入改变了间隙的浓度。本文受版权保护。
{"title":"Impact of sequential N ion implantation on extended defects and Mg distribution in Mg ion‐implanted GaN","authors":"Emi Kano, Jun Uzuhashi, Koki Kobayashi, Kosuke Ishikawa, Kyosuke Sawabe, Tetsuo Narita, Kacper Sierakowski, Michal Bockowski, Tadakatsu Ohkubo, Tetsu Kachi, Nobuyuki Ikarashi","doi":"10.1002/pssr.202400074","DOIUrl":"https://doi.org/10.1002/pssr.202400074","url":null,"abstract":"In Mg ion implantation doping of GaN, sequential N ion implantation reportedly changes Mg concentrations in the Mg ion‐implanted region and the underlying region after activation annealing. We investigated the impact of sequential N ion implantation on defects and Mg distribution after post‐implantation annealing. Our atomic‐resolution analyses showed that, in the Mg ion‐implanted region, the N ion implantation increases the concentration of Mg<jats:sub>Ga</jats:sub>. We thus conclude that the Mg soluble in GaN by Mg ion implantation was increased by N ion implantation. The rest of the Mg atoms agglomerate to form clusters on the extended defects, and their concentration is also increased by the N implantation. The coarsening of extended defects was suppressed by the N ion implantation: the defects in the Mg+N implanted sample were nano‐scale interstitial‐type defects, and they did not grow or annihilate after annealing. This indicates that the N implantation changed the concentrations of interstitials.This article is protected by copyright. All rights reserved.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"43 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564291","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Design and Characterization of New 3D Reentrant Rhombic Auxetic Structures with Enhanced Mechanical Properties","authors":"Yingying Xue, Jianhui Mu, Xingfu Wang","doi":"10.1002/pssr.202470009","DOIUrl":"https://doi.org/10.1002/pssr.202470009","url":null,"abstract":"<b>New Reentrant Rhombic Auxetic Structures</b>","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"191 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564290","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Brelon J. May, Elline C. Hettiaratchy, Binbin Wang, Camelia M. Selcu, Bryan D. Esser, David W. McComb, Roberto C. Myers
Nanowire LEDs
纳米线 LED
{"title":"Efficiency Limits in Coalesced AlGaN Nanowire Ultraviolet LEDs","authors":"Brelon J. May, Elline C. Hettiaratchy, Binbin Wang, Camelia M. Selcu, Bryan D. Esser, David W. McComb, Roberto C. Myers","doi":"10.1002/pssr.202470007","DOIUrl":"https://doi.org/10.1002/pssr.202470007","url":null,"abstract":"<b>Nanowire LEDs</b>","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"191 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ting Lei, Wei Zhang, Guohao Bo, Chengyu Feng, Na Li, Rongzhi Zhao, Lianze Ji, Jian Zhang, Xuefeng Zhang
The importance of flexible ferromagnetic films in the application of flexible spintronic devices and microwave magnetic devices underscores the necessity for an in-depth understanding of the dynamic magnetic properties of these films. In particular, it is crucial to comprehend the regulation of the ferromagnetic resonance (FMR) frequency of flexible ferromagnetic films. This work outlines the preparation of periodic permalloy microstrip arrays with stripe domain on flexible PET films and applies them to linearly tune the FMR. The high-frequency optical branch (5.17 GHz) and low-frequency acoustic branch (2.89 GHz) are observed in the direction perpendicular (x-direction) and parallel (y-direction) to the microstrip, respectively. The Young's modulus mismatch between the PET film and permalloy layer leads to the directional distribution of local tension. This results in the enhancement of the Ht (219.4 Oe) required for the in-plane uniform precession on the PET film, compared to that on the Si substrate (181.6 Oe). By adjusting the width and thickness of the permalloy microstrip, Ht can be adjusted linearly on the PET film. This flexible ferromagnetic film with linear regulation of FMR frequency presents a new option for the future development of flexible microwave detectors and filters.
柔性铁磁薄膜在柔性自旋电子器件和微波磁性器件应用中的重要性凸显了深入了解这些薄膜动态磁性能的必要性。特别是,理解柔性铁磁薄膜的铁磁共振频率调节至关重要。本研究概述了在柔性 PET 薄膜上制备具有条纹域的周期性过金属微带阵列的方法,并将其应用于线性调节铁磁共振频率。在与微带垂直(x 方向)和平行(y 方向)的方向上分别观察到了高频光学分支(5.17 GHz)和低频声学分支(2.89 GHz)。PET 薄膜和高合金层之间的杨氏模量不匹配导致了局部张力的定向分布。这导致 PET 薄膜上平面内均匀前冲所需的 Ht(219.4 Oe)比硅基板上的 Ht(181.6 Oe)更高。通过调整坡莫合金微带的宽度和厚度,可以线性调整 PET 薄膜上的 Ht。这种可线性调节调频反射频率的柔性铁磁薄膜为未来开发柔性微波探测器和滤波器提供了新的选择。
{"title":"Tuning the Ferromagnetic Resonance Frequency of Microstructured Permalloy Film on Flexible Substrate","authors":"Ting Lei, Wei Zhang, Guohao Bo, Chengyu Feng, Na Li, Rongzhi Zhao, Lianze Ji, Jian Zhang, Xuefeng Zhang","doi":"10.1002/pssr.202400081","DOIUrl":"https://doi.org/10.1002/pssr.202400081","url":null,"abstract":"The importance of flexible ferromagnetic films in the application of flexible spintronic devices and microwave magnetic devices underscores the necessity for an in-depth understanding of the dynamic magnetic properties of these films. In particular, it is crucial to comprehend the regulation of the ferromagnetic resonance (FMR) frequency of flexible ferromagnetic films. This work outlines the preparation of periodic permalloy microstrip arrays with stripe domain on flexible PET films and applies them to linearly tune the FMR. The high-frequency optical branch (5.17 GHz) and low-frequency acoustic branch (2.89 GHz) are observed in the direction perpendicular (<i>x</i>-direction) and parallel (<i>y</i>-direction) to the microstrip, respectively. The Young's modulus mismatch between the PET film and permalloy layer leads to the directional distribution of local tension. This results in the enhancement of the <i>H</i><sub>t</sub> (219.4 Oe) required for the in-plane uniform precession on the PET film, compared to that on the Si substrate (181.6 Oe). By adjusting the width and thickness of the permalloy microstrip, <i>H</i><sub>t</sub> can be adjusted linearly on the PET film. This flexible ferromagnetic film with linear regulation of FMR frequency presents a new option for the future development of flexible microwave detectors and filters.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"50 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564713","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Organic dual-state emitters show high quantum yields of luminescence in both solution and the aggregated state. Alkyl side chains are frequently used to engineer solid-state structures and prominent examples are naphthalimide-functionalized cyanostilbene derivatives (NICS-X), where H-aggregation takes place for ethoxyl substitution (NICS-E), while methoxyl and butoxyl substitution (NICS-M and NICS-B) lead to the quasi-isolated Q-type structure. While this takes place for powder samples, vacuum-sublimed thin films are used, and it is shown by photoluminescence (PL) measurements that H-aggregation takes place for all three NICS derivatives. In contrast, the energy-level alignment of NICS-X films on graphite exhibits disparities as shown by photoelectron spectroscopy: pronounced disorder in NICS-B films leads to energy-level bending, while the energy levels of NICS-M and NICS-E films remain flat. In such a way, it is demonstrated that side-chain engineering of luminogens affects the short-range order (responsible for the PL) and the long-range order (responsible for the energy-level alignment) in different ways. Furthermore, the importance of a substrate (thin films vs powder) on the solid-state aggregation is highlighted.
{"title":"Energy-Level Alignment and Electronic Structure of Dual-State Luminogens Thin Films","authors":"Wenjie Zhou, Yingying Li, Fulin Xie, Chengyuan Wang, Jiaxiang Yang, Qi Wang, Steffen Duhm","doi":"10.1002/pssr.202400065","DOIUrl":"https://doi.org/10.1002/pssr.202400065","url":null,"abstract":"Organic dual-state emitters show high quantum yields of luminescence in both solution and the aggregated state. Alkyl side chains are frequently used to engineer solid-state structures and prominent examples are naphthalimide-functionalized cyanostilbene derivatives (NICS-X), where H-aggregation takes place for ethoxyl substitution (NICS-E), while methoxyl and butoxyl substitution (NICS-M and NICS-B) lead to the quasi-isolated Q-type structure. While this takes place for powder samples, vacuum-sublimed thin films are used, and it is shown by photoluminescence (PL) measurements that H-aggregation takes place for all three NICS derivatives. In contrast, the energy-level alignment of NICS-X films on graphite exhibits disparities as shown by photoelectron spectroscopy: pronounced disorder in NICS-B films leads to energy-level bending, while the energy levels of NICS-M and NICS-E films remain flat. In such a way, it is demonstrated that side-chain engineering of luminogens affects the short-range order (responsible for the PL) and the long-range order (responsible for the energy-level alignment) in different ways. Furthermore, the importance of a substrate (thin films vs powder) on the solid-state aggregation is highlighted.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"247 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140564197","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. A. Piryazev, D. K. Sagdullina, I. E. Kuznetsov, A.F. Akhkiamova, M.V. Gapanovich, D. V. Anokhin, A. N. Zhivchikova, M. E. Sideltsev, E. D. Siaglova, M. M. Tepliakova, D. A. Ivanov, A. V. Akkuratov
Organic semiconductor small molecules (SMs) attract much attention for the design of various emerging photovoltaic and optoelectronic devices. High charge transport characteristics of SMs are important prerequisite for achieving outstanding performance of electronics. Herein, we investigated four promising SMs in terms of modulating charge transport properties by solvent engineering. It is shown that the hole mobility of thin films based on push-pull SMs can be effectively enhanced by the replacement of chlorobenzene with environmentally preferable hexane without changing a molecular structure of the compounds. As a result, two to five times higher hole mobility was achieved for hexane-processed films that is attributed to formation of favorable nanoscale morphology of films. This effortless approach can be applied to other organic semiconductor materials to precisely control the morphology and improve their electrophysical properties.
有机半导体小分子(SMs)在设计各种新兴光伏和光电器件方面备受关注。有机半导体小分子的高电荷传输特性是实现电子器件卓越性能的重要前提。在此,我们研究了四种有前途的 SM,通过溶剂工程来调节电荷传输特性。研究表明,在不改变化合物分子结构的情况下,用环保的正己烷代替氯苯,可以有效提高基于推拉式 SM 的薄膜的空穴迁移率。因此,正己烷加工薄膜的空穴迁移率提高了 2 到 5 倍,这归功于薄膜形成了良好的纳米级形态。这种毫不费力的方法可应用于其他有机半导体材料,以精确控制其形态并改善其电物理特性。
{"title":"Magic of Solvents: Effect of Processing Solvents on Hole Transport in Organic Semiconductor Small Molecules","authors":"A. A. Piryazev, D. K. Sagdullina, I. E. Kuznetsov, A.F. Akhkiamova, M.V. Gapanovich, D. V. Anokhin, A. N. Zhivchikova, M. E. Sideltsev, E. D. Siaglova, M. M. Tepliakova, D. A. Ivanov, A. V. Akkuratov","doi":"10.1002/pssr.202400070","DOIUrl":"https://doi.org/10.1002/pssr.202400070","url":null,"abstract":"Organic semiconductor small molecules (SMs) attract much attention for the design of various emerging photovoltaic and optoelectronic devices. High charge transport characteristics of SMs are important prerequisite for achieving outstanding performance of electronics. Herein, we investigated four promising SMs in terms of modulating charge transport properties by solvent engineering. It is shown that the hole mobility of thin films based on push-pull SMs can be effectively enhanced by the replacement of chlorobenzene with environmentally preferable hexane without changing a molecular structure of the compounds. As a result, two to five times higher hole mobility was achieved for hexane-processed films that is attributed to formation of favorable nanoscale morphology of films. This effortless approach can be applied to other organic semiconductor materials to precisely control the morphology and improve their electrophysical properties.","PeriodicalId":54619,"journal":{"name":"Physica Status Solidi-Rapid Research Letters","volume":"15 1","pages":""},"PeriodicalIF":2.8,"publicationDate":"2024-03-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140322293","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}