首页 > 最新文献

Optical Switching and Networking最新文献

英文 中文
DROAD: Demand-aware reconfigurable optically-switched agile data center network DROAD:需求感知的可重构光交换敏捷数据中心网络
IF 2.2 4区 计算机科学 Q2 Engineering Pub Date : 2022-09-01 DOI: 10.1016/j.osn.2022.100683
Bartlomiej Siniarski , Dinh Danh Le , Conor McArdle , John Murphy , Liam Barry

We present a Demand-aware Reconfigurable Data Center Network architecture design (DROAD) with integrated fast-switching optics and space switches that allows dynamic reconfiguration and separation of intra- and inter-cluster connections. The performance analysis results show a 64% improvement in average Flow Completion Time and a significant reduction in TCP session time, as well as a reduced number of sessions needed to be opened compared to traditional electrically-switched leaf-spine networks.

我们提出了一种需求感知的可重构数据中心网络架构设计(DROAD),它集成了快速交换光学器件和空间交换机,允许集群内和集群间连接的动态重新配置和分离。性能分析结果显示,与传统的电交换叶脊网络相比,平均流量完成时间提高了64%,TCP会话时间显著减少,需要打开的会话数量也减少了。
{"title":"DROAD: Demand-aware reconfigurable optically-switched agile data center network","authors":"Bartlomiej Siniarski ,&nbsp;Dinh Danh Le ,&nbsp;Conor McArdle ,&nbsp;John Murphy ,&nbsp;Liam Barry","doi":"10.1016/j.osn.2022.100683","DOIUrl":"10.1016/j.osn.2022.100683","url":null,"abstract":"<div><p>We present a Demand-aware Reconfigurable Data Center Network architecture design (DROAD) with integrated fast-switching optics and space switches that allows dynamic reconfiguration and separation of intra- and inter-cluster connections. The performance analysis results show a 64% improvement in average Flow Completion Time and a significant reduction in TCP session time, as well as a reduced number of sessions needed to be opened compared to traditional electrically-switched leaf-spine networks.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1573427722000194/pdfft?md5=32aa7e9a5ab874a9ea29816212176c84&pid=1-s2.0-S1573427722000194-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"121619699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Routing and spectrum assignment employing long short-term memory technique for elastic optical networks 弹性光网络中基于长短期记忆的路由和频谱分配
IF 2.2 4区 计算机科学 Q2 Engineering Pub Date : 2022-09-01 DOI: 10.1016/j.osn.2022.100684
Lina Cheng, Yang Qiu

With the prevalence of some high bandwidth-demanding applications, such as cloud computing, traditional wavelength-division-multiplexing passive optical networks have difficulties in satisfying such growing bandwidth demands due to its limited allocation-flexibility and utilization-efficiency. Therefore, elastic optical networks (EONs). In order to realize the flexibility in EONs, sophisticated routing and spectrum allocation (RSA) algorithms areone of the keyenabling technologies. However, most of the previous RSA algorithms were proposed with invariant routing and spectrum allocation strategies, which ignored considering the time-varying characteristics of EONs due to the variable network architecture and service provisioning. And such time-varying characteristics can deteriorate the spectrum fragmentation and the service blocking performances of EONs, which stimulates the application of various machine-learning technologies in EONs. In this paper, a long short-term memory based routing and spectrum assignment (LSTM-RSA) algorithm is proposed for EONs. By employing the long short-term memory technique to sense the complex status of EONs (e.g. spectral usage on the selected paths), the proposed LSTM-RSA algorithm gradually learns successful strategies through accumulating operation experience in the process of interaction and obtains higher returns through enhanced operation, which helps improve the spectrum fragmentation and the service blocking performances in EONs. Simulation results show that the spectrum fragmentation rate and the blocking rate of the proposed LSTM-RSA algorithm are reduced by about 6% and 8.9%, respectively, when compared to the traditional shortest-path-routing first-fitting RSA algorithm.

随着云计算等对带宽要求较高的应用的普及,传统的波分复用无源光网络由于其分配灵活性和利用率有限,难以满足日益增长的带宽需求。因此,弹性光网络(EONs)。为了实现eon的灵活性,复杂的路由和频谱分配(RSA)算法是密钥使能技术之一。然而,以往的RSA算法大多采用不变的路由和频谱分配策略,忽略了考虑网络结构和业务提供的时变特性。而这种时变特性会使eon的频谱碎片化和业务阻塞性能恶化,从而刺激了各种机器学习技术在eon中的应用。本文提出了一种基于长短期记忆的eon路由和频谱分配(LSTM-RSA)算法。本文提出的LSTM-RSA算法利用长短期记忆技术感知eon的复杂状态(如所选路径上的频谱使用情况),在交互过程中通过积累操作经验逐步学习成功策略,并通过增强操作获得更高的收益,从而改善eon的频谱碎片化和业务阻塞性能。仿真结果表明,与传统的最短路径路由首次拟合RSA算法相比,LSTM-RSA算法的频谱碎片率和阻塞率分别降低了约6%和8.9%。
{"title":"Routing and spectrum assignment employing long short-term memory technique for elastic optical networks","authors":"Lina Cheng,&nbsp;Yang Qiu","doi":"10.1016/j.osn.2022.100684","DOIUrl":"10.1016/j.osn.2022.100684","url":null,"abstract":"<div><p><span>With the prevalence of some high bandwidth-demanding applications, such as cloud computing, traditional wavelength-division-multiplexing </span>passive optical networks<span><span> have difficulties in satisfying such growing bandwidth demands due to its limited allocation-flexibility and utilization-efficiency. Therefore, elastic optical networks (EONs). In order to realize the flexibility in EONs, sophisticated routing and spectrum allocation (RSA) algorithms areone of the keyenabling technologies. However, most of the previous RSA algorithms were proposed with invariant routing and spectrum allocation strategies, which ignored considering the time-varying characteristics of EONs due to the variable network architecture and service provisioning. And such time-varying characteristics can deteriorate the </span>spectrum fragmentation and the service blocking performances of EONs, which stimulates the application of various machine-learning technologies in EONs. In this paper, a long short-term memory based routing and spectrum assignment (LSTM-RSA) algorithm is proposed for EONs. By employing the long short-term memory technique to sense the complex status of EONs (e.g. spectral usage on the selected paths), the proposed LSTM-RSA algorithm gradually learns successful strategies through accumulating operation experience in the process of interaction and obtains higher returns through enhanced operation, which helps improve the spectrum fragmentation and the service blocking performances in EONs. Simulation results show that the spectrum fragmentation rate and the blocking rate of the proposed LSTM-RSA algorithm are reduced by about 6% and 8.9%, respectively, when compared to the traditional shortest-path-routing first-fitting RSA algorithm.</span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"131911465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Optical network design and analysis tools: A test of time 光网络设计分析工具:一个经得起时间考验的工具
IF 2.2 4区 计算机科学 Q2 Engineering Pub Date : 2022-05-01 DOI: 10.1016/j.osn.2021.100651
Miquel Garrich Alabarce , Pablo Pavón Mariño

Telecom operators' infrastructure is sustained by optical communication networks that provide the means for exchanging large amounts of information, which is essential for many modern society needs. Optical networks are characterized by rapid breakthroughs in a variety of technologies. Relevantly, the last decade encompassed remarkable advances in optical networks’ subfields of signal processing, electronics, photonics, communications, protocols, and control-plane architectures. Hence, these advancements unlocked unprecedented transmission capacities, reconfigurability and programmability, entailing an evolution in the way which networks were designed, planned, and analyzed. In this paper, we review the historical status of optical planning and design tools by focusing on the major enabling technologies and relevant landmarks of the last decade(s). We begin by pinpointing the major breakthroughs in the optical data plane, estimation models capturing the transmission medium behavior and the control plane. We then distil the implications that these advancements entail in the landscape of optical network design and analysis tools, which commonly sit “on top” of the control plane or as a fully separated entity. Then, we speculate with our view for the future, in which automatic validation of optical network operations and dimensioning jointly with learning/artificial intelligence mechanisms will permit zero-touch optical networking: i.e. updating, provisioning, and upgrading network capacities, by means of automation with minimal human intervention. We conclude with a proposal of an architecture that encompasses data and control planes in a comprehensive manner for paving the way towards zero-touch optical networking.

电信运营商的基础设施是由光通信网络维持的,光通信网络提供了交换大量信息的手段,这对许多现代社会的需求至关重要。光网络的特点是各种技术的快速突破。与此相关的是,过去十年在光网络的信号处理、电子、光子学、通信、协议和控制平面架构等子领域取得了显著进展。因此,这些进步释放了前所未有的传输能力、可重构性和可编程性,导致了网络设计、规划和分析方式的演变。在本文中,我们回顾了光学规划和设计工具的历史地位,重点介绍了过去十年的主要使能技术和相关里程碑。我们首先指出光学数据平面、捕获传输介质行为的估计模型和控制平面的重大突破。然后,我们提炼出这些进步在光网络设计和分析工具领域所带来的影响,这些工具通常位于控制平面的“顶部”或作为一个完全分离的实体。然后,我们推测了我们对未来的看法,其中光网络运营和维度的自动验证与学习/人工智能机制联合将允许零接触光网络:即更新,供应和升级网络容量,通过自动化的方式,以最少的人为干预。最后,我们提出了一个包含数据和控制平面的综合架构,为零接触光网络铺平了道路。
{"title":"Optical network design and analysis tools: A test of time","authors":"Miquel Garrich Alabarce ,&nbsp;Pablo Pavón Mariño","doi":"10.1016/j.osn.2021.100651","DOIUrl":"10.1016/j.osn.2021.100651","url":null,"abstract":"<div><p><span>Telecom operators' infrastructure is sustained by optical communication<span> networks that provide the means for exchanging large amounts of information, which is essential for many modern society needs. Optical networks are characterized by rapid breakthroughs in a variety of technologies. Relevantly, the last decade encompassed remarkable advances in optical networks’ subfields of signal processing, electronics, </span></span>photonics<span><span>, communications, protocols, and control-plane architectures. Hence, these advancements unlocked unprecedented transmission capacities, reconfigurability and </span>programmability<span>, entailing an evolution in the way which networks were designed, planned, and analyzed. In this paper, we review the historical status of optical planning and design tools by focusing on the major enabling technologies and relevant landmarks of the last decade(s). We begin by pinpointing the major breakthroughs in the optical data plane, estimation models capturing the transmission medium behavior and the control plane. We then distil the implications that these advancements entail in the landscape of optical network design and analysis tools, which commonly sit “on top” of the control plane or as a fully separated entity. Then, we speculate with our view for the future, in which automatic validation of optical network operations and dimensioning jointly with learning/artificial intelligence mechanisms will permit zero-touch optical networking: i.e. updating, provisioning, and upgrading network capacities, by means of automation with minimal human intervention. We conclude with a proposal of an architecture that encompasses data and control planes in a comprehensive manner for paving the way towards zero-touch optical networking.</span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"132179591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Circuits/cutsets duality and theoretical foundation of a structural approach to survivable logical topology mapping in IP-over-WDM optical networks 电路/切割集对偶性和IP-over-WDM光网络中可生存逻辑拓扑映射的结构方法的理论基础
IF 2.2 4区 计算机科学 Q2 Engineering Pub Date : 2022-05-01 DOI: 10.1016/j.osn.2021.100653
Krishnaiyan Thulasiraman , Tachun Lin , Muhammad Javed , Guoliang Xue , Zhili Zhou

The survivable logical topology mapping (SLTM) problem in IP-over-WDM networks is to map each link in the logical topology (IP layer) onto a lightpath in the physical topology (optical layer) such that a failure of a physical link does not cause the logical topology to become disconnected. This problem is known to be NP-complete. For this SLTM problem, two lines of investigations have been reported in the literature: the mathematical programming approach [1] and the structural approach introduced by Kurant and Thiran in [2] and pursued by Thulasiraman et al. [3,4,5]. In this paper we present an integrated treatment of the theoretical foundation of the survivable topology mapping problem presented in [3,4,5]. We believe that the algorithmic strategy developed in this paper will serve as an important phase in any strategy in the emerging area of resilient slicing of elastic optical networks. We conclude with a comparative evaluation, based on simulations, of the different algorithmic strategies developed in the paper, and also pointing to applications beyond IP-over-WDM optical networks, in particular, survivable design of inter-dependent multi-layer cyber physical systems such as smart power grids.

IP-over- wdm网络中的生存性逻辑拓扑映射(SLTM)问题是将逻辑拓扑(IP层)中的每条链路映射到物理拓扑(光层)中的光路上,以便物理链路的故障不会导致逻辑拓扑断开。这个问题被称为np完全问题。对于这个SLTM问题,文献中报道了两种研究方法:数学规划方法[1]和Kurant和Thiran在[2]中引入的结构方法,Thulasiraman等人[3,4,5]继续研究。本文对文献[3,4,5]中提出的可生存拓扑映射问题的理论基础进行了综合处理。我们相信本文提出的算法策略将成为弹性光网络弹性切片这一新兴领域中任何策略的重要阶段。最后,我们基于模拟对本文中开发的不同算法策略进行了比较评估,并指出了IP-over-WDM光网络之外的应用,特别是相互依赖的多层网络物理系统(如智能电网)的可生存设计。
{"title":"Circuits/cutsets duality and theoretical foundation of a structural approach to survivable logical topology mapping in IP-over-WDM optical networks","authors":"Krishnaiyan Thulasiraman ,&nbsp;Tachun Lin ,&nbsp;Muhammad Javed ,&nbsp;Guoliang Xue ,&nbsp;Zhili Zhou","doi":"10.1016/j.osn.2021.100653","DOIUrl":"10.1016/j.osn.2021.100653","url":null,"abstract":"<div><p><span><span>The survivable logical topology<span> mapping (SLTM) problem in IP-over-WDM networks is to map each link in the logical topology (IP layer) onto a lightpath in the </span></span>physical topology (optical layer) such that a failure of a physical link does not cause the logical topology to become disconnected. This problem is known to be NP-complete. For this SLTM problem, two lines of investigations have been reported in the literature: the </span>mathematical programming<span><span> approach [1] and the structural approach introduced by Kurant and Thiran in [2] and pursued by Thulasiraman et al. [3,4,5]. In this paper we present an integrated treatment of the theoretical foundation of the survivable topology mapping problem presented in [3,4,5]. We believe that the algorithmic strategy developed in this paper will serve as an important phase in any strategy in the emerging area of resilient slicing of elastic optical networks. We conclude with a </span>comparative evaluation<span><span>, based on simulations, of the different algorithmic strategies developed in the paper, and also pointing to applications beyond IP-over-WDM optical networks, in particular, survivable design of inter-dependent multi-layer cyber physical systems such as </span>smart power grids.</span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"125639097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance of resource delayed release strategy in software-defined OTN over WDM networks for uniform and non-uniform traffic WDM网络上软件定义OTN中均匀和非均匀业务的资源延迟释放策略性能
IF 2.2 4区 计算机科学 Q2 Engineering Pub Date : 2022-05-01 DOI: 10.1016/j.osn.2021.100663
Shideh Yavary Mehr , Byrav Ramamurthy , Yu Zhou , Bingli Guo , Shanguo Huang

In today's wide area networks, especially in Optical Transport Networks (OTN) with Software Defined Networking (SDN) features enabled over Wavelength Division Multiplexing (WDM), Bandwidth on Demand (BoD) is an important service that can be satisfied by dynamic end-to-end service provisioning. Service provisioning time (SPT) and Blocking Probability (BP) are critical performance metrics for the users and carriers. This paper extends the concept of the Resource Delayed Release (RDR) strategy for WDM networks. The basic idea of this strategy is to introduce a delay in releasing the optical channel, when the channel is no longer carrying any services. This delay can help speed up the provisioning time for carrying the next service request, avoiding the time usually taken to establish a new optical channel. The main goals of the RDR method are to reduce SPT and BP while simultaneously satisfying the quality of service (QoS) constraints. In this paper, we investigate the effects of uniform and non-uniform traffic on the performance of RDR strategy. For non-uniform traffic simulation, we use a mesh topology with the 14 most populous cities in USA as of 2018 and model the non-uniform traffic based on population density. Further, we introduce a new metric called the Bandwidth Blocking Probability (BBP) to measure the quality of the service offered by the network. Simulation results show advantages of using the RDR method under a wide variety of traffic scenarios for both uniform and non-uniform traffic distributions compared to the traditional method. RDR reduces SPT by 45–90% for uniform traffic and 41–75% for non-uniform traffic. RDR reduces BP by 35–85% for uniform traffic and 30–75% for non-uniform traffic. Additionally, RDR lowers BBP by 31–73% for uniform traffic and 29–68% for non-uniform traffic.

在当今的广域网中,特别是在基于波分复用(WDM)的软件定义网络(SDN)特性的光传输网络(OTN)中,带宽按需(BoD)是一项重要的业务,可以通过动态端到端业务提供来满足。业务发放时间(SPT)和阻塞概率(BP)是用户和运营商的关键性能指标。本文扩展了WDM网络中资源延迟释放策略的概念。该策略的基本思想是,当光通道不再承载任何业务时,在释放光通道时引入延迟。这种延迟可以帮助加快传送下一个服务请求的准备时间,避免通常建立新光通道所花费的时间。RDR方法的主要目标是在满足服务质量(QoS)约束的同时降低SPT和BP。本文研究了均匀流量和非均匀流量对RDR策略性能的影响。对于非均匀交通模拟,我们使用了截至2018年美国人口最多的14个城市的网格拓扑,并基于人口密度对非均匀交通建模。此外,我们引入了一个名为带宽阻塞概率(BBP)的新度量来衡量网络提供的服务质量。仿真结果表明,与传统方法相比,RDR方法在各种流量均匀分布和非均匀分布场景下都具有优势。对于均匀流量,RDR可将SPT降低45-90%,对于非均匀流量,可将SPT降低41-75%。对于均匀流量,RDR将BP降低35-85%,对于非均匀流量,RDR将BP降低30-75%。此外,对于均匀流量,RDR降低BBP 31-73%,对于非均匀流量,RDR降低BBP 29-68%。
{"title":"Performance of resource delayed release strategy in software-defined OTN over WDM networks for uniform and non-uniform traffic","authors":"Shideh Yavary Mehr ,&nbsp;Byrav Ramamurthy ,&nbsp;Yu Zhou ,&nbsp;Bingli Guo ,&nbsp;Shanguo Huang","doi":"10.1016/j.osn.2021.100663","DOIUrl":"10.1016/j.osn.2021.100663","url":null,"abstract":"<div><p><span>In today's wide area networks, especially in Optical Transport Networks<span><span> (OTN) with Software Defined Networking (SDN) features enabled over </span>Wavelength Division Multiplexing (WDM), Bandwidth on Demand (BoD) is an important service that can be satisfied by dynamic end-to-end service provisioning. Service provisioning time (SPT) and </span></span>Blocking Probability<span> (BP) are critical performance metrics for the users and carriers. This paper extends the concept of the Resource Delayed Release (RDR) strategy for WDM networks<span><span>. The basic idea of this strategy is to introduce a delay in releasing the optical channel, when the channel is no longer carrying any services. This delay can help speed up the provisioning time for carrying the next service request, avoiding the time usually taken to establish a new optical channel. The main goals of the RDR method are to reduce SPT and BP while simultaneously satisfying the quality of service (QoS) constraints. In this paper, we investigate the effects of uniform and non-uniform traffic on the performance of RDR strategy. For non-uniform traffic simulation, we use a </span>mesh topology with the 14 most populous cities in USA as of 2018 and model the non-uniform traffic based on population density. Further, we introduce a new metric called the Bandwidth Blocking Probability (BBP) to measure the quality of the service offered by the network. Simulation results show advantages of using the RDR method under a wide variety of traffic scenarios for both uniform and non-uniform traffic distributions compared to the traditional method. RDR reduces SPT by 45–90% for uniform traffic and 41–75% for non-uniform traffic. RDR reduces BP by 35–85% for uniform traffic and 30–75% for non-uniform traffic. Additionally, RDR lowers BBP by 31–73% for uniform traffic and 29–68% for non-uniform traffic.</span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"133333623","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Nonblocking conditions for a multicast WSW architecture based on subtree scheme for elastic optical networks 弹性光网络中基于子树的组播WSW结构的非阻塞条件
IF 2.2 4区 计算机科学 Q2 Engineering Pub Date : 2022-05-01 DOI: 10.1016/j.osn.2021.100660
Bey-Chi Lin

Elastic optical networks (EONs) are a promising solution for future high-speed optical communication, and multicasting in EONs can efficiently support many emerging services. Different schemes, such as path, tree and subtree schemes, serve multicast services. In this paper, we consider a three-stage wavelength-space-wavelength (WSW) node architecture, which adopts wavelength switches in the first and last stages and space switches in the middle stage, and uses the path scheme to accommodate multicast requests, as proposed in an earlier work for elastic optical networks. We also enhance the WSW architecture to serve multicast requests in a more spectrum-efficient way, namely, using the subtree scheme, by making each switch support multicast capacity, and we term the resulting architecture M-WSW. To the best of our knowledge, this is the first study of the WSW architecture using the subtree scheme to support multicast capacity. We prove the sufficient and necessary conditions, in terms of the number of middle switches, of the M-WSW architecture for being strictly nonblocking (SNB) and wide-sense nonblocking (WSNB) under the two routing algorithms proposed in this paper. Our results show that the number of middle switches required for the architecture to be WSNB under each of the two proposed routing algorithms is much less than the number of middle switches required for SNB, especially when the SNB results meet the boundary condition.

弹性光网络是未来高速光通信的一种很有前途的解决方案,弹性光网络中的组播可以有效地支持许多新兴业务。提供组播服务的方案有路径方案、树方案和子树方案。在本文中,我们考虑了一种三级波长-空间-波长(WSW)节点架构,该架构在第一和最后阶段采用波长交换,在中间阶段采用空间交换,并使用路径方案来容纳多播请求,这是先前在弹性光网络中提出的。我们还改进了WSW架构,通过使每个交换机支持组播容量,以更有效的频谱方式服务组播请求,即使用子树方案,我们将最终的架构称为M-WSW。据我们所知,这是第一个使用子树方案来支持多播容量的WSW架构的研究。从中间交换机数量的角度证明了在本文提出的两种路由算法下,M-WSW结构是严格非阻塞(SNB)和广义非阻塞(WSNB)的充要条件。结果表明,在两种路由算法下,实现WSNB所需的中间交换机数量都远少于实现SNB所需的中间交换机数量,特别是当SNB结果满足边界条件时。
{"title":"Nonblocking conditions for a multicast WSW architecture based on subtree scheme for elastic optical networks","authors":"Bey-Chi Lin","doi":"10.1016/j.osn.2021.100660","DOIUrl":"10.1016/j.osn.2021.100660","url":null,"abstract":"<div><p><span>Elastic optical networks (EONs) are a promising solution for future high-speed </span>optical communication<span><span>, and multicasting in EONs can efficiently support many emerging services. Different schemes, such as path, tree and subtree schemes, serve multicast services. In this paper, we consider a three-stage wavelength-space-wavelength (WSW) node architecture, which adopts wavelength switches in the first and last stages and space switches in the middle stage, and uses the path scheme to accommodate multicast requests, as proposed in an earlier work for elastic optical networks. We also enhance the WSW architecture to serve multicast requests in a more spectrum-efficient way, namely, using the subtree scheme, by making each switch </span>support multicast<span> capacity, and we term the resulting architecture M-WSW. To the best of our knowledge, this is the first study of the WSW architecture using the subtree scheme to support multicast capacity. We prove the sufficient and necessary conditions, in terms of the number of middle switches, of the M-WSW architecture for being strictly nonblocking (SNB) and wide-sense nonblocking (WSNB) under the two routing algorithms proposed in this paper. Our results show that the number of middle switches required for the architecture to be WSNB under each of the two proposed routing algorithms is much less than the number of middle switches required for SNB, especially when the SNB results meet the boundary condition.</span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"116195649","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Why Optical Packet Switching failed and can Elastic Optical Networks take its place? 光分组交换失败的原因和弹性光网络可以代替它吗?
IF 2.2 4区 计算机科学 Q2 Engineering Pub Date : 2022-05-01 DOI: 10.1016/j.osn.2021.100664
Franco Callegati , Davide Careglio , Luiz Henrique Bonani , Mario Pickavet , Josep Solé-Pareta

In this special issue devoted to the memory of Prof. Fabio Neri we would like to look back at the time of the international research projects where some of us collaborated with him. On the basis of our personal experience of the time and the current viewpoint, we will discuss why Optical Packet Switching (OPS) is a technology that never came to market in spite of the great amount of research that was devoted to it. Then we will explore how Elastic Optical Network came to the stage more recently, somewhat overcoming the OPS technical proposal both in the interest of the researchers as well as of the industry.

在这一期纪念法比奥·内里教授的特刊中,我们想回顾一下我们中的一些人与他合作进行国际研究项目的时期。根据我们个人的经验和当前的观点,我们将讨论为什么光分组交换(OPS)是一项尽管进行了大量研究却从未进入市场的技术。然后,我们将探讨弹性光网络是如何在最近出现的,在一定程度上克服了OPS技术提案,这既符合研究人员的利益,也符合行业的利益。
{"title":"Why Optical Packet Switching failed and can Elastic Optical Networks take its place?","authors":"Franco Callegati ,&nbsp;Davide Careglio ,&nbsp;Luiz Henrique Bonani ,&nbsp;Mario Pickavet ,&nbsp;Josep Solé-Pareta","doi":"10.1016/j.osn.2021.100664","DOIUrl":"10.1016/j.osn.2021.100664","url":null,"abstract":"<div><p>In this special issue devoted to the memory of Prof. Fabio Neri we would like to look back at the time of the international research projects where some of us collaborated with him. On the basis of our personal experience of the time and the current viewpoint, we will discuss why Optical Packet Switching (OPS) is a technology that never came to market in spite of the great amount of research that was devoted to it. Then we will explore how Elastic Optical Network came to the stage more recently, somewhat overcoming the OPS technical proposal both in the interest of the researchers as well as of the industry.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"127678683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Optical networks management and control: A review and recent challenges 光网络管理与控制:回顾与最新挑战
IF 2.2 4区 计算机科学 Q2 Engineering Pub Date : 2022-05-01 DOI: 10.1016/j.osn.2021.100652
Nicola Andriolli , Alessio Giorgetti , Piero Castoldi , Gabriele Cecchetti , Isabella Cerutti , Nicola Sambo , Andrea Sgambelluri , Luca Valcarenghi , Filippo Cugini , Barbara Martini , Francesco Paolucci

In the last twenty years, optical networks have witnessed recurrent changes in their management and control architecture. In this paper, we present a historical timeline and a future perspective of the evolution of optical network management and control deployed for Wavelength Switched Optical Networks (WSON), Elastic Optical Networks (EON) and (multilayer) Data Center Networks.

Early implementations of WSON envisaged a static and centralized provisioning approach supported by the Management Plane only. Gradually, the requirement of accommodating more network dynamicity in WSON, and later in EON, pushed the adoption of a distributed control, mostly supported by vendor-dependent implementations of the Generalized MultiProtocol Label Switching (GMPLS) protocol suite. The drawbacks of the fully distributed GMPLS-based control, such as resource contention, suboptimal resource usage, and complex computations (e.g., to account for physical layer constraints) showed the necessity to bring back some of the routing/provisioning functions to a centralized Path Computation Element (PCE) capable of accounting for e.g. physical impairments and interworking with GMPLS.

The centralized control then gained its momentum and brought a radical change in network control, through the separation of data and control plane introduced by the paradigm of Software Defined Networking (SDN). Such an approach has been gradually extended to optical network control.

The paper, eventually, presents the most advanced control techniques, namely the intent-based networking, the observe/decide/act state-based approach providing for autonomic optical network and the (closed-loop) zero-touch service management approach. Advanced traffic conditioning techniques are also detailed, namely the in-band telemetry and the exploitation of Programming Protocol-Independent Packet Processors (P4) language capabilities as well as solutions tailored for data center networks: all of them are still in a research stage and to be integrated within future optical network architectures.

在过去的二十年里,光网络的管理和控制体系结构发生了反复的变化。在本文中,我们提出了波长交换光网络(WSON),弹性光网络(EON)和(多层)数据中心网络部署的光网络管理和控制的历史时间表和未来的发展前景。WSON的早期实现设想了一种仅由管理平面支持的静态和集中的供应方法。渐渐地,在WSON以及后来的EON中容纳更多网络动态的需求推动了分布式控制的采用,主要由通用多协议标签交换(GMPLS)协议套件的供应商相关实现支持。完全分布式的基于GMPLS的控制的缺点,如资源争夺、次优资源使用和复杂的计算(例如,考虑物理层约束)表明有必要将一些路由/供应功能恢复到能够考虑物理损伤和与GMPLS交互的集中路径计算元素(PCE)。通过软件定义网络(SDN)范式引入的数据和控制平面分离,集中控制得到了发展势头,并给网络控制带来了根本性的变化。这种方法已逐步推广到光网络控制中。最后,本文介绍了最先进的控制技术,即基于意图的网络,为自主光网络提供的基于观察/决定/行动状态的方法和(闭环)零接触服务管理方法。本文还详细介绍了先进的流量调节技术,即带内遥测和编程协议独立包处理器(P4)语言能力的开发,以及为数据中心网络量身定制的解决方案:所有这些技术仍处于研究阶段,并将集成到未来的光网络架构中。
{"title":"Optical networks management and control: A review and recent challenges","authors":"Nicola Andriolli ,&nbsp;Alessio Giorgetti ,&nbsp;Piero Castoldi ,&nbsp;Gabriele Cecchetti ,&nbsp;Isabella Cerutti ,&nbsp;Nicola Sambo ,&nbsp;Andrea Sgambelluri ,&nbsp;Luca Valcarenghi ,&nbsp;Filippo Cugini ,&nbsp;Barbara Martini ,&nbsp;Francesco Paolucci","doi":"10.1016/j.osn.2021.100652","DOIUrl":"10.1016/j.osn.2021.100652","url":null,"abstract":"<div><p><span>In the last twenty years, optical networks have witnessed </span>recurrent<span> changes in their management and control architecture. In this paper, we present a historical timeline and a future perspective of the evolution of optical network management and control deployed for Wavelength Switched Optical Networks (WSON), Elastic Optical Networks (EON) and (multilayer) Data Center Networks.</span></p><p><span><span>Early implementations of WSON envisaged a static and centralized provisioning approach supported by the Management Plane only. Gradually, the requirement of accommodating more network dynamicity in WSON, and later in EON, pushed the adoption of a distributed control, mostly supported by vendor-dependent implementations of the Generalized MultiProtocol Label Switching (GMPLS) protocol suite. The drawbacks of the fully distributed GMPLS-based control, such as resource contention, suboptimal resource usage, and complex computations (e.g., to account for </span>physical layer constraints) showed the necessity to bring back some of the routing/provisioning functions to a centralized Path Computation Element (PCE) capable of accounting for e.g. </span>physical impairments and interworking with GMPLS.</p><p>The centralized control then gained its momentum and brought a radical change in network control, through the separation of data and control plane introduced by the paradigm of Software Defined Networking (SDN). Such an approach has been gradually extended to optical network control.</p><p><span>The paper, eventually, presents the most advanced control techniques, namely the intent-based networking, the observe/decide/act state-based approach providing for autonomic<span> optical network and the (closed-loop) zero-touch service management approach. Advanced traffic conditioning techniques are also detailed, namely the in-band telemetry and the exploitation of Programming Protocol-Independent Packet Processors (P4) language capabilities as well as solutions tailored for data center networks: all of them are still in a research stage and to be integrated within future optical </span></span>network architectures.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134534465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 10
Dynamic Bandwidth allocation algorithm for avoiding Frame rearrangement in NG-EPON NG-EPON中避免帧重排的动态带宽分配算法
IF 2.2 4区 计算机科学 Q2 Engineering Pub Date : 2022-02-01 DOI: 10.1016/j.osn.2021.100645
Ammar Rafiq , Muhammad Faisal Hayat , Muhammad Usman Younus

Next Generation Ethernet Passive Optical Network (NG-EPON) is considered to be future prospective access technology that could help to achieve 100Gbps data rates. Wavelength bonding is a phenomenon that can help Optical Network Units (ONU) to enhance their transmission capabilities. Using wavelength bonding, an ONU could transmit on multiple wavelength channels in parallel. The ONUs can achieve data transmission rates ranging from 25Gbps to 100Gbps. In upstream direction, ONUs share different available channels in time-sharing manner to effectively utilize the resources in NG-EPON. Dynamic Wavelength & Bandwidth Allocation (DWBA) algorithm is required for efficient allocation of wavelength and bandwidth resources in upstream direction. DWBA plays a vital role to help ONUs for transmission on multiple channels simultaneously. When an ONU transmits on multiple channels, a frame-rearrangement problem would occur at the Optical Line Terminal (OLT). OLT suffers from an extra overhead of frame-rearrangement; as the received frames at OLT are not in proper sequence. DWBA can play a vital role in avoiding frame rearrangement overhead. We proposed a DWBA algorithm to avoid/minimize frame rearrangement problem and efficient bandwidth allocation in NG-EPON. Our proposed DWBA avoids and minimizes frame-rearrangement problem and provides efficient resource allocation. We comparatively analyzed and evaluated our proposed DWBA with the existing DWBA algorithm. The simulation results show that our proposed DWBA minimizes frame-rearrangement problem as compared to existing DWBA algorithms and proves to be more efficient based on average (end-to-end) delay and completion time.

下一代以太网无源光网络(NG-EPON)被认为是未来有望实现100Gbps数据速率的接入技术。波长绑定是一种可以帮助光网络单元增强传输能力的现象。利用波长键合,ONU可以在多个波长通道上并行传输。onu可以实现25Gbps ~ 100Gbps的数据传输速率。在上游方向,onu以分时的方式共享不同的可用信道,从而有效地利用NG-EPON中的资源。动态波长&为了实现上游波长和带宽资源的有效分配,需要采用DWBA (Bandwidth Allocation)算法。DWBA在帮助onu实现多信道同时传输方面起着至关重要的作用。当ONU在多个信道上传输时,会在光线路终端(OLT)上出现帧重排问题。OLT承受着帧重排的额外开销;因为在OLT接收到的帧没有按正确的顺序排列。DWBA在避免帧重排开销方面起着至关重要的作用。为了避免/最小化ngepon中的帧重排问题,实现高效的带宽分配,提出了一种DWBA算法。我们提出的DWBA避免和最小化了帧重排问题,提供了有效的资源分配。并与现有的DWBA算法进行了比较分析和评价。仿真结果表明,与现有的DWBA算法相比,我们提出的DWBA算法最大限度地减少了帧重排问题,并且基于平均(端到端)延迟和完成时间证明了更高的效率。
{"title":"Dynamic Bandwidth allocation algorithm for avoiding Frame rearrangement in NG-EPON","authors":"Ammar Rafiq ,&nbsp;Muhammad Faisal Hayat ,&nbsp;Muhammad Usman Younus","doi":"10.1016/j.osn.2021.100645","DOIUrl":"10.1016/j.osn.2021.100645","url":null,"abstract":"<div><p><span>Next Generation Ethernet Passive Optical Network<span><span> (NG-EPON) is considered to be future prospective access technology that could help to achieve 100Gbps data rates. Wavelength bonding is a phenomenon that can help Optical Network Units (ONU) to enhance their transmission capabilities. Using wavelength bonding, an ONU could transmit on multiple </span>wavelength channels in parallel. The ONUs can achieve </span></span>data transmission rates<span> ranging from 25Gbps to 100Gbps. In upstream direction<span>, ONUs share different available channels in time-sharing manner to effectively utilize the resources in NG-EPON. Dynamic Wavelength &amp; Bandwidth Allocation (DWBA) algorithm is required for efficient allocation of wavelength and bandwidth resources in upstream direction. DWBA plays a vital role to help ONUs for transmission on multiple channels simultaneously. When an ONU transmits on multiple channels, a frame-rearrangement problem would occur at the Optical Line Terminal (OLT). OLT suffers from an extra overhead of frame-rearrangement; as the received frames at OLT are not in proper sequence. DWBA can play a vital role in avoiding frame rearrangement overhead. We proposed a DWBA algorithm to avoid/minimize frame rearrangement problem and efficient bandwidth allocation in NG-EPON. Our proposed DWBA avoids and minimizes frame-rearrangement problem and provides efficient resource allocation. We comparatively analyzed and evaluated our proposed DWBA with the existing DWBA algorithm. The simulation results show that our proposed DWBA minimizes frame-rearrangement problem as compared to existing DWBA algorithms and proves to be more efficient based on average (end-to-end) delay and completion time.</span></span></p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1016/j.osn.2021.100645","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124141799","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Low-margin efficient power and spectrum assignment in elastic optical networks 弹性光网络中的低边际高效功率和频谱分配
IF 2.2 4区 计算机科学 Q2 Engineering Pub Date : 2022-02-01 DOI: 10.1016/j.osn.2021.100649
Layhon Roberto Rodrigues dos Santos , Taufik Abrão

In this work the spectrum and power allocation (SPA) trade-off in elastic optical network (EON) is discussed in terms of the residual margin and residual spectrum in real-time application, both terms refer to the normalization of the sum-power and sum-spectrum in the resource allocation, respectively. Realistic scenarios have been investigated using optical performance monitoring techniques to measure the quality of transmission (QoT). The SPA-EON problem is formulated and three algorithms finding improved performance-complexity trade-offs are proposed to solve it: i) an analytical method based on combinatorial optimization, namely SPA-CO algorithm, ensuring the optimal solution but with a high computational cost; ii) a sub-optimum low-complexity method based on distance adaptive transmission (DAT), namely SPA-DAT, and iii) an SPA algorithm based on the distributed Verhulst algorithm, namely SPA-V, which achieves good solutions under acceptable computational time. A bunch of metrics, including probability of success, sum-power, and allocated spectrum are evaluated for the three SPA algorithms. The SPA-V was proved to be promising in EON operation, achieving the best performance-complexity trade-off.

本文从实时应用中的剩余余量和剩余频谱两个方面讨论了弹性光网络(EON)中频谱和功率分配(SPA)的权衡问题,这两个术语分别是指资源分配中和功率和频谱的归一化。利用光学性能监测技术测量传输质量(QoT),研究了现实场景。阐述了SPA-EON问题,并提出了三种改进性能复杂度权衡的算法来解决该问题:1)基于组合优化的解析方法,即SPA-CO算法,保证了最优解,但计算成本较高;ii)基于距离自适应传输(DAT)的次优低复杂度方法,即SPA-DAT; iii)基于分布式Verhulst算法的SPA算法,即SPA- v,在可接受的计算时间下获得了很好的解。对三种SPA算法进行了一系列指标评估,包括成功概率、和功率和分配频谱。SPA-V在EON操作中被证明是有前途的,实现了最佳的性能复杂度权衡。
{"title":"Low-margin efficient power and spectrum assignment in elastic optical networks","authors":"Layhon Roberto Rodrigues dos Santos ,&nbsp;Taufik Abrão","doi":"10.1016/j.osn.2021.100649","DOIUrl":"10.1016/j.osn.2021.100649","url":null,"abstract":"<div><p><span>In this work the spectrum and power allocation<span> (SPA) trade-off in elastic optical network<span> (EON) is discussed in terms of the residual margin and residual spectrum in real-time application, both terms refer to the normalization of the sum-power and sum-spectrum in the resource allocation, respectively. Realistic scenarios have been investigated using optical performance monitoring techniques to measure the quality of transmission (QoT). The SPA-EON problem is formulated and three algorithms finding improved performance-complexity trade-offs are proposed to solve it: </span></span></span><em>i</em><span>) an analytical method based on combinatorial optimization, namely SPA-CO algorithm, ensuring the optimal solution but with a high computational cost; </span><em>ii</em>) a sub-optimum low-complexity method based on distance adaptive transmission (DAT), namely SPA-DAT, and <em>iii</em>) an SPA algorithm based on the distributed Verhulst algorithm, namely SPA-V, which achieves good solutions under acceptable computational time. A bunch of metrics, including probability of success, sum-power, and allocated spectrum are evaluated for the three SPA algorithms. The SPA-V was proved to be promising in EON operation, achieving the best performance-complexity trade-off.</p></div>","PeriodicalId":54674,"journal":{"name":"Optical Switching and Networking","volume":null,"pages":null},"PeriodicalIF":2.2,"publicationDate":"2022-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"124701374","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
期刊
Optical Switching and Networking
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1