首页 > 最新文献

Journal of Geodesy最新文献

英文 中文
A main direction-based noise removal algorithm for ICESat-2 photon-counting LiDAR data 针对 ICESat-2 光子计数激光雷达数据的基于主方向的噪声去除算法
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-04 DOI: 10.1007/s00190-024-01887-6
Jiya Pan, Fan Gao, Jinliang Wang, Jianpeng Zhang, Qianwei Liu, Yuncheng Deng

A new generation of space-borne LiDAR (Light Detection And Ranging) satellite ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) equipped with ATLAS (Advanced Topographic Laser Altimeter System) can perform earth observation. The main problem is to remove the noise photons from the data. The study proposes a main direction-based noise removal algorithm based on three sets of photon-counting LiDAR data. In order to extract the main direction, features in the spatial neighborhood (k) of photons are calculated, most of the initial noise is removed according to the angle between the main direction of photons and the along-track distance direction. Qualitative and quantitative evaluations are employed to validate the proposed algorithm. The obtained results and the performed analysis reveal that the proposed algorithm can process day and night data with different signal-to-noise ratios, while the accuracy of various surface types exceeds 96%. More specifically, the accuracy of the proposed algorithm for night data can reach 97.43%. Based on quantitative evaluations using SPL (Single photon LiDAR), MATLAS, and airborne LiDAR data, the average R, P, and F values are 0.951, 0.959, and 0.954, respectively. Meanwhile, the result of the proposed algorithm is compatible with the ATL03 photons with low, medium, and high confidence, and its accuracy is superior to ATL08 products. The proposed algorithm had fewer parameters and significantly outperformed the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the improved local statistical distance algorithm. This algorithm is expected to provide a reference for subsequent photon-counting LiDAR data processing.

新一代星载激光雷达(LiDAR)卫星 ICESat-2(冰、云和陆地高程卫星-2)配备了 ATLAS(高级地形激光测高仪系统),可以进行地球观测。主要问题是从数据中去除噪声光子。本研究基于三组光子计数激光雷达数据,提出了一种基于主方向的噪声去除算法。为了提取主方向,计算光子空间邻域(k)中的特征,根据光子主方向与沿轨迹距离方向之间的夹角去除大部分初始噪声。通过定性和定量评估来验证所提出的算法。获得的结果和进行的分析表明,所提出的算法可以处理不同信噪比的白天和夜间数据,而各种地表类型的准确率超过 96%。更具体地说,所提算法对夜间数据的准确率可达 97.43%。基于 SPL(单光子激光雷达)、MATLAS 和机载激光雷达数据的定量评估,平均 R 值、P 值和 F 值分别为 0.951、0.959 和 0.954。同时,所提算法的结果与 ATL03 光子的低、中、高置信度兼容,精度优于 ATL08 产品。提出的算法参数较少,性能明显优于基于密度的有噪声应用空间聚类算法(DBSCAN)和改进的局部统计距离算法。该算法有望为后续的光子计数激光雷达数据处理提供参考。
{"title":"A main direction-based noise removal algorithm for ICESat-2 photon-counting LiDAR data","authors":"Jiya Pan, Fan Gao, Jinliang Wang, Jianpeng Zhang, Qianwei Liu, Yuncheng Deng","doi":"10.1007/s00190-024-01887-6","DOIUrl":"https://doi.org/10.1007/s00190-024-01887-6","url":null,"abstract":"<p>A new generation of space-borne LiDAR (Light Detection And Ranging) satellite ICESat-2 (Ice, Cloud, and land Elevation Satellite-2) equipped with ATLAS (Advanced Topographic Laser Altimeter System) can perform earth observation. The main problem is to remove the noise photons from the data. The study proposes a main direction-based noise removal algorithm based on three sets of photon-counting LiDAR data. In order to extract the main direction, features in the spatial neighborhood (<i>k</i>) of photons are calculated, most of the initial noise is removed according to the angle between the main direction of photons and the along-track distance direction. Qualitative and quantitative evaluations are employed to validate the proposed algorithm. The obtained results and the performed analysis reveal that the proposed algorithm can process day and night data with different signal-to-noise ratios, while the accuracy of various surface types exceeds 96%. More specifically, the accuracy of the proposed algorithm for night data can reach 97.43%. Based on quantitative evaluations using SPL (Single photon LiDAR), MATLAS, and airborne LiDAR data, the average <i>R</i>, <i>P</i>, and <i>F</i> values are 0.951, 0.959, and 0.954, respectively. Meanwhile, the result of the proposed algorithm is compatible with the ATL03 photons with low, medium, and high confidence, and its accuracy is superior to ATL08 products. The proposed algorithm had fewer parameters and significantly outperformed the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) and the improved local statistical distance algorithm. This algorithm is expected to provide a reference for subsequent photon-counting LiDAR data processing.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"19 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142130665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling random isotropic vector fields on the sphere: theory and application to the noise in GNSS station position time series 球面随机各向同性矢量场建模:理论及在全球导航卫星系统台站位置时间序列噪声中的应用
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-09-02 DOI: 10.1007/s00190-024-01886-7
Paul Rebischung, Kevin Gobron

While the theory of random isotropic scalar fields on the sphere is well established, it has not been fully extended to the case of vector fields yet. In this contribution, several theoretical results are thus generalized to random isotropic vector fields on the sphere, including an equivalent of the Wiener–Khinchin theorem, which relates the distance-dependent covariance of the field’s components in a particular rotationally invariant basis to the covariance of the vector spherical harmonic coefficients of the field, i.e., its angular power spectrum. A parametric model, based on a stochastic partial differential equation, is proposed to represent the spatial covariance and angular power spectrum of such fields. Such a model is adjusted, with minor modifications, to empirical spatial correlations of the white noise and flicker noise components of 3D displacement time series of ground global navigation satellite system (GNSS) tracking stations. The obtained spatial correlation model may find several applications such as enhanced detection of offsets in GNSS station position time series, enhanced estimation of long-term ground deformation (i.e., station velocities), enhanced isolation of station-specific displacements (i.e., spatial filtering) and more realistic assessment of uncertainties in all GNSS network-based applications (e.g., estimation of crustal strain rates, of glacial isostatic adjustment models or of tectonic plate motion models).

虽然球面随机各向同性标量场的理论已经成熟,但尚未完全推广到矢量场的情况。在这篇论文中,一些理论结果被推广到球面上的随机各向同性矢量场,包括维纳-钦钦定理的等价物,该定理将特定旋转不变基中与距离相关的场分量协方差与场的矢量球面谐波系数协方差(即其角功率谱)联系起来。我们提出了一个基于随机偏微分方程的参数模型来表示这种场的空间协方差和角功率谱。对该模型稍作修改后,可根据地面全球导航卫星系统(GNSS)跟踪站三维位移时间序列的白噪声和闪烁噪声成分的经验空间相关性进行调整。所获得的空间相关性模型可用于多种用途,如增强对全球导航卫星系统台站位置时间序列偏移的检测,增强对长期地面变形(即台站速度)的估计,增强对特定台站位移的隔离(即空间过滤),以及对基于全球导航卫星系统网络的所有应用(如地壳应变率、冰川等静力调整模型或构造板块运动模型的估计)中的不确定性进行更现实的评估。
{"title":"Modeling random isotropic vector fields on the sphere: theory and application to the noise in GNSS station position time series","authors":"Paul Rebischung, Kevin Gobron","doi":"10.1007/s00190-024-01886-7","DOIUrl":"https://doi.org/10.1007/s00190-024-01886-7","url":null,"abstract":"<p>While the theory of random isotropic scalar fields on the sphere is well established, it has not been fully extended to the case of vector fields yet. In this contribution, several theoretical results are thus generalized to random isotropic vector fields on the sphere, including an equivalent of the Wiener–Khinchin theorem, which relates the distance-dependent covariance of the field’s components in a particular rotationally invariant basis to the covariance of the vector spherical harmonic coefficients of the field, i.e., its angular power spectrum. A parametric model, based on a stochastic partial differential equation, is proposed to represent the spatial covariance and angular power spectrum of such fields. Such a model is adjusted, with minor modifications, to empirical spatial correlations of the white noise and flicker noise components of 3D displacement time series of ground global navigation satellite system (GNSS) tracking stations. The obtained spatial correlation model may find several applications such as enhanced detection of offsets in GNSS station position time series, enhanced estimation of long-term ground deformation (i.e., station velocities), enhanced isolation of station-specific displacements (i.e., spatial filtering) and more realistic assessment of uncertainties in all GNSS network-based applications (e.g., estimation of crustal strain rates, of glacial isostatic adjustment models or of tectonic plate motion models).</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"15 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-09-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142123627","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ITRF2020 seasonal geocenter motion model ITRF2020 季节性地心运动模型
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-30 DOI: 10.1007/s00190-024-01889-4
Paul Rebischung, Zuheir Altamimi, Xavier Collilieux, Laurent Métivier, Kristel Chanard

Precise knowledge of geocenter motion, i.e., the relative motion between the Earth’s center of mass (CM) and the center of figure of the Earth’s surface (CF), is crucial to high-stakes geodetic applications such as sea-level rise monitoring with satellite altimetry or the establishment of regional and global mass budgets with satellite gravimetry. The computation of the latest release of the International Terrestrial Reference Frame, ITRF2020, involved the estimation of a field of seasonal motions for a global network of geodetic stations, expressed with respect to CM, as sensed by satellite laser ranging, from which the translational part represents seasonal geocenter motion. This paper presents two different methods to isolate seasonal geocenter motion from the field of ITRF2020 seasonal station motions, among which a new method based on a direct weighted average of seasonal station motions, with station-specific weights chosen so as to provide a better approximation of CF than the standard network shift approach. The ITRF2020 annual geocenter motion model thus obtained is then compared with other recent geodetic and geophysical estimates. Although different sub-groups of estimates with relatively good internal consistency may be identified, the overall scatter of recent geodetic estimates remains at the level of several mm, i.e., close to the amplitude of annual geocenter motion itself. Efforts toward reconciling seasonal geocenter motion estimates therefore still appear necessary. Meanwhile, it would seem safe to assume that seasonal geocenter motion models, in particular those currently used in satellite altimetry and satellite gravimetry, are still uncertain.

精确了解地心运动,即地球质量中心(CM)和地球表面图形中心(CF)之间的相对运动,对于卫星测高法监测海平面上升或卫星重力测量法建立区域和全球质量预算等关系重大的大地测量应用至关重要。最新发布的国际地球参考框架(ITRF2020)的计算涉及对全球大地测量站网络的季节运动场的估算,该运动场以卫星激光测距感测到的 CM 表示,其中平移部分代表季节性地心运动。本文介绍了从 ITRF2020 季节性台站运动场中分离出季节性地心运动的两种不同方法,其中一种新方法是基于季节性台站运动的直接加权平均,选择特定台站的权重,以提供比标准网络移动方法更好的 CF 近似值。然后,将由此获得的 ITRF2020 年度地心运动模型与其他最新的大地测量和地球物理估算结果进行比较。虽然可以识别出内部一致性相对较好的不同估算分组,但近期大地测量估算的总体散度仍保持在几毫米的水平,即接近地心年运动本身的振幅。因此,似乎仍有必要努力协调季节性地心运动估计值。与此同时,似乎可以有把握地认为,季节性地心运动模型,特别是目前用于卫星测高和卫星重力测量的模型,仍然是不确定的。
{"title":"ITRF2020 seasonal geocenter motion model","authors":"Paul Rebischung, Zuheir Altamimi, Xavier Collilieux, Laurent Métivier, Kristel Chanard","doi":"10.1007/s00190-024-01889-4","DOIUrl":"https://doi.org/10.1007/s00190-024-01889-4","url":null,"abstract":"<p>Precise knowledge of geocenter motion, i.e., the relative motion between the Earth’s center of mass (CM) and the center of figure of the Earth’s surface (CF), is crucial to high-stakes geodetic applications such as sea-level rise monitoring with satellite altimetry or the establishment of regional and global mass budgets with satellite gravimetry. The computation of the latest release of the International Terrestrial Reference Frame, ITRF2020, involved the estimation of a field of seasonal motions for a global network of geodetic stations, expressed with respect to CM, as sensed by satellite laser ranging, from which the translational part represents seasonal geocenter motion. This paper presents two different methods to isolate seasonal geocenter motion from the field of ITRF2020 seasonal station motions, among which a new method based on a direct weighted average of seasonal station motions, with station-specific weights chosen so as to provide a better approximation of CF than the standard network shift approach. The ITRF2020 annual geocenter motion model thus obtained is then compared with other recent geodetic and geophysical estimates. Although different sub-groups of estimates with relatively good internal consistency may be identified, the overall scatter of recent geodetic estimates remains at the level of several mm, i.e., close to the amplitude of annual geocenter motion itself. Efforts toward reconciling seasonal geocenter motion estimates therefore still appear necessary. Meanwhile, it would seem safe to assume that seasonal geocenter motion models, in particular those currently used in satellite altimetry and satellite gravimetry, are still uncertain.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"13 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142101458","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Orbit design for a future geodetic satellite and gravity field recovery 未来大地测量卫星的轨道设计和重力场恢复
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-19 DOI: 10.1007/s00190-024-01884-9
Krzysztof Sośnica

Spherical geodetic satellites tracked by satellite laser ranging (SLR) stations provide indispensable scientific products that cannot be replaced by other sources. For studying the time-variable gravity field, two low-degree coefficients C20 and C30 derived from GRACE and GRACE Follow-On missions are replaced by the values derived from SLR tracking of geodetic satellites, such as LAGEOS-1/2, LARES-1/2, Starlette, Stella, and Ajisai. The subset of these satellites is used to derive the geocenter motion which is fundamental in the realization of the origin of the terrestrial reference frames. LAGEOS satellites provide the most accurate standard gravitational product GM of the Earth. In this study, we use the Kaula theorem of gravitational perturbations to find the best possible satellite height, inclination, and eccentricity for a future geodetic satellite to maximize orbit sensitivity in terms of the recovery of low-degree gravity field coefficients, geocenter, and GM. We also derive the common station-satellite visibility-coverability coefficient as a function of the inclination angle and satellite height. We found that the best inclination for a future geodetic satellite is 35°–45° or 135°–145° with a height of about 1500–1700 km to support future GRACE/MAGIC missions with C20 and C30. For a better geocenter recovery and derivation of the standard gravitational product, the preferable height is 2300–3500 km. Unfortunately, none of the existing geodetic satellites has the optimum height and inclination angle for deriving GM, geocenter, and C20 because there are no spherical geodetic satellites at the heights between 1500 (Ajisai and LARES-1) and 5800 km (LAGEOS-1/2, LARES-2).

卫星激光测距(SLR)站跟踪的球面大地测量卫星提供了其他来源无法替代的不可或缺的科学产品。为了研究时变重力场,用 LAGEOS-1/2、LARES-1/2、Starlette、Stella 和 Ajisai 等大地测量卫星激光测距跟踪得出的值取代了 GRACE 和 GRACE Follow-On 任务得出的两个低度系数 C20 和 C30。这些卫星的子集用于推导地心运动,而地心运动是实现地面参照基准原点的基础。LAGEOS 卫星提供了最精确的地球标准重力产品 GM。在这项研究中,我们利用引力扰动的考拉定理为未来的大地测量卫星找到了最佳的卫星高度、倾角和偏心率,以便在恢复低度重力场系数、地心和全球定位系统方面最大限度地提高轨道灵敏度。我们还推导出了作为倾角和卫星高度函数的普通台站-卫星能见度-可覆盖性系数。我们发现,未来大地测量卫星的最佳倾角为 35°-45° 或 135°-145°,高度约为 1500-1700 公里,以支持未来的 GRACE/MAGIC 任务与 C20 和 C30。为了更好地恢复地心和推导标准重力产品,最好的高度是 2300-3500 公里。遗憾的是,现有的大地测量卫星都不具备推导 GM、地心和 C20 的最佳高度和倾角,因为在 1500 公里(Ajisai 和 LARES-1)和 5800 公里(LAGEOS-1/2、LARES-2)之间的高度上没有球形大地测量卫星。
{"title":"Orbit design for a future geodetic satellite and gravity field recovery","authors":"Krzysztof Sośnica","doi":"10.1007/s00190-024-01884-9","DOIUrl":"https://doi.org/10.1007/s00190-024-01884-9","url":null,"abstract":"<p>Spherical geodetic satellites tracked by satellite laser ranging (SLR) stations provide indispensable scientific products that cannot be replaced by other sources. For studying the time-variable gravity field, two low-degree coefficients <i>C</i><sub>20</sub> and <i>C</i><sub>30</sub> derived from GRACE and GRACE Follow-On missions are replaced by the values derived from SLR tracking of geodetic satellites, such as LAGEOS-1/2, LARES-1/2, Starlette, Stella, and Ajisai. The subset of these satellites is used to derive the geocenter motion which is fundamental in the realization of the origin of the terrestrial reference frames. LAGEOS satellites provide the most accurate standard gravitational product GM of the Earth. In this study, we use the Kaula theorem of gravitational perturbations to find the best possible satellite height, inclination, and eccentricity for a future geodetic satellite to maximize orbit sensitivity in terms of the recovery of low-degree gravity field coefficients, geocenter, and GM. We also derive the common station-satellite visibility-coverability coefficient as a function of the inclination angle and satellite height. We found that the best inclination for a future geodetic satellite is 35°–45° or 135°–145° with a height of about 1500–1700 km to support future GRACE/MAGIC missions with <i>C</i><sub>20</sub> and <i>C</i><sub>30</sub>. For a better geocenter recovery and derivation of the standard gravitational product, the preferable height is 2300–3500 km. Unfortunately, none of the existing geodetic satellites has the optimum height and inclination angle for deriving GM, geocenter, and <i>C</i><sub>20</sub> because there are no spherical geodetic satellites at the heights between 1500 (Ajisai and LARES-1) and 5800 km (LAGEOS-1/2, LARES-2).</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"88 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142002894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
IAG Newsletter 国际咨询组通讯
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-16 DOI: 10.1007/s00190-024-01883-w
Gyula Tóth
{"title":"IAG Newsletter","authors":"Gyula Tóth","doi":"10.1007/s00190-024-01883-w","DOIUrl":"https://doi.org/10.1007/s00190-024-01883-w","url":null,"abstract":"","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"96 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141992055","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Toward a unified approach to the total least-squares adjustment 采用统一方法进行总最小二乘调整
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-08 DOI: 10.1007/s00190-024-01882-x
Yu Hu, Xing Fang, Wenxian Zeng

In this paper, we analyze the general errors-in-variables (EIV) model, allowing both the uncertain coefficient matrix and the dispersion matrix to be rank-deficient. We derive the weighted total least-squares (WTLS) solution in the general case and find that with the model consistency condition: (1) If the coefficient matrix is of full column rank, the parameter vector and the residual vector can be uniquely determined independently of the singularity of the dispersion matrix, which naturally extends the Neitzel/Schaffrin rank condition (NSC) in previous work. (2) In the rank-deficient case, the estimable functions and the residual vector can be uniquely determined. As a result, a unified approach for WTLS is provided by using generalized inverse matrices (g-inverses) as a principal tool. This method is unified because it fully considers the generality of the model setup, such as singularity of the dispersion matrix and multicollinearity of the coefficient matrix. It is flexible because it does not require to distinguish different cases before the adjustment. We analyze two examples, including the adjustment of the translation elimination model, where the centralized coordinates for the symmetric transformation are applied, and the unified adjustment, where the higher-dimensional transformation model is explicitly compatible with the lower-dimensional transformation problem.

本文分析了一般变量误差(EIV)模型,允许不确定系数矩阵和离散矩阵都是秩缺失的。我们推导了一般情况下的加权总最小二乘(WTLS)解,并发现在模型一致性条件下:(1) 如果系数矩阵为全列秩,参数向量和残差向量可以唯一确定,与离散矩阵的奇异性无关,这自然扩展了之前工作中的 Neitzel/Schaffrin 秩条件(NSC)。(2) 在秩不足的情况下,可估计函数和残差向量可以唯一确定。因此,通过使用广义逆矩阵(g-inverses)作为主要工具,为 WTLS 提供了一种统一的方法。这种方法之所以是统一的,是因为它充分考虑了模型设置的普遍性,如分散矩阵的奇异性和系数矩阵的多共线性。它还具有灵活性,因为在调整前无需区分不同情况。我们分析了两个例子,包括应用对称变换集中坐标的平移消除模型调整,以及高维变换模型与低维变换问题明确兼容的统一调整。
{"title":"Toward a unified approach to the total least-squares adjustment","authors":"Yu Hu, Xing Fang, Wenxian Zeng","doi":"10.1007/s00190-024-01882-x","DOIUrl":"https://doi.org/10.1007/s00190-024-01882-x","url":null,"abstract":"<p>In this paper, we analyze the general errors-in-variables (EIV) model, allowing both the uncertain coefficient matrix and the dispersion matrix to be rank-deficient. We derive the weighted total least-squares (WTLS) solution in the general case and find that with the model consistency condition: (1) If the coefficient matrix is of full column rank, the parameter vector and the residual vector can be uniquely determined independently of the singularity of the dispersion matrix, which naturally extends the Neitzel/Schaffrin rank condition (NSC) in previous work. (2) In the rank-deficient case, the estimable functions and the residual vector can be uniquely determined. As a result, a unified approach for WTLS is provided by using generalized inverse matrices (g-inverses) as a principal tool. This method is unified because it fully considers the generality of the model setup, such as singularity of the dispersion matrix and multicollinearity of the coefficient matrix. It is flexible because it does not require to distinguish different cases before the adjustment. We analyze two examples, including the adjustment of the translation elimination model, where the centralized coordinates for the symmetric transformation are applied, and the unified adjustment, where the higher-dimensional transformation model is explicitly compatible with the lower-dimensional transformation problem.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"21 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904340","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Properties of an optical event timer for satellite laser ranging 卫星激光测距光学事件计时器的特性
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-07 DOI: 10.1007/s00190-024-01876-9
Jan Kodet, Johann J. Eckl, K. Ulrich Schreiber

The resolution and above all the stability of the geodetic reference frames is crucially important when global change, such as the sea level rise is observed. In this context systematic errors are still presenting a significant challenge to the measurement techniques of space geodesy. In order to overcome this unfortunate situation for the satellite laser ranging technique, we have utilized the injection of a mode-locked laser to provide a stable low-noise link between the optical domain, where the measurements are carried out, and the microwave regime in which the station clock is defined. We obtained a considerably enhanced measurement delay stability by 10–20 ps over several days, albeit with some experimental challenges. The implementation of waveform scans required us to revisit the issue of target structure and intensity variation in satellite laser ranging.

当观测到海平面上升等全球变化时,大地测量参考框架的分辨率,尤其是稳定性至关重要。在这种情况下,系统误差仍然是空间大地测量测量技术面临的重大挑战。为了克服卫星激光测距技术面临的这一不利局面,我们利用注入模式锁定激光器的方法,在进行测量的光学域和确定台站时钟的微波域之间提供稳定的低噪声链路。尽管在实验过程中遇到了一些挑战,但我们还是在数天内将测量延迟稳定性大大提高了 10-20 ps。波形扫描的实施要求我们重新审视卫星激光测距中的目标结构和强度变化问题。
{"title":"Properties of an optical event timer for satellite laser ranging","authors":"Jan Kodet, Johann J. Eckl, K. Ulrich Schreiber","doi":"10.1007/s00190-024-01876-9","DOIUrl":"https://doi.org/10.1007/s00190-024-01876-9","url":null,"abstract":"<p>The resolution and above all the stability of the geodetic reference frames is crucially important when global change, such as the sea level rise is observed. In this context systematic errors are still presenting a significant challenge to the measurement techniques of space geodesy. In order to overcome this unfortunate situation for the satellite laser ranging technique, we have utilized the injection of a mode-locked laser to provide a stable low-noise link between the optical domain, where the measurements are carried out, and the microwave regime in which the station clock is defined. We obtained a considerably enhanced measurement delay stability by 10–20 ps over several days, albeit with some experimental challenges. The implementation of waveform scans required us to revisit the issue of target structure and intensity variation in satellite laser ranging.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"81 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141904343","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A computational efficient approach for multi-GNSS real-time precise clock estimation with undifferenced ambiguity resolution 多全球导航卫星系统(GNSS)实时精确时钟估算与无差别模糊解决的高效计算方法
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-08-05 DOI: 10.1007/s00190-024-01881-y
Xiang Zuo, Pan Li, Bobin Cui, Maorong Ge, Harald Schuh

To support real-time global navigation satellite systems (GNSS) precise applications, satellite clock corrections need to be precisely estimated at a high-rate update interval, which remains a challenge due to the rapid development of multi-GNSS constellations. In this study, we developed an undifferenced (UD) ambiguity resolution (AR) procedure to improve both the accuracy and computational efficiency for real-time multi-GNSS clock estimation realized by a square root information filter. In the proposed method, UD ambiguities are resolved after correcting the simultaneously estimated uncalibrated phase delays (UPD) and the fixed UD ambiguity parameters are eliminated immediately from the filter, so that the computational burden is significantly reduced. Moreover, based on the linear relationship between double-differenced (DD) and UD ambiguities, we investigated the difference between DD and UD AR in clock estimation. We found that the major reason why DD AR contributes little to the clock estimation while UD AR can speed up the convergence remarkably is that UD AR additionally provides a stable clock datum compared with DD AR. GNSS observations from about 100 globally distributed stations were processed with the proposed method to generate simulated real-time clocks and UPDs for GPS, Galileo, and BDS satellites over a one-month period. The results show that the percentage of wide-lane (WL) UPD residuals within ± 0.25 cycles and narrow-lane (NL) UPD residuals within ± 0.15 cycles are over 97.0% and 90.0%, respectively, which contributes to an ambiguity fixing rate of more than 90% for three systems. The mean daily standard deviation (STD) of the clocks of the UD-fixed solution with respect to Center for Orbit Determination in Europe 30 s final products is 0.021, 0.020, and 0.035 ns for GPS, Galileo, and BDS satellite, respectively, which is improved by 78.1%, 58.3%, and 79.8% compared to the float solution. Benefiting from the removal of fixed ambiguities, the average computation time per epoch was reduced from 3.88 to 1.05 s with a remarkable improvement of 72.9%. The quality of the satellite clock and UPD products was also evaluated by the performance of kinematic precise point positioning (PPP). The results show that fast and reliable multi-GNSS PPP-AR can be achieved with the derived UD-fixed clocks and UPDs, which outperforms that using DD-fixed clock and off-line UPD products with an average improvement of 7.9% and 19.9% in terms of convergence time and positioning accuracy, respectively. Furthermore, we demonstrated the effectiveness of the proposed UD AR method through a 7-day real-time clock estimation experiment.

为了支持全球导航卫星系统(GNSS)的实时精确应用,需要以高速率的更新间隔精确估计卫星时钟校正,而由于多GNSS星座的快速发展,这仍然是一个挑战。在这项研究中,我们开发了一种无差分(UD)模糊解决(AR)程序,以提高通过平方根信息滤波器实现的实时多 GNSS 时钟估计的精度和计算效率。在所提出的方法中,UD 模糊性是在校正同时估计的未校准相位延迟(UPD)后解决的,固定的 UD 模糊性参数立即从滤波器中消除,因此计算负担大大减轻。此外,基于双差分(DD)和 UD 模糊性之间的线性关系,我们研究了 DD 和 UD AR 在时钟估计中的区别。我们发现,DD AR 对时钟估计的贡献很小,而 UD AR 能显著加快收敛速度,其主要原因是 UD AR 与 DD AR 相比额外提供了一个稳定的时钟基准。利用所提出的方法处理了约 100 个全球分布台站的全球导航卫星系统观测数据,为 GPS、伽利略和 BDS 卫星生成了为期一个月的模拟实时时钟和 UPD。结果表明,宽线(WL)UPD 残差在± 0.25 个周期以内和窄线(NL)UPD 残差在± 0.15 个周期以内的百分比分别超过 97.0% 和 90.0%,这使得三个系统的模糊性修正率超过 90%。对于 GPS、伽利略和 BDS 卫星,UD 固定解的时钟相对于欧洲轨道确定中心 30 最终产品的平均日标准偏差(STD)分别为 0.021、0.020 和 0.035 ns,与浮动解相比,分别提高了 78.1%、58.3% 和 79.8%。由于消除了固定模糊,每个历元的平均计算时间从 3.88 秒减少到 1.05 秒,显著提高了 72.9%。卫星时钟和 UPD 产品的质量还通过运动学精确点定位 (PPP) 性能进行了评估。结果表明,利用推导出的 UD 固定时钟和 UPD 可以实现快速可靠的多 GNSS PPP-AR,其收敛时间和定位精度分别平均提高了 7.9% 和 19.9%,优于使用 DD 固定时钟和离线 UPD 产品的结果。此外,我们还通过一个为期 7 天的实时时钟估算实验证明了所提出的 UD AR 方法的有效性。
{"title":"A computational efficient approach for multi-GNSS real-time precise clock estimation with undifferenced ambiguity resolution","authors":"Xiang Zuo, Pan Li, Bobin Cui, Maorong Ge, Harald Schuh","doi":"10.1007/s00190-024-01881-y","DOIUrl":"https://doi.org/10.1007/s00190-024-01881-y","url":null,"abstract":"<p>To support real-time global navigation satellite systems (GNSS) precise applications, satellite clock corrections need to be precisely estimated at a high-rate update interval, which remains a challenge due to the rapid development of multi-GNSS constellations. In this study, we developed an undifferenced (UD) ambiguity resolution (AR) procedure to improve both the accuracy and computational efficiency for real-time multi-GNSS clock estimation realized by a square root information filter. In the proposed method, UD ambiguities are resolved after correcting the simultaneously estimated uncalibrated phase delays (UPD) and the fixed UD ambiguity parameters are eliminated immediately from the filter, so that the computational burden is significantly reduced. Moreover, based on the linear relationship between double-differenced (DD) and UD ambiguities, we investigated the difference between DD and UD AR in clock estimation. We found that the major reason why DD AR contributes little to the clock estimation while UD AR can speed up the convergence remarkably is that UD AR additionally provides a stable clock datum compared with DD AR. GNSS observations from about 100 globally distributed stations were processed with the proposed method to generate simulated real-time clocks and UPDs for GPS, Galileo, and BDS satellites over a one-month period. The results show that the percentage of wide-lane (WL) UPD residuals within ± 0.25 cycles and narrow-lane (NL) UPD residuals within ± 0.15 cycles are over 97.0% and 90.0%, respectively, which contributes to an ambiguity fixing rate of more than 90% for three systems. The mean daily standard deviation (STD) of the clocks of the UD-fixed solution with respect to Center for Orbit Determination in Europe 30 s final products is 0.021, 0.020, and 0.035 ns for GPS, Galileo, and BDS satellite, respectively, which is improved by 78.1%, 58.3%, and 79.8% compared to the float solution. Benefiting from the removal of fixed ambiguities, the average computation time per epoch was reduced from 3.88 to 1.05 s with a remarkable improvement of 72.9%. The quality of the satellite clock and UPD products was also evaluated by the performance of kinematic precise point positioning (PPP). The results show that fast and reliable multi-GNSS PPP-AR can be achieved with the derived UD-fixed clocks and UPDs, which outperforms that using DD-fixed clock and off-line UPD products with an average improvement of 7.9% and 19.9% in terms of convergence time and positioning accuracy, respectively. Furthermore, we demonstrated the effectiveness of the proposed UD AR method through a 7-day real-time clock estimation experiment.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"55 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141895577","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Determination of borehole tiltmeter orientation using earth tides 利用地球潮汐确定钻孔倾斜仪方位
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-29 DOI: 10.1007/s00190-024-01878-7
Xiaojie Zhu, Jean Chéry, Michel Cattoen, Salvatore Gambino, Jiankun He, Michel Peyret, Laura Privitera, Han Cheng Seat

Accurate orientation of geodetic instruments is fundamental for understanding deformation processes within the Earth's interior. Misalignment can lead to significant errors in data interpretation, affecting various geophysical applications. However, accurate alignment of standalone instruments like seismometers, strainmeters and tiltmeters remains a challenge in field geodesy. While numerous seismic-wave-based orientation methods have been successfully applied to seismometers, they are often inapplicable to tiltmeters due to their high-frequency filtering behavior and the requirement for a neighboring, pre-oriented instrument. In response to these challenges, we propose a novel orientation calibration method for borehole tiltmeters based on maximizing the correlation between recorded tilt data and theoretical tides by adjusting azimuthal angles. Our study encompasses two kinds of borehole tiltmeters and four datasets from three different field sites. Using solid and ocean tides modeling together with local topography and cavity disturbances, we obtain coefficient correlations ranging between 0.831 and 0.963, and 95% confidence intervals of azimuthal angles below 3.3°. The correlation-based method demonstrates robustness across various tidal-signal extraction techniques, including different averaging window sizes and band-pass filters. Moreover, it yields azimuthal results in agreement with direct compass measurements for known orientations, while exhibiting a moderate sensitivity to factors such as ocean tides and site-specific topography for the studied cases. This method appears to be advantageous when direct measurements are either unavailable or challenging, and emerges as an accurate tool for determining borehole tiltmeter orientation. Its potential applicability may extend beyond tiltmeters to other instruments that can also record tidal phenomena, such as strainmeters and broadband seismometers. Additionally, its utility could be extended to environments like the seafloor, in order to refine the precision of azimuthal angle estimation and simplify methods for azimuthal angle determination.

大地测量仪器的精确定位是了解地球内部变形过程的基础。对准不准会导致数据解读出现重大误差,影响各种地球物理应用。然而,地震仪、应变仪和倾斜仪等独立仪器的精确对准仍然是野外大地测量中的一项挑战。虽然许多基于地震波的定向方法已成功应用于地震仪,但由于倾斜仪的高频滤波行为和对邻近预定向仪器的要求,这些方法往往不适用于倾斜仪。为了应对这些挑战,我们提出了一种新颖的井眼倾角仪方位校准方法,通过调整方位角,最大限度地提高记录的倾角数据与理论潮汐之间的相关性。我们的研究包括两种钻孔倾斜仪和来自三个不同野外地点的四个数据集。利用固体潮汐和海洋潮汐模型以及当地地形和空洞扰动,我们获得了介于 0.831 和 0.963 之间的系数相关性,方位角的 95% 置信区间低于 3.3°。基于相关性的方法在各种潮汐信号提取技术(包括不同的平均窗口大小和带通滤波器)中都表现出稳健性。此外,该方法得出的方位角结果与罗盘对已知方位的直接测量结果一致,同时对研究案例中的海洋潮汐和特定地点地形等因素表现出适度的敏感性。在无法进行直接测量或测量难度很大的情况下,这种方法似乎很有优势,是确定钻孔倾角仪方位的精确工具。它的潜在适用范围可能会从倾角仪扩展到其他也能记录潮汐现象的仪器,如应变仪和宽带地震仪。此外,其用途还可扩展到海底等环境,以提高方位角估算的精度,简化方位角确定方法。
{"title":"Determination of borehole tiltmeter orientation using earth tides","authors":"Xiaojie Zhu, Jean Chéry, Michel Cattoen, Salvatore Gambino, Jiankun He, Michel Peyret, Laura Privitera, Han Cheng Seat","doi":"10.1007/s00190-024-01878-7","DOIUrl":"https://doi.org/10.1007/s00190-024-01878-7","url":null,"abstract":"<p>Accurate orientation of geodetic instruments is fundamental for understanding deformation processes within the Earth's interior. Misalignment can lead to significant errors in data interpretation, affecting various geophysical applications. However, accurate alignment of standalone instruments like seismometers, strainmeters and tiltmeters remains a challenge in field geodesy. While numerous seismic-wave-based orientation methods have been successfully applied to seismometers, they are often inapplicable to tiltmeters due to their high-frequency filtering behavior and the requirement for a neighboring, pre-oriented instrument. In response to these challenges, we propose a novel orientation calibration method for borehole tiltmeters based on maximizing the correlation between recorded tilt data and theoretical tides by adjusting azimuthal angles. Our study encompasses two kinds of borehole tiltmeters and four datasets from three different field sites. Using solid and ocean tides modeling together with local topography and cavity disturbances, we obtain coefficient correlations ranging between 0.831 and 0.963, and 95% confidence intervals of azimuthal angles below 3.3°. The correlation-based method demonstrates robustness across various tidal-signal extraction techniques, including different averaging window sizes and band-pass filters. Moreover, it yields azimuthal results in agreement with direct compass measurements for known orientations, while exhibiting a moderate sensitivity to factors such as ocean tides and site-specific topography for the studied cases. This method appears to be advantageous when direct measurements are either unavailable or challenging, and emerges as an accurate tool for determining borehole tiltmeter orientation. Its potential applicability may extend beyond tiltmeters to other instruments that can also record tidal phenomena, such as strainmeters and broadband seismometers. Additionally, its utility could be extended to environments like the seafloor, in order to refine the precision of azimuthal angle estimation and simplify methods for azimuthal angle determination.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"51 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141836835","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Improving multiple LEO combination for SLR-based geodetic parameters determination using variance component estimation 利用方差分量估计改进基于可持续土地退化的大地测量参数确定的多低地轨道组合
IF 4.4 2区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Pub Date : 2024-07-27 DOI: 10.1007/s00190-024-01880-z
Xingxing Li, Yuanchen Fu, Keke Zhang, Yongqiang Yuan, Jiaqi Wu, Jiaqing Lou

The combination of satellite laser ranging (SLR) observations to various low earth orbit (LEO) satellites can enhance the accuracy and robustness of SLR-derived geodetic parameters, benefiting the realization of the International terrestrial reference frames. Observation stochastic models play a critical role in the integrated processing of SLR observations to multiple LEO satellites. The consideration of precision in heterogeneous SLR observations from various satellites is essential. In this study, we aim to improve the combination of multi-LEO SLR observations for geodetic parameters determination by optimizing the stochastic model using variance component estimation (VCE). We perform weekly estimates of the geodetic parameters, including station coordinates, Earth rotation parameters, and geocenter coordinates (GCC), using three years of SLR observations to seven LEO satellites at different orbits. The satellite-dependent, station-dependent, and satellite–station-dependent variance components are separately estimated through VCE processing to refine the stochastic models. Given the fact that the precision of SLR observations significantly differs in satellites and stations, the multiple LEO combination can be significantly improved with the implementation of VCE. Satellite–station-pair-dependent variance components are more suitable to the SLR VCE and the accuracy of station coordinates, pole coordinates, and length of day can be averagely improved by 8.4, 22.6, and 21.9%, respectively, compared to the equal-weight solution. Our result also indicates that the observation insufficiency for some stations may result in an unreliable VCE estimation, and eventually leads to an accuracy degradation for station coordinates. To overcome this deficiency, we adopt the variance components derived from the monthly solutions to build the stochastic model in the weekly solutions. The application of monthly weights can effectively mitigate the accuracy deterioration of station coordinates, improving the repeatability of the station coordinates by 15.9, 14.6, and 9.2% with respect to the equal-weight solution in E, N, and U components. The global geodetic parameters also benefit from this processing. The import of monthly weight decreases the outliers in the GCC series, especially in the X and Y components.

将卫星激光测距(SLR)观测与各种低地轨道(LEO)卫星结合起来,可以提高由 SLR 得出的大地测量参数的准确性和稳健性,有利于实现国际地面参照基准。观测随机模型在综合处理对多个低地轨道卫星的可持续土地退化观测中发挥着关键作用。考虑来自不同卫星的异质可持续土地退化和干旱观测数据的精度至关重要。在本研究中,我们的目标是利用方差分量估计(VCE)优化随机模型,从而改进用于大地参数确定的多低地轨道卫星可持续轨道反射率观测的组合。我们利用三年来对不同轨道上七颗低地轨道卫星的 SLR 观测,每周对大地参数进行估算,包括站点坐标、地球自转参数和地心坐标 (GCC)。通过 VCE 处理分别估算了依赖卫星的方差分量、依赖台站的方差分量和依赖卫星-台站的方差分量,以完善随机模型。鉴于卫星和站点的可持续土地退化观测精度存在显著差异,实施 VCE 后可显著改善多低地轨道组合。依赖于卫星-站点对的方差分量更适合 SLR VCE,与等权方案相比,站点坐标、极坐标和日长的精度平均可分别提高 8.4%、22.6% 和 21.9%。我们的结果还表明,部分站点观测不足可能导致 VCE 估计不可靠,最终导致站点坐标精度下降。为了克服这一不足,我们采用月解中得到的方差分量来建立周解中的随机模型。月度权重的应用可以有效缓解站点坐标精度的下降,与 E、N 和 U 分量的等权解法相比,站点坐标的重复性分别提高了 15.9%、14.6% 和 9.2%。全球大地测量参数也受益于这一处理过程。导入月权值减少了全球共振序列中的异常值,尤其是在 X 和 Y 部分。
{"title":"Improving multiple LEO combination for SLR-based geodetic parameters determination using variance component estimation","authors":"Xingxing Li, Yuanchen Fu, Keke Zhang, Yongqiang Yuan, Jiaqi Wu, Jiaqing Lou","doi":"10.1007/s00190-024-01880-z","DOIUrl":"https://doi.org/10.1007/s00190-024-01880-z","url":null,"abstract":"<p>The combination of satellite laser ranging (SLR) observations to various low earth orbit (LEO) satellites can enhance the accuracy and robustness of SLR-derived geodetic parameters, benefiting the realization of the International terrestrial reference frames. Observation stochastic models play a critical role in the integrated processing of SLR observations to multiple LEO satellites. The consideration of precision in heterogeneous SLR observations from various satellites is essential. In this study, we aim to improve the combination of multi-LEO SLR observations for geodetic parameters determination by optimizing the stochastic model using variance component estimation (VCE). We perform weekly estimates of the geodetic parameters, including station coordinates, Earth rotation parameters, and geocenter coordinates (GCC), using three years of SLR observations to seven LEO satellites at different orbits. The satellite-dependent, station-dependent, and satellite–station-dependent variance components are separately estimated through VCE processing to refine the stochastic models. Given the fact that the precision of SLR observations significantly differs in satellites and stations, the multiple LEO combination can be significantly improved with the implementation of VCE. Satellite–station-pair-dependent variance components are more suitable to the SLR VCE and the accuracy of station coordinates, pole coordinates, and length of day can be averagely improved by 8.4, 22.6, and 21.9%, respectively, compared to the equal-weight solution. Our result also indicates that the observation insufficiency for some stations may result in an unreliable VCE estimation, and eventually leads to an accuracy degradation for station coordinates. To overcome this deficiency, we adopt the variance components derived from the monthly solutions to build the stochastic model in the weekly solutions. The application of monthly weights can effectively mitigate the accuracy deterioration of station coordinates, improving the repeatability of the station coordinates by 15.9, 14.6, and 9.2% with respect to the equal-weight solution in E, N, and U components. The global geodetic parameters also benefit from this processing. The import of monthly weight decreases the outliers in the GCC series, especially in the X and Y components.</p>","PeriodicalId":54822,"journal":{"name":"Journal of Geodesy","volume":"1 1","pages":""},"PeriodicalIF":4.4,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141768519","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Geodesy
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1