Pub Date : 2022-10-20Print Date: 2022-12-01DOI: 10.1123/jab.2022-0011
Sarah A Roelker, Paul DeVita, John D Willson, Richard R Neptune
Skipping has been proposed as a viable cross-training exercise to running due to its lower knee contact forces and higher whole-body energy expenditure. However, how individual muscle forces, energy expenditure, and joint loading are affected by differences in running and skipping mechanics remains unclear. The purpose of this study was to compare individual muscle forces, energy expenditure, and lower extremity joint contact forces between running and skipping using musculoskeletal modeling and simulations of young adults (n = 5) performing running and skipping at 2.5 m·s-1 on an instrumented treadmill. In agreement with previous work, running had greater knee and patella contact forces than skipping which was accompanied by greater knee extensor energetic demand. Conversely, skipping had greater ankle contact forces and required greater energetic demand from the uniarticular ankle plantarflexors. There were no differences in hip contact forces between gaits. These findings further support skipping as a viable alternative to running if the primary goal is to reduce joint loading at the commonly injured patellofemoral joint. However, for those with ankle injuries, skipping may not be a viable alternative due to the increased ankle loads. These findings may help clinicians prescribe activities most appropriate for a patient's individual training or rehabilitation goals.
{"title":"Differences in Muscle Demand and Joint Contact Forces Between Running and Skipping.","authors":"Sarah A Roelker, Paul DeVita, John D Willson, Richard R Neptune","doi":"10.1123/jab.2022-0011","DOIUrl":"https://doi.org/10.1123/jab.2022-0011","url":null,"abstract":"<p><p>Skipping has been proposed as a viable cross-training exercise to running due to its lower knee contact forces and higher whole-body energy expenditure. However, how individual muscle forces, energy expenditure, and joint loading are affected by differences in running and skipping mechanics remains unclear. The purpose of this study was to compare individual muscle forces, energy expenditure, and lower extremity joint contact forces between running and skipping using musculoskeletal modeling and simulations of young adults (n = 5) performing running and skipping at 2.5 m·s-1 on an instrumented treadmill. In agreement with previous work, running had greater knee and patella contact forces than skipping which was accompanied by greater knee extensor energetic demand. Conversely, skipping had greater ankle contact forces and required greater energetic demand from the uniarticular ankle plantarflexors. There were no differences in hip contact forces between gaits. These findings further support skipping as a viable alternative to running if the primary goal is to reduce joint loading at the commonly injured patellofemoral joint. However, for those with ankle injuries, skipping may not be a viable alternative due to the increased ankle loads. These findings may help clinicians prescribe activities most appropriate for a patient's individual training or rehabilitation goals.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"38 6","pages":"382-390"},"PeriodicalIF":1.4,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40560204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-10-20Print Date: 2022-12-01DOI: 10.1123/jab.2022-0088
Adam J Petway, Matthew J Jordan, Scott Epsley, Philip Anloague
A systematic search was performed of online databases for any Achilles tendon (AT) injuries occurring within the National Basketball Association (NBA). Video was obtained of injuries occurring during competition and downloaded for analysis in Dartfish. NBA athletes (n = 27) were identified with AT rupture over a 30-year period (1991-2021). Of the 27 NBA athletes found to have AT ruptures (mean age: 29.3 [3.3] y; average time in the NBA: 8.5 [3.8] y), 15 in-game videos were obtained for analysis. Noncontact rupture was presumed to have occurred in 12/13 cases. Eight of the 13 athletes had possession of the ball during time of injury. The ankle joint of the injured limb for all 13 athletes was in a dorsiflexed position during the time of injury (47.9° [6.5°]). All 13 athletes performed a false-step mechanism at time of injury where they initiated the movement by taking a rearward step posterior to their center of mass with the injured limb before translating forward. NBA basketball players that suffered AT ruptures appeared to present with a distinct sequence of events, including initiating a false step with ankle dorsiflexion of the injured limb at the time of injury.
{"title":"Mechanisms of Achilles Tendon Rupture in National Basketball Association Players.","authors":"Adam J Petway, Matthew J Jordan, Scott Epsley, Philip Anloague","doi":"10.1123/jab.2022-0088","DOIUrl":"https://doi.org/10.1123/jab.2022-0088","url":null,"abstract":"<p><p>A systematic search was performed of online databases for any Achilles tendon (AT) injuries occurring within the National Basketball Association (NBA). Video was obtained of injuries occurring during competition and downloaded for analysis in Dartfish. NBA athletes (n = 27) were identified with AT rupture over a 30-year period (1991-2021). Of the 27 NBA athletes found to have AT ruptures (mean age: 29.3 [3.3] y; average time in the NBA: 8.5 [3.8] y), 15 in-game videos were obtained for analysis. Noncontact rupture was presumed to have occurred in 12/13 cases. Eight of the 13 athletes had possession of the ball during time of injury. The ankle joint of the injured limb for all 13 athletes was in a dorsiflexed position during the time of injury (47.9° [6.5°]). All 13 athletes performed a false-step mechanism at time of injury where they initiated the movement by taking a rearward step posterior to their center of mass with the injured limb before translating forward. NBA basketball players that suffered AT ruptures appeared to present with a distinct sequence of events, including initiating a false step with ankle dorsiflexion of the injured limb at the time of injury.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"38 6","pages":"398-403"},"PeriodicalIF":1.4,"publicationDate":"2022-10-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40560205","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Experimental motion capture studies have commonly considered the foot as a single rigid body even though the foot contains 26 bones and 30 joints. Various methods have been applied to study rigid body deviations of the foot. This study compared 3 methods: distal foot power (DFP), foot power imbalance (FPI), and a 2-segment foot model to study foot power and work in the takeoff phase of standing vertical jumps. Six physically active participants each performed 6 standing vertical jumps from a starting position spanning 2 adjacent force platforms to allow ground reaction forces acting on the foot to be divided at the metatarsophalangeal (MTP) joints. Shortly after movement initiation, DFP showed a power absorption phase followed by a power generation phase. FPI followed a similar pattern with smaller power absorption and a larger power generation compared to DFP. MTP joints primarily generated power in the 2-segment model. The net foot work was -4.0 (1.0) J using DFP, 1.8 (1.1) J using FPI, and 5.1 (0.5) J with MTP. The results suggest that MTP joints are only 1 source of foot power and that differences between DFP and FPI should be further explored in jumping and other movements.
{"title":"Methods of Estimating Foot Power and Work in Standing Vertical Jump.","authors":"Kundan Joshi, Blake M Ashby","doi":"10.1123/jab.2021-0254","DOIUrl":"https://doi.org/10.1123/jab.2021-0254","url":null,"abstract":"<p><p>Experimental motion capture studies have commonly considered the foot as a single rigid body even though the foot contains 26 bones and 30 joints. Various methods have been applied to study rigid body deviations of the foot. This study compared 3 methods: distal foot power (DFP), foot power imbalance (FPI), and a 2-segment foot model to study foot power and work in the takeoff phase of standing vertical jumps. Six physically active participants each performed 6 standing vertical jumps from a starting position spanning 2 adjacent force platforms to allow ground reaction forces acting on the foot to be divided at the metatarsophalangeal (MTP) joints. Shortly after movement initiation, DFP showed a power absorption phase followed by a power generation phase. FPI followed a similar pattern with smaller power absorption and a larger power generation compared to DFP. MTP joints primarily generated power in the 2-segment model. The net foot work was -4.0 (1.0) J using DFP, 1.8 (1.1) J using FPI, and 5.1 (0.5) J with MTP. The results suggest that MTP joints are only 1 source of foot power and that differences between DFP and FPI should be further explored in jumping and other movements.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"38 5","pages":"293-300"},"PeriodicalIF":1.4,"publicationDate":"2022-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10798023","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-29Print Date: 2022-12-01DOI: 10.1123/jab.2021-0374
Hamed Shahidian, Rezaul Begg, David C Ackland
Dual-task walking and cell phone usage, which is associated with high cognitive load and reduced situational awareness, can increase risk of a collision, a fall event, or death. The objective of this study was to quantify the effect of dual-task cell phone talking, texting, and reading while walking on spatiotemporal gait parameters; minimum foot clearance; and dynamic stability of the lower limb joints, trunk, and head. Nineteen healthy male participants walked on an instrumented treadmill at their self-selected speed as well as walking while simultaneously (1) reading on a cell phone, (2) texting, and (3) talking on a cell phone. Gait analyses were performed using an optical motion analysis system, and dynamic stability was calculated using the Maximum Lyapunov Exponent. Dual-task cell phone usage had a significant destabilizing influence on the lower limb joints during walking. Cell phone talking while walking significantly increased step width and length and decreased minimum foot clearance height (P < .05). The findings suggest that dual-task walking and cell phone conversation may present a greater risk of a fall event than texting or reading. This may be due to the requirements for more rapid information processing and cognitive demand at the expense of motor control of joint stability.
{"title":"The Influence of Cell Phone Usage on Dynamic Stability of the Body During Walking.","authors":"Hamed Shahidian, Rezaul Begg, David C Ackland","doi":"10.1123/jab.2021-0374","DOIUrl":"https://doi.org/10.1123/jab.2021-0374","url":null,"abstract":"<p><p>Dual-task walking and cell phone usage, which is associated with high cognitive load and reduced situational awareness, can increase risk of a collision, a fall event, or death. The objective of this study was to quantify the effect of dual-task cell phone talking, texting, and reading while walking on spatiotemporal gait parameters; minimum foot clearance; and dynamic stability of the lower limb joints, trunk, and head. Nineteen healthy male participants walked on an instrumented treadmill at their self-selected speed as well as walking while simultaneously (1) reading on a cell phone, (2) texting, and (3) talking on a cell phone. Gait analyses were performed using an optical motion analysis system, and dynamic stability was calculated using the Maximum Lyapunov Exponent. Dual-task cell phone usage had a significant destabilizing influence on the lower limb joints during walking. Cell phone talking while walking significantly increased step width and length and decreased minimum foot clearance height (P < .05). The findings suggest that dual-task walking and cell phone conversation may present a greater risk of a fall event than texting or reading. This may be due to the requirements for more rapid information processing and cognitive demand at the expense of motor control of joint stability.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"38 6","pages":"365-372"},"PeriodicalIF":1.4,"publicationDate":"2022-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40383943","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-27Print Date: 2022-12-01DOI: 10.1123/jab.2022-0062
Kolby J Brink, Kari L McKenzie, Aaron D Likens
Load carriage experiments are typically performed from a linear perspective that assumes that movement variability is equivalent to error or noise in the neuromuscular system. A complimentary, nonlinear perspective that treats variability as the object of study has generated important results in movement science outside load carriage settings. To date, no systematic review has yet been conducted to understand how load carriage dynamics change from a nonlinear perspective. The goal of this systematic review is to fill that need. Relevant literature was extracted and reviewed for general trends involving nonlinear perspectives on load carriage. Nonlinear analyses that were used in the reviewed studies included sample, multiscale, and approximate entropy; the Lyapunov exponent; fractal analysis; and relative phase. In general, nonlinear tools successfully distinguish between unloaded and loaded conditions in standing and walking, although not in a consistent manner. The Lyapunov exponent and entropy were the most used nonlinear methods. Two noteworthy findings are that entropy in quiet standing studies tends to decrease, whereas the Lyapunov exponent in walking studies tends to increase, both due to added load. Thus, nonlinear analyses reveal altered load carriage dynamics, demonstrating promise in applying a nonlinear perspective to load carriage while also underscoring the need for more research.
{"title":"Nonlinear Analyses Distinguish Load Carriage Dynamics in Walking and Standing: A Systematic Review.","authors":"Kolby J Brink, Kari L McKenzie, Aaron D Likens","doi":"10.1123/jab.2022-0062","DOIUrl":"https://doi.org/10.1123/jab.2022-0062","url":null,"abstract":"<p><p>Load carriage experiments are typically performed from a linear perspective that assumes that movement variability is equivalent to error or noise in the neuromuscular system. A complimentary, nonlinear perspective that treats variability as the object of study has generated important results in movement science outside load carriage settings. To date, no systematic review has yet been conducted to understand how load carriage dynamics change from a nonlinear perspective. The goal of this systematic review is to fill that need. Relevant literature was extracted and reviewed for general trends involving nonlinear perspectives on load carriage. Nonlinear analyses that were used in the reviewed studies included sample, multiscale, and approximate entropy; the Lyapunov exponent; fractal analysis; and relative phase. In general, nonlinear tools successfully distinguish between unloaded and loaded conditions in standing and walking, although not in a consistent manner. The Lyapunov exponent and entropy were the most used nonlinear methods. Two noteworthy findings are that entropy in quiet standing studies tends to decrease, whereas the Lyapunov exponent in walking studies tends to increase, both due to added load. Thus, nonlinear analyses reveal altered load carriage dynamics, demonstrating promise in applying a nonlinear perspective to load carriage while also underscoring the need for more research.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"38 6","pages":"434-447"},"PeriodicalIF":1.4,"publicationDate":"2022-09-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40379842","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-09-20Print Date: 2022-12-01DOI: 10.1123/jab.2022-0077
Cheyanne Massie, Kelsey Redman, Samantha Casper, Danielle Wissink, Renee Dade, Anna Lowery, Kim Ross, Kanikkai Steni Balan Sackiriyas, Thomas Gus Almonroeder
Altering running cadence is commonly done to reduce the risk of running-related injury/reinjury. This study examined how altering running cadence affects joint kinetic patterns and stride-to-stride kinetic variability in uninjured female runners. Twenty-four uninjured female recreational runners ran on an instrumented treadmill with their typical running cadence and with a running cadence that was 7.5% higher and 7.5% lower than typical. Ground reaction force and kinematic data were recorded during each condition, and principal component analysis was used to capture the primary sources of variability from the sagittal plane hip, knee, and ankle moment time series. Runners exhibited a reduction in the magnitude of their knee extension moments when they increased their cadence and an increase in their knee extension moments when they lowered their cadence compared with when they ran with their typical cadence. They also exhibited greater stride-to-stride variability in the magnitude of their hip flexion moments and knee extension moments when they deviated from their typical running cadence (ie, running with either a higher or lower cadence). These differences suggest that runners could alter their cadence throughout a run in an attempt to limit overly repetitive localized tissue stresses.
{"title":"The Effects of Cadence Manipulation on Joint Kinetic Patterns and Stride-to-Stride Kinetic Variability in Female Runners.","authors":"Cheyanne Massie, Kelsey Redman, Samantha Casper, Danielle Wissink, Renee Dade, Anna Lowery, Kim Ross, Kanikkai Steni Balan Sackiriyas, Thomas Gus Almonroeder","doi":"10.1123/jab.2022-0077","DOIUrl":"https://doi.org/10.1123/jab.2022-0077","url":null,"abstract":"<p><p>Altering running cadence is commonly done to reduce the risk of running-related injury/reinjury. This study examined how altering running cadence affects joint kinetic patterns and stride-to-stride kinetic variability in uninjured female runners. Twenty-four uninjured female recreational runners ran on an instrumented treadmill with their typical running cadence and with a running cadence that was 7.5% higher and 7.5% lower than typical. Ground reaction force and kinematic data were recorded during each condition, and principal component analysis was used to capture the primary sources of variability from the sagittal plane hip, knee, and ankle moment time series. Runners exhibited a reduction in the magnitude of their knee extension moments when they increased their cadence and an increase in their knee extension moments when they lowered their cadence compared with when they ran with their typical cadence. They also exhibited greater stride-to-stride variability in the magnitude of their hip flexion moments and knee extension moments when they deviated from their typical running cadence (ie, running with either a higher or lower cadence). These differences suggest that runners could alter their cadence throughout a run in an attempt to limit overly repetitive localized tissue stresses.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"38 6","pages":"373-381"},"PeriodicalIF":1.4,"publicationDate":"2022-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"40372485","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Escamilla, N. Zheng, T. MacLeod, R. Imamura, Shangcheng Wang, K. Wilk, Kyle Yamashiro, G. Fleisig
The objective was to assess how patellofemoral loads (joint force and stress) change while lunging with step length and step height variations. Sixteen participants performed a forward lunge using short and long steps at ground level and up to a 10-cm platform. Electromyography, ground reaction force, and 3D motion were captured, and patellofemoral loads were calculated as a function of knee angle. Repeated-measures 2-way analysis of variance (P < .05) was employed. Patellofemoral loads in the lead knee were greater with long step at the beginning of landing (10°-30° knee angle) and the end of pushoff (10°-40°) and greater with short step during the deep knee flexion portion of the lunge (50°-100°). Patellofemoral loads were greater at ground level than 10-cm platform during lunge descent (50°-100°) and lunge ascent (40°-70°). Patellofemoral loads generally increased as knee flexion increased and decreased as knee flexion decreased. To gradually increase patellofemoral loads, perform forward lunge in the following sequence: (1) minimal knee flexion (0°-30°), (2) moderate knee flexion (0°-60°), (3) long step and deep knee flexion (0°-100°) up to a 10-cm platform, and (4) long step and deep knee flexion (0°-100°) at ground level.
{"title":"Patellofemoral Joint Loading in Forward Lunge With Step Length and Height Variations.","authors":"R. Escamilla, N. Zheng, T. MacLeod, R. Imamura, Shangcheng Wang, K. Wilk, Kyle Yamashiro, G. Fleisig","doi":"10.1123/jab.2021-0313","DOIUrl":"https://doi.org/10.1123/jab.2021-0313","url":null,"abstract":"The objective was to assess how patellofemoral loads (joint force and stress) change while lunging with step length and step height variations. Sixteen participants performed a forward lunge using short and long steps at ground level and up to a 10-cm platform. Electromyography, ground reaction force, and 3D motion were captured, and patellofemoral loads were calculated as a function of knee angle. Repeated-measures 2-way analysis of variance (P < .05) was employed. Patellofemoral loads in the lead knee were greater with long step at the beginning of landing (10°-30° knee angle) and the end of pushoff (10°-40°) and greater with short step during the deep knee flexion portion of the lunge (50°-100°). Patellofemoral loads were greater at ground level than 10-cm platform during lunge descent (50°-100°) and lunge ascent (40°-70°). Patellofemoral loads generally increased as knee flexion increased and decreased as knee flexion decreased. To gradually increase patellofemoral loads, perform forward lunge in the following sequence: (1) minimal knee flexion (0°-30°), (2) moderate knee flexion (0°-60°), (3) long step and deep knee flexion (0°-100°) up to a 10-cm platform, and (4) long step and deep knee flexion (0°-100°) at ground level.","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"1 1","pages":"1-11"},"PeriodicalIF":1.4,"publicationDate":"2022-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45447480","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
TO OUR READERS: An error appeared in the following article: Yeşilyaprak SS, Yüksel E, Kalaycı MG, Karabay N, Michener LA. Shoulder kinesio taping does not change biomechanical deficits associated with scapular dyskinesis. J Appl Biomech. 2022;38(2):95–102. https://doi.org/10.1123/jab.2021-0259. Funding information for this study was not included in the Acknowledgments. The online version of this article has been corrected. The authors apologize for the error.
致我们的读者:以下文章中出现错误:ye ilyaprak SS, y ksel E, kalaycimg, Karabay N, Michener LA。肩胛骨运动功能不良不能改变与肩胛骨运动障碍相关的生物力学缺陷。中国生物医学工程学报,2016;38(2):95-102。https://doi.org/10.1123/jab.2021 - 0259。本研究的资助信息未包括在致谢中。本文的在线版本已被更正。作者为这个错误道歉。
{"title":"Erratum. Shoulder Kinesio Taping Does Not Change Biomechanical Deficits Associated With Scapular Dyskinesis.","authors":"","doi":"10.1123/jab.2022-0081","DOIUrl":"https://doi.org/10.1123/jab.2022-0081","url":null,"abstract":"<p><p>TO OUR READERS: An error appeared in the following article: Yeşilyaprak SS, Yüksel E, Kalaycı MG, Karabay N, Michener LA. Shoulder kinesio taping does not change biomechanical deficits associated with scapular dyskinesis. J Appl Biomech. 2022;38(2):95–102. https://doi.org/10.1123/jab.2021-0259. Funding information for this study was not included in the Acknowledgments. The online version of this article has been corrected. The authors apologize for the error.</p>","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"38 3","pages":"198"},"PeriodicalIF":1.4,"publicationDate":"2022-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"10518537","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
R. Kakar, S. Higgins, J. Tome, Natalie Knight, Zachary Finer, Zachary Doig, Yumeng Li
The purpose of this study was to investigate normative and age-related differences in trunk and pelvis kinematics and intersegmental coordination during sagittal plane flexion-extension. Trunk and pelvis kinematics were recorded while 76 participants performed a maximal range of motion task in the sagittal plane. Cross-correlation was calculated to determine the phase lag between adjacent segment motion, and coupling angles were calculated using vector coding and classified into one of 4 coordination patterns: in-phase, antiphase, superior, and inferior phase. A 2-way mixed-model multivariate analysis of variance was used to compare lumbar spine and pelvis angular kinematics, phase lags, and cross-correlation coefficients between groups. Young participants exhibited greater trunk range of motion compared with middle-aged participants. The lumbar spine and pelvis were predominantly rotating with minimum phase lag during flexion and extension movement for both age groups, and differences in coordination between the groups were seen during hyperextension and return to upright position. In conclusion, middle-aged adults displayed lower range of motion but maintained similar movement patterns to young adults, which could be attributed to protective mechanisms. Healthy lumbar and pelvis movement patterns are important to understand and need to be quantified as a baseline, which can be used to develop rehabilitation protocols for individuals with spinal ailments.
{"title":"Effect of Age on Thoracic, Lumbar, and Pelvis Coordination During Trunk Flexion and Extension.","authors":"R. Kakar, S. Higgins, J. Tome, Natalie Knight, Zachary Finer, Zachary Doig, Yumeng Li","doi":"10.1123/jab.2021-0281","DOIUrl":"https://doi.org/10.1123/jab.2021-0281","url":null,"abstract":"The purpose of this study was to investigate normative and age-related differences in trunk and pelvis kinematics and intersegmental coordination during sagittal plane flexion-extension. Trunk and pelvis kinematics were recorded while 76 participants performed a maximal range of motion task in the sagittal plane. Cross-correlation was calculated to determine the phase lag between adjacent segment motion, and coupling angles were calculated using vector coding and classified into one of 4 coordination patterns: in-phase, antiphase, superior, and inferior phase. A 2-way mixed-model multivariate analysis of variance was used to compare lumbar spine and pelvis angular kinematics, phase lags, and cross-correlation coefficients between groups. Young participants exhibited greater trunk range of motion compared with middle-aged participants. The lumbar spine and pelvis were predominantly rotating with minimum phase lag during flexion and extension movement for both age groups, and differences in coordination between the groups were seen during hyperextension and return to upright position. In conclusion, middle-aged adults displayed lower range of motion but maintained similar movement patterns to young adults, which could be attributed to protective mechanisms. Healthy lumbar and pelvis movement patterns are important to understand and need to be quantified as a baseline, which can be used to develop rehabilitation protocols for individuals with spinal ailments.","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":"1 1","pages":"1-9"},"PeriodicalIF":1.4,"publicationDate":"2022-05-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45429913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Erik T. Hummer, Tanner A. Thorsen, Joshua T. Weinhandl, J. Reinbolt, H. Cates, Songning Zhang
Patients following unilateral total knee arthroplasty (TKA) display interlimb differences in knee joint kinetics during gait and more recently, stationary cycling. The purpose of this study was to use musculoskeletal modeling to estimate total, medial, and lateral tibiofemoral compressive forces for patients following TKA during stationary cycling. Fifteen patients of unilateral TKA, from the same surgeon, participated in cycling at 2 workrates (80 and 100 W). A knee model (OpenSim 3.2) was used to estimate total, medial, and lateral tibiofemoral compressive forces for replaced and nonreplaced limbs. A 2 × 2 (limb × workrate) and a 2 × 2 × 2 (compartment × limb × workrate) analysis of variance were run on the selected variables. Peak medial tibiofemoral compressive force was 23.5% lower for replaced compared to nonreplaced limbs (P = .004, G = 0.80). Peak medial tibiofemoral compressive force was 48.0% greater than peak lateral tibiofemoral compressive force in nonreplaced limbs (MD = 344.5 N, P < .001, G = 1.6) with no difference in replaced limbs (P = .274). Following TKA, patients have greater medial compartment loading on their nonreplaced compared to their replaced limbs and ipsilateral lateral compartment loading. This disproportionate loading may be cause for concern regarding exacerbating contralateral knee osteoarthritis.
{"title":"Medial and Lateral Tibiofemoral Compressive Forces in Patients Following Unilateral Total Knee Arthroplasty During Stationary Cycling.","authors":"Erik T. Hummer, Tanner A. Thorsen, Joshua T. Weinhandl, J. Reinbolt, H. Cates, Songning Zhang","doi":"10.1123/jab.2020-0324","DOIUrl":"https://doi.org/10.1123/jab.2020-0324","url":null,"abstract":"Patients following unilateral total knee arthroplasty (TKA) display interlimb differences in knee joint kinetics during gait and more recently, stationary cycling. The purpose of this study was to use musculoskeletal modeling to estimate total, medial, and lateral tibiofemoral compressive forces for patients following TKA during stationary cycling. Fifteen patients of unilateral TKA, from the same surgeon, participated in cycling at 2 workrates (80 and 100 W). A knee model (OpenSim 3.2) was used to estimate total, medial, and lateral tibiofemoral compressive forces for replaced and nonreplaced limbs. A 2 × 2 (limb × workrate) and a 2 × 2 × 2 (compartment × limb × workrate) analysis of variance were run on the selected variables. Peak medial tibiofemoral compressive force was 23.5% lower for replaced compared to nonreplaced limbs (P = .004, G = 0.80). Peak medial tibiofemoral compressive force was 48.0% greater than peak lateral tibiofemoral compressive force in nonreplaced limbs (MD = 344.5 N, P < .001, G = 1.6) with no difference in replaced limbs (P = .274). Following TKA, patients have greater medial compartment loading on their nonreplaced compared to their replaced limbs and ipsilateral lateral compartment loading. This disproportionate loading may be cause for concern regarding exacerbating contralateral knee osteoarthritis.","PeriodicalId":54883,"journal":{"name":"Journal of Applied Biomechanics","volume":" ","pages":"1-11"},"PeriodicalIF":1.4,"publicationDate":"2022-05-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49501690","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}