The software-defined optical network (SDON) is a revolutionary approach in the field of optical networks. The separation of the control plane and data plane in software-defined networking (SDN) provides enhanced security and simplified network administration. Nevertheless, performance and control plane scalability are significant issues in SDN. SDN performance can be evaluated using parameters such as burst loss, delay, channel occupancy, packet loss, throughput, and average response time. The number of messages exchanged between the data plane and the control plane is used as a metric to determine controller scalability. As the network load increases, the controller experiences a higher flow of messages. It causes delay and burst loss in transmitting the burst. Occasionally, bursts exceed the capacity of the fixed-sized burstifier and are discarded because it takes a long time to identify a suitable route for the burst. Hence, it is essential to minimize the volume of messages exchanged between the control plane and the data plane to improve performance and controller scalability. In this paper, we propose a scalable SDN optical network architecture that minimizes the number of messages exchanged between the data plane and the control plane. We proposed mechanisms like channel reservation, transmission cycles, and guard time between cycles to enhance both the speed and the quality of burst transmission. Prior to transmission, resources or channels are allocated to bursts to minimize the possibility of burst collision and loss. The data plane comprises an optical burst switching (OBS) network, and the flow table entries are periodically updated to minimize inter-plane communication. We perform simulations to evaluate and compare the performance of the proposed architecture with the existing state-of-the-art architecture reported in the literature. The proposed architecture performs better than the existing state-of-the-art in terms of metrics including burst loss, delay, channel occupancy, packet loss, throughput, average response time, and reduction in the number of messages exchanged between the data plane and the control plane. Experimental results indicate a 41% reduction in mean burst loss probability and a 40.5% reduction in mean burst sending delay compared to existing architectures. Additionally, 42.1% fewer messages are exchanged between the control plane and the data plane compared to the number of exchanged messages in existing architectures.
Three main kinds of underwater wireless communication, which employ acoustic waves, radio frequency and optical waves, have attracted intensive research interests in recently years. Among them, the underwater optical wireless communication (UOWC) is characterized by high propagation speed and large transmission bandwidth. But, the optical waves in underwater environment are significantly affected by absorption and scattering effects, which limit their transmission range. In order to enhance the performance of UOWC, designing a transmission and energy efficiency routing algorithm has become a non-ignorable issue in UOWC. In this paper, a transmission distance adaptive dual-hop (TDAD) routing algorithm is proposed for underwater optical wireless networks (UOWNs) to improve their efficiency in packet-delivery and energy-consumption. Unlike the existing routing algorithms designed for UOWNs, which pre-set the transmission range of network nodes, the proposed TDAD algorithm adaptively selects the transmission range for each node according to the diversity of heterogeneous service requests and employs location and energy information in its dual-hop based routing procedure. Simulation results indicate that the proposed TDAD algorithm remarkably improves packet delivery rate with more balanced energy consumption when compared to the deviation angle-based single-hop (DAS) algorithm and the distributed sector-based (DS) routing algorithm.

