首页 > 最新文献

Journal of Genetics and Genomics最新文献

英文 中文
Tensor decomposition reveals trans-regulated gene modules in maize drought response. 张量分解揭示玉米干旱响应中的跨调控基因模块
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-08 DOI: 10.1016/j.jgg.2024.10.011
Jiawen Lu, Yuxin Xie, Chunhui Li, Jinliang Yang, Junjie Fu

When plants respond to drought stress, dynamic cellular changes occur, accompanied by alterations in gene expression, which often act through trans-regulation. However, the detection of trans-acting genetic variants and networks of genes is challenged by the large number of genes and markers. Using a tensor decomposition method, we identify trans-acting expression quantitative trait loci (trans-eQTLs) linked to gene modules, rather than individual genes, which were associated with maize drought response. Module-to-trait association analysis demonstrates that half of the modules are relevant to drought-related traits. Genome-wide association studies of the expression patterns of each module identify 286 trans-eQTLs linked to drought-responsive modules, the majority of which cannot be detected based on individual gene expression. Notably, the trans-eQTLs located in the regions selected during maize improvement tend towards relatively strong selection. We further prioritize the genes that affect the transcriptional regulation of multiple genes in trans, as exemplified by two transcription factor genes. Our analyses highlight that multidimensional reduction could facilitate the identification of trans-acting variations in gene expression in response to dynamic environments and serve as a promising technique for high-order data processing in future crop breeding.

当植物对干旱胁迫做出反应时,细胞会发生动态变化,同时伴随着基因表达的改变,而基因表达的改变通常是通过反式调节来实现的。然而,由于基因和标记物数量庞大,反式作用基因变异和基因网络的检测面临挑战。利用张量分解方法,我们确定了与玉米干旱响应相关的基因模块而非单个基因的反式表达量性状位点(trans-eQTLs)。模块与性状的关联分析表明,一半的模块与干旱相关性状有关。对每个模块的表达模式进行的全基因组关联研究发现了 286 个与干旱响应模块相关的反式-eQTL,其中大部分无法根据单个基因的表达进行检测。值得注意的是,位于玉米改良过程中所选区域的反式-eQTLs倾向于相对较强的选择。我们进一步确定了影响多个反式基因转录调控的基因的优先级,两个转录因子基因就是一个例子。我们的分析突出表明,多维还原有助于识别基因表达在响应动态环境时的反式作用变异,是未来作物育种中一种很有前途的高阶数据处理技术。
{"title":"Tensor decomposition reveals trans-regulated gene modules in maize drought response.","authors":"Jiawen Lu, Yuxin Xie, Chunhui Li, Jinliang Yang, Junjie Fu","doi":"10.1016/j.jgg.2024.10.011","DOIUrl":"10.1016/j.jgg.2024.10.011","url":null,"abstract":"<p><p>When plants respond to drought stress, dynamic cellular changes occur, accompanied by alterations in gene expression, which often act through trans-regulation. However, the detection of trans-acting genetic variants and networks of genes is challenged by the large number of genes and markers. Using a tensor decomposition method, we identify trans-acting expression quantitative trait loci (trans-eQTLs) linked to gene modules, rather than individual genes, which were associated with maize drought response. Module-to-trait association analysis demonstrates that half of the modules are relevant to drought-related traits. Genome-wide association studies of the expression patterns of each module identify 286 trans-eQTLs linked to drought-responsive modules, the majority of which cannot be detected based on individual gene expression. Notably, the trans-eQTLs located in the regions selected during maize improvement tend towards relatively strong selection. We further prioritize the genes that affect the transcriptional regulation of multiple genes in trans, as exemplified by two transcription factor genes. Our analyses highlight that multidimensional reduction could facilitate the identification of trans-acting variations in gene expression in response to dynamic environments and serve as a promising technique for high-order data processing in future crop breeding.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632883","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The dynamics of fungal genome organization and its impact on host adaptation and antifungal resistance. 真菌基因组组织的动态及其对宿主适应性和抗真菌性的影响。
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-08 DOI: 10.1016/j.jgg.2024.10.010
Alex Z Zaccaron, Ioannis Stergiopoulos

Fungi are a diverse kingdom characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions. In this review, we delve into the dynamic organization of fungal genomes and its implications for host adaptation and antifungal resistance. We examine key features and the heterogeneity of genomes across different fungal species, including but not limited to their chromosome content, DNA composition, distribution and arrangement of their content across chromosomes, and other major traits. We further highlight how this variability in genomic traits influences their virulence and adaptation to adverse conditions. Fungal genomes exhibit large variations in size, gene content, and structural features, such as abundance of transposable elements (TEs), compartmentalization into gene-rich and TE-rich regions, and the presence or absence of dispensable chromosomes. Genomic structural variations are equally diverse in fungi, ranging from whole-chromosome duplications that may enhance tolerance to antifungal compounds, to targeted deletion of effector encoding genes that may promote virulence. Finally, the often-overlooked fungal mitochondrial genomes can also affect virulence and resistance to fungicides. Such and other features of fungal genome organization are reviewed and discussed in the context of host-microbe interactions and antifungal resistance.

真菌是一个多样化的王国,其基因组具有显著的可塑性,有利于致病和适应不利的环境条件。在这篇综述中,我们将深入探讨真菌基因组的动态组织及其对宿主适应性和抗真菌性的影响。我们研究了不同真菌物种基因组的主要特征和异质性,包括但不限于染色体内容、DNA组成、染色体内容的分布和排列以及其他主要性状。我们进一步强调了基因组性状的这种变异性如何影响它们的毒力和对不利条件的适应性。真菌基因组在大小、基因含量和结构特征(如转座元件(TE)的丰度、基因丰富区和转座元件丰富区的区隔以及可有可无染色体的存在与否)方面存在巨大差异。真菌的基因组结构变异同样多种多样,既有可能增强对抗真菌化合物耐受性的全染色体复制,也有可能促进毒力的效应编码基因定向删除。最后,经常被忽视的真菌线粒体基因组也会影响毒力和对杀真菌剂的抗性。本文结合宿主与微生物之间的相互作用和抗真菌抗性,对真菌基因组组织的这些特征和其他特征进行了综述和讨论。
{"title":"The dynamics of fungal genome organization and its impact on host adaptation and antifungal resistance.","authors":"Alex Z Zaccaron, Ioannis Stergiopoulos","doi":"10.1016/j.jgg.2024.10.010","DOIUrl":"10.1016/j.jgg.2024.10.010","url":null,"abstract":"<p><p>Fungi are a diverse kingdom characterized by remarkable genomic plasticity that facilitates pathogenicity and adaptation to adverse environmental conditions. In this review, we delve into the dynamic organization of fungal genomes and its implications for host adaptation and antifungal resistance. We examine key features and the heterogeneity of genomes across different fungal species, including but not limited to their chromosome content, DNA composition, distribution and arrangement of their content across chromosomes, and other major traits. We further highlight how this variability in genomic traits influences their virulence and adaptation to adverse conditions. Fungal genomes exhibit large variations in size, gene content, and structural features, such as abundance of transposable elements (TEs), compartmentalization into gene-rich and TE-rich regions, and the presence or absence of dispensable chromosomes. Genomic structural variations are equally diverse in fungi, ranging from whole-chromosome duplications that may enhance tolerance to antifungal compounds, to targeted deletion of effector encoding genes that may promote virulence. Finally, the often-overlooked fungal mitochondrial genomes can also affect virulence and resistance to fungicides. Such and other features of fungal genome organization are reviewed and discussed in the context of host-microbe interactions and antifungal resistance.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632885","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic and molecular mechanisms underlying nitrogen use efficiency in maize. 玉米氮利用效率的遗传和分子机制。
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-06 DOI: 10.1016/j.jgg.2024.10.007
Jianfang Li, Huairong Cao, Shuxin Li, Xiaonan Dong, Zheng Zhao, Zhongtao Jia, Lixing Yuan

Nitrogen (N) is vital for crop growth and yield, impacting food quality. However, excessive use of N fertilizers leads to high agricultural costs and environmental challenges. This review offers a thorough synthesis of the genetic and molecular regulation of N uptake, assimilation, and remobilization in maize, emphasizing the role of key genes and metabolic pathways in enhancing N use efficiency (NUE). We summarize the genetic regulators of N transports for nitrate (NO3-) and ammonium (NH4+) that contribute to efficient N uptake and transportation. We further discuss the molecular mechanisms by which root system development adapts to N distribution and how N influences root system development and growth. Given the advancements in high-throughput microbiome studies, we delve into the impact of rhizosphere microorganisms on NUE and the complex plant-microbe interactions that regulate maize NUE. Additionally, we conclude with intricate regulatory mechanisms of N assimilation and remobilization in maize, involving key enzymes, transcription factors, and amino acid transporters. We also scrutinize the known N signaling perception and transduction mechanisms in maize. This review underscores the challenges in improving maize NUE and advocates for an integrative research approach that leverages genetic diversity and synthetic biology, paving the way for sustainable agriculture.

氮(N)对作物的生长和产量至关重要,并影响食品质量。然而,过量使用氮肥会导致高昂的农业成本和环境挑战。本综述全面综述了玉米氮吸收、同化和再动员的遗传和分子调控,强调了关键基因和代谢途径在提高氮利用效率(NUE)中的作用。我们总结了硝酸根(NO3-)和铵根(NH4+)氮转运的遗传调节因子,这些因子有助于氮的高效吸收和转运。我们进一步讨论了根系发育适应氮分布的分子机制,以及氮如何影响根系发育和生长。鉴于高通量微生物组研究的进展,我们深入探讨了根圈微生物对氮利用效率的影响,以及调控玉米氮利用效率的复杂的植物-微生物相互作用。此外,我们还总结了玉米氮同化和再动员的复杂调控机制,其中涉及关键酶、转录因子和氨基酸转运体。我们还仔细研究了玉米中已知的氮信号感知和转导机制。这篇综述强调了提高玉米氮利用效率所面临的挑战,并倡导利用遗传多样性和合成生物学的综合研究方法,为可持续农业铺平道路。
{"title":"Genetic and molecular mechanisms underlying nitrogen use efficiency in maize.","authors":"Jianfang Li, Huairong Cao, Shuxin Li, Xiaonan Dong, Zheng Zhao, Zhongtao Jia, Lixing Yuan","doi":"10.1016/j.jgg.2024.10.007","DOIUrl":"10.1016/j.jgg.2024.10.007","url":null,"abstract":"<p><p>Nitrogen (N) is vital for crop growth and yield, impacting food quality. However, excessive use of N fertilizers leads to high agricultural costs and environmental challenges. This review offers a thorough synthesis of the genetic and molecular regulation of N uptake, assimilation, and remobilization in maize, emphasizing the role of key genes and metabolic pathways in enhancing N use efficiency (NUE). We summarize the genetic regulators of N transports for nitrate (NO<sub>3</sub><sup>-</sup>) and ammonium (NH<sub>4</sub><sup>+</sup>) that contribute to efficient N uptake and transportation. We further discuss the molecular mechanisms by which root system development adapts to N distribution and how N influences root system development and growth. Given the advancements in high-throughput microbiome studies, we delve into the impact of rhizosphere microorganisms on NUE and the complex plant-microbe interactions that regulate maize NUE. Additionally, we conclude with intricate regulatory mechanisms of N assimilation and remobilization in maize, involving key enzymes, transcription factors, and amino acid transporters. We also scrutinize the known N signaling perception and transduction mechanisms in maize. This review underscores the challenges in improving maize NUE and advocates for an integrative research approach that leverages genetic diversity and synthetic biology, paving the way for sustainable agriculture.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":""},"PeriodicalIF":6.6,"publicationDate":"2024-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142632867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
CCDC181 is required for proper spermiogenesis in mice. 小鼠精子正常生成需要 CCDC181。
IF 5.3 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-07-15 DOI: 10.1016/j.jgg.2024.07.010
Xirui Zi, Qingchao Li, Yue Lu, Qian Lyu, Heng Guo, Xiaoqian Meng, Jun Zhou, Huijie Zhao
{"title":"CCDC181 is required for proper spermiogenesis in mice.","authors":"Xirui Zi, Qingchao Li, Yue Lu, Qian Lyu, Heng Guo, Xiaoqian Meng, Jun Zhou, Huijie Zhao","doi":"10.1016/j.jgg.2024.07.010","DOIUrl":"10.1016/j.jgg.2024.07.010","url":null,"abstract":"","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"1327-1330"},"PeriodicalIF":5.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141635925","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A human-specific cytotoxic neopeptide generated by the deafness gene Cingulin. 由耳聋基因 Cingulin 生成的人类特异性细胞毒性新肽。
IF 5.3 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-08-05 DOI: 10.1016/j.jgg.2024.07.017
Yuhang Huang, Linqing Zhang, Yuecen Sun, Qing Liu, Jie Chen, Xiaoyun Qian, Xia Gao, Guang-Jie Zhu, Guoqiang Wan

Accumulation of mutant proteins in cells can induce proteinopathies and cause functional damage to organs. Recently, the Cingulin (CGN) protein has been shown to maintain the morphology of cuticular plates of inner ear hair cells and a frameshift mutation in CGN causes autosomal dominant non-syndromic hearing loss. Here, we find that the mutant CGN proteins form insoluble aggregates which accumulate intracellularly and lead to cell death. Expression of the mutant CGN in the inner ear results in severe hair cell death and hearing loss in mice, resembling the auditory phenotype in human patients. Interestingly, a human-specific residue (V1112) in the neopeptide generated by the frameshift mutation is critical for the aggregation and cytotoxicity of the mutant human CGN. Moreover, the expression of heat shock factor 1 (HSF1) decreases the accumulation of insoluble mutant CGN aggregates and rescues cell death. In summary, these findings identify mutant-specific toxic polypeptides as a disease-causing mechanism of the deafness mutation in CGN, which can be targeted by the expression of the cell chaperone response regulator HSF1.

突变蛋白质在细胞中的积累可诱发蛋白质病,并对器官造成功能性损害。最近,Cingulin(CGN)蛋白被证明能维持内耳毛细胞角质板的形态,CGN的框架移位突变会导致常染色体显性非综合征性听力损失。在这里,我们发现突变型 CGN 蛋白会形成不溶性的聚集体,聚集在细胞内导致细胞死亡。在小鼠内耳中表达突变型 CGN 会导致严重的毛细胞死亡和听力损失,这与人类患者的听觉表型相似。有趣的是,框架移位突变产生的新肽中的一个人类特异残基(V1112)对于突变型人类 CGN 的聚集和细胞毒性至关重要。此外,热休克因子1(HSF1)的表达可减少不溶性突变型CGN聚集体的积累并挽救细胞死亡。总之,这些发现确定了突变体特异性毒性多肽是 CGN 中耳聋突变的致病机制,而细胞伴侣反应调节因子 HSF1 的表达可以针对这一机制。
{"title":"A human-specific cytotoxic neopeptide generated by the deafness gene Cingulin.","authors":"Yuhang Huang, Linqing Zhang, Yuecen Sun, Qing Liu, Jie Chen, Xiaoyun Qian, Xia Gao, Guang-Jie Zhu, Guoqiang Wan","doi":"10.1016/j.jgg.2024.07.017","DOIUrl":"10.1016/j.jgg.2024.07.017","url":null,"abstract":"<p><p>Accumulation of mutant proteins in cells can induce proteinopathies and cause functional damage to organs. Recently, the Cingulin (CGN) protein has been shown to maintain the morphology of cuticular plates of inner ear hair cells and a frameshift mutation in CGN causes autosomal dominant non-syndromic hearing loss. Here, we find that the mutant CGN proteins form insoluble aggregates which accumulate intracellularly and lead to cell death. Expression of the mutant CGN in the inner ear results in severe hair cell death and hearing loss in mice, resembling the auditory phenotype in human patients. Interestingly, a human-specific residue (V1112) in the neopeptide generated by the frameshift mutation is critical for the aggregation and cytotoxicity of the mutant human CGN. Moreover, the expression of heat shock factor 1 (HSF1) decreases the accumulation of insoluble mutant CGN aggregates and rescues cell death. In summary, these findings identify mutant-specific toxic polypeptides as a disease-causing mechanism of the deafness mutation in CGN, which can be targeted by the expression of the cell chaperone response regulator HSF1.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"1215-1227"},"PeriodicalIF":5.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141891031","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Overexpression of CRYPTOCHROME 2 enhances shoot growth and wood formation in poplar under growth-restrictive short days. 在生长受限的短日照条件下,过量表达 CRYPTOCHROME 2 可促进杨树的嫩枝生长和木材形成。
IF 5.3 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-08-20 DOI: 10.1016/j.jgg.2024.08.003
Hongbin Wei, Fan Sun, Jianghai Mo, Bingrui Hu, Keming Luo
{"title":"Overexpression of CRYPTOCHROME 2 enhances shoot growth and wood formation in poplar under growth-restrictive short days.","authors":"Hongbin Wei, Fan Sun, Jianghai Mo, Bingrui Hu, Keming Luo","doi":"10.1016/j.jgg.2024.08.003","DOIUrl":"10.1016/j.jgg.2024.08.003","url":null,"abstract":"","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"1310-1313"},"PeriodicalIF":5.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gene therapy and gene editing strategies in inherited blood disorders. 遗传性血液病的基因治疗和基因编辑策略。
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-07-08 DOI: 10.1016/j.jgg.2024.07.004
Xuemei Song, JinLei Liu, Tangcong Chen, Tingfeng Zheng, Xiaolong Wang, Xiang Guo

Gene therapy has shown significant potential in treating various diseases, particularly inherited blood disorders such as hemophilia, sickle cell disease, and thalassemia. Advances in understanding the regulatory network of disease-associated genes have led to the identification of additional therapeutic targets for treatment, especially for β-hemoglobinopathies. Erythroid regulatory factor BCL11A offers the most promising therapeutic target for β-hemoglobinopathies, and reduction of its expression using the commercialized gene therapy product Casgevy has been approved for use in the UK and USA in 2023. Notably, the emergence of innovative gene editing technologies has further broadened the gene therapy landscape, presenting possibilities for treatment. Intensive studies indicate that base editing and prime editing, built upon CRISPR technology, enable precise single-base modification in hematopoietic stem cells for addressing inherited blood disorders ex vivo and in vivo. In this review, we present an overview of the current landscape of gene therapies, focusing on clinical research and gene therapy products for inherited blood disorders, evaluation of potential gene targets, and the gene editing tools employed in current gene therapy practices, which provides an insight for the establishment of safer and more effective gene therapy methods for a wider range of diseases in the future.

基因疗法在治疗各种疾病,尤其是血友病、镰状细胞病和地中海贫血症等遗传性血液疾病方面显示出巨大的潜力。随着对疾病相关基因调控网络认识的不断深入,人们发现了更多的治疗靶点,尤其是β-血红蛋白病的治疗靶点。红细胞调控因子BCL11A为β-血红蛋白病提供了最有希望的治疗靶点,使用商业化基因治疗产品Casgevy减少其表达已于2023年在英国和美国获批使用。值得注意的是,创新基因编辑技术的出现进一步拓宽了基因治疗领域,为治疗提供了新的可能性。大量研究表明,以CRISPR技术为基础的碱基编辑和质粒编辑技术可以对造血干细胞进行精确的单碱基修饰,从而解决体内外遗传性血液疾病的问题。在这篇综述中,我们概述了基因疗法的现状,重点介绍了针对遗传性血液病的临床研究和基因治疗产品、潜在基因靶点的评估,以及目前基因治疗实践中采用的基因编辑工具,这为未来针对更广泛的疾病建立更安全、更有效的基因治疗方法提供了启示。
{"title":"Gene therapy and gene editing strategies in inherited blood disorders.","authors":"Xuemei Song, JinLei Liu, Tangcong Chen, Tingfeng Zheng, Xiaolong Wang, Xiang Guo","doi":"10.1016/j.jgg.2024.07.004","DOIUrl":"10.1016/j.jgg.2024.07.004","url":null,"abstract":"<p><p>Gene therapy has shown significant potential in treating various diseases, particularly inherited blood disorders such as hemophilia, sickle cell disease, and thalassemia. Advances in understanding the regulatory network of disease-associated genes have led to the identification of additional therapeutic targets for treatment, especially for β-hemoglobinopathies. Erythroid regulatory factor BCL11A offers the most promising therapeutic target for β-hemoglobinopathies, and reduction of its expression using the commercialized gene therapy product Casgevy has been approved for use in the UK and USA in 2023. Notably, the emergence of innovative gene editing technologies has further broadened the gene therapy landscape, presenting possibilities for treatment. Intensive studies indicate that base editing and prime editing, built upon CRISPR technology, enable precise single-base modification in hematopoietic stem cells for addressing inherited blood disorders ex vivo and in vivo. In this review, we present an overview of the current landscape of gene therapies, focusing on clinical research and gene therapy products for inherited blood disorders, evaluation of potential gene targets, and the gene editing tools employed in current gene therapy practices, which provides an insight for the establishment of safer and more effective gene therapy methods for a wider range of diseases in the future.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"1162-1172"},"PeriodicalIF":6.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141581548","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
COL: a method for identifying putatively functional circular RNAs. COL:一种识别可能具有功能的环状 RNA 的方法。
IF 6.6 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-08-31 DOI: 10.1016/j.jgg.2024.08.007
Zheng Li, Bandhan Sarker, Fengyu Zhao, Tianjiao Zhou, Jianzhi Zhang, Chuan Xu
{"title":"COL: a method for identifying putatively functional circular RNAs.","authors":"Zheng Li, Bandhan Sarker, Fengyu Zhao, Tianjiao Zhou, Jianzhi Zhang, Chuan Xu","doi":"10.1016/j.jgg.2024.08.007","DOIUrl":"10.1016/j.jgg.2024.08.007","url":null,"abstract":"","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"1338-1341"},"PeriodicalIF":6.6,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11645182/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114902","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Population-scale variability of the human UDP-glycosyltransferase gene family. 人类 UDP-糖基转移酶基因家族的种群规模变异。
IF 5.3 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-07-04 DOI: 10.1016/j.jgg.2024.06.018
Daianna González-Padilla, Mahamadou D Camara, Volker M Lauschke, Yitian Zhou

Human UDP-glycosyltransferases (UGTs) are responsible for the glycosylation of a wide variety of endogenous substrates and commonly prescribed drugs. Different genetic polymorphisms in UGT genes are implicated in interindividual differences in drug response and cancer risk. However, the genetic complexity beyond these variants has not been comprehensively assessed. We here leveraged whole-exome and whole-genome sequencing data from 141,456 unrelated individuals across 7 major human populations to provide a comprehensive profile of genetic variability across the human UGT gene family. Overall, 9666 exonic variants were observed, of which 98.9% were rare. To interpret the functional impact of UGT missense variants, we developed a gene family-specific variant effect predictor. This algorithm identified a total of 1208 deleterious variants, most of which were found in African and South Asian populations. Structural analysis corroborated the predicted effects for multiple variations in substrate binding sites. Combined, our analyses provide a systematic overview of UGT variability, which can yield insights into interindividual differences in phase 2 metabolism and facilitate the translation of sequencing data into personalized predictions of UGT substrate disposition.

人类 UDP-糖基转移酶(UGTs)负责多种内源性底物和多种常用处方药的葡萄糖醛酸化。UGT 基因的不同遗传多态性与药物反应和癌症风险的个体差异有关。然而,这些变异之外的遗传复杂性尚未得到全面评估。在这里,我们利用来自 7 个主要人类种群的 141,456 个无关个体的全外显子组和全基因组测序数据,提供了人类 UGT 基因家族遗传变异的全面概况。总共观察到 9666 个外显子变异,其中 98.9% 为罕见变异。为了解释 UGT 错义变异的功能影响,我们开发了一个基因家族特异性变异效应预测器。该算法共鉴定出1208个有害变异,其中大部分出现在非洲和南亚人群中。结构分析证实了底物结合位点多种变异的预测效应。综合来看,我们的分析提供了 UGT 变异的系统概述,可以深入了解个体间在第二阶段代谢中的差异,并促进将测序数据转化为 UGT 底物处置的个性化预测。
{"title":"Population-scale variability of the human UDP-glycosyltransferase gene family.","authors":"Daianna González-Padilla, Mahamadou D Camara, Volker M Lauschke, Yitian Zhou","doi":"10.1016/j.jgg.2024.06.018","DOIUrl":"10.1016/j.jgg.2024.06.018","url":null,"abstract":"<p><p>Human UDP-glycosyltransferases (UGTs) are responsible for the glycosylation of a wide variety of endogenous substrates and commonly prescribed drugs. Different genetic polymorphisms in UGT genes are implicated in interindividual differences in drug response and cancer risk. However, the genetic complexity beyond these variants has not been comprehensively assessed. We here leveraged whole-exome and whole-genome sequencing data from 141,456 unrelated individuals across 7 major human populations to provide a comprehensive profile of genetic variability across the human UGT gene family. Overall, 9666 exonic variants were observed, of which 98.9% were rare. To interpret the functional impact of UGT missense variants, we developed a gene family-specific variant effect predictor. This algorithm identified a total of 1208 deleterious variants, most of which were found in African and South Asian populations. Structural analysis corroborated the predicted effects for multiple variations in substrate binding sites. Combined, our analyses provide a systematic overview of UGT variability, which can yield insights into interindividual differences in phase 2 metabolism and facilitate the translation of sequencing data into personalized predictions of UGT substrate disposition.</p>","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"1228-1236"},"PeriodicalIF":5.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141538953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Migration and proliferation of ductal cells promote pancreatic repair after trauma. 导管细胞的迁移和增殖可促进创伤后的胰腺修复。
IF 5.3 2区 生物学 Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Pub Date : 2024-11-01 Epub Date: 2024-08-28 DOI: 10.1016/j.jgg.2024.08.004
Chaoqing Cheng, Jinzi Chen, Liqi Zhang, Bangzhuo Huang, Jianlong Ma, Lingfei Luo, Yun Yang
{"title":"Migration and proliferation of ductal cells promote pancreatic repair after trauma.","authors":"Chaoqing Cheng, Jinzi Chen, Liqi Zhang, Bangzhuo Huang, Jianlong Ma, Lingfei Luo, Yun Yang","doi":"10.1016/j.jgg.2024.08.004","DOIUrl":"10.1016/j.jgg.2024.08.004","url":null,"abstract":"","PeriodicalId":54825,"journal":{"name":"Journal of Genetics and Genomics","volume":" ","pages":"1318-1321"},"PeriodicalIF":5.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142114905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Journal of Genetics and Genomics
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1