Contribution: This study provides an implementation of a partially flipped classroom with gamification aspects that has shown a statistically significant increase in student performance relative to traditional lecture. Background: Electronic Circuits is a challenging required course for first-year students in the Electrical Engineering degree program at National Taiwan University. Students taking the English section have historically performed lower than other Chinese sections, likely due to their diverse backgrounds and less familiarity with Taiwanese-style exams. Intended Outcome: This study applied flipped-learning-with-gamification teaching methods to evaluate their effectiveness in improving students’ motivation to solve ungraded practice problems and increase student performance. One-third of the class was a condensed in-class lecture with supplemental online videos, while two-thirds was a problem-solving session with students in teams. A class gameboard (leaderboard) and weekly concept cards (badges) were used to motivate the students to complete weekly ungraded practice problems. Findings: The results showed that the flipped-learning-with-gamification approach increased the average of the English section’s normalized quiz and exam grades by 11.6% compared to the previous year, such that the section’s average performance matched that of the other sections (control groups). Results also found that higher grades were most strongly correlated with higher completion rates of in-class problems and were uncorrelated with lecture attendance. Survey results showed that students liked the gamification aspects of working in teams, receiving concept cards, and completing challenge problems more than the course gameboard.
{"title":"Using a Partially Flipped Classroom and Gamification to Improve Student Performance in a First-Year Electronic Circuits Course","authors":"Katherine A. Kim;F. Selin Bagci;Anwell Ho","doi":"10.1109/TE.2024.3422017","DOIUrl":"10.1109/TE.2024.3422017","url":null,"abstract":"Contribution: This study provides an implementation of a partially flipped classroom with gamification aspects that has shown a statistically significant increase in student performance relative to traditional lecture. Background: Electronic Circuits is a challenging required course for first-year students in the Electrical Engineering degree program at National Taiwan University. Students taking the English section have historically performed lower than other Chinese sections, likely due to their diverse backgrounds and less familiarity with Taiwanese-style exams. Intended Outcome: This study applied flipped-learning-with-gamification teaching methods to evaluate their effectiveness in improving students’ motivation to solve ungraded practice problems and increase student performance. One-third of the class was a condensed in-class lecture with supplemental online videos, while two-thirds was a problem-solving session with students in teams. A class gameboard (leaderboard) and weekly concept cards (badges) were used to motivate the students to complete weekly ungraded practice problems. Findings: The results showed that the flipped-learning-with-gamification approach increased the average of the English section’s normalized quiz and exam grades by 11.6% compared to the previous year, such that the section’s average performance matched that of the other sections (control groups). Results also found that higher grades were most strongly correlated with higher completion rates of in-class problems and were uncorrelated with lecture attendance. Survey results showed that students liked the gamification aspects of working in teams, receiving concept cards, and completing challenge problems more than the course gameboard.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Sergio Trilles, Aida Monfort-Muriach, Enrique Cueto-Rubio, Carmen López-Girona, Carlos Granell
{"title":"Sucre4Stem: A K-12 Educational Tool for Integrating Computational Thinking and Programming Across Multidisciplinary Disciplines","authors":"Sergio Trilles, Aida Monfort-Muriach, Enrique Cueto-Rubio, Carmen López-Girona, Carlos Granell","doi":"10.1109/te.2024.3422666","DOIUrl":"https://doi.org/10.1109/te.2024.3422666","url":null,"abstract":"","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141871482","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Wesley Beccaro;Elisabete Galeazzo;Denise Consonni;Henrique E. Maldonado Peres;Leopoldo R. Yoshioka
Contribution: The evaluation of analog-to-digital conversion methods constitutes a key component of an Instrumentation course. This study introduces an affordable educational platform based on Arduino UNO board designed for teaching analog-to-digital conversion concepts, supported by virtual instruments (VIs). Background: ADCs are electronic devices found in a wide range of consumer electronics, such as smartphones and Internet of Things (IoT) devices. In order to investigate the fundamental aspects of ADCs, a data acquisition system is required. However, high-quality ADC systems tend to be expensive. Alternatively, cost-effective microcontrollers can serve as an educational platform for conducting experimental procedures, including tests, characterization, and calibration. Intended Outcomes: The proposed experiment concentrates on elucidating the theoretical foundations of analog-to-digital conversion, along with providing in-depth insights into the technical details involved in characterizing and calibrating ADCs. Application Design: Four VIs have been developed and are employed to investigate concepts, such as resolution, nonlinearity, aliasing, and to determine offset and gain errors. Findings: The learning experience and the usability of the system were assessed through questionnaires distributed to a total of 105 students. In addition, the final exam was used to assess the performance of 29 students. The results indicate that the students significantly improved their ability to understand, apply, and analyze essential aspects of ADC after engaging in the experiments, demonstrating substantial learning gains.
{"title":"Practical Learning of Analog-to-Digital Conversion Concepts With a Low-Cost Didactic Platform","authors":"Wesley Beccaro;Elisabete Galeazzo;Denise Consonni;Henrique E. Maldonado Peres;Leopoldo R. Yoshioka","doi":"10.1109/TE.2024.3428414","DOIUrl":"10.1109/TE.2024.3428414","url":null,"abstract":"Contribution: The evaluation of analog-to-digital conversion methods constitutes a key component of an Instrumentation course. This study introduces an affordable educational platform based on Arduino UNO board designed for teaching analog-to-digital conversion concepts, supported by virtual instruments (VIs). Background: ADCs are electronic devices found in a wide range of consumer electronics, such as smartphones and Internet of Things (IoT) devices. In order to investigate the fundamental aspects of ADCs, a data acquisition system is required. However, high-quality ADC systems tend to be expensive. Alternatively, cost-effective microcontrollers can serve as an educational platform for conducting experimental procedures, including tests, characterization, and calibration. Intended Outcomes: The proposed experiment concentrates on elucidating the theoretical foundations of analog-to-digital conversion, along with providing in-depth insights into the technical details involved in characterizing and calibrating ADCs. Application Design: Four VIs have been developed and are employed to investigate concepts, such as resolution, nonlinearity, aliasing, and to determine offset and gain errors. Findings: The learning experience and the usability of the system were assessed through questionnaires distributed to a total of 105 students. In addition, the final exam was used to assess the performance of 29 students. The results indicate that the students significantly improved their ability to understand, apply, and analyze essential aspects of ADC after engaging in the experiments, demonstrating substantial learning gains.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141782382","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Making AI Accessible for STEM Teachers: Using Explainable AI for Unpacking Classroom Discourse Analysis","authors":"Deliang Wang, Gaowei Chen","doi":"10.1109/te.2024.3421606","DOIUrl":"https://doi.org/10.1109/te.2024.3421606","url":null,"abstract":"","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.6,"publicationDate":"2024-07-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141740687","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The teaching-learning process in engineering aims to meet current societal demands and address real challenges faced by businesses and the job market. Challenge-based learning (CBL) has gained traction as an active and innovative approach in engineering education, introducing real challenges and open questions to the classroom regarding environmental sustainability and issues faced by Industry 4.0. These challenges require resources and technology that turn the teaching-learning process into an open system, demanding partnerships beyond academia for validating deliverables and projects. Following the PRISMA 2020 guidelines, this study aimed to systematically analyze the implementation and implications of CBL for competencies development. Following the inclusion and exclusion criteria of the PRISMA method, 62 articles were used for abstract analyses to identify methods, workload, resources, structure, technology, and stakeholder integration, as well as to answer the research questions. The studies were categorized into three types of applied challenges: 1) social and environmental sustainability; 2) Industry 4.0; and 3) those related to Educational Institutions. A total of 46 articles were analyzed in their entirety, and summarized in three tables. All analyzed studies showed that CBL is effective according to summative and formative assessments, leading to sociotechnical competencies development through experience with real-world challenges, teamwork, and interaction with external partners. As most studies are qualitative, there is room for quantitative investigations to better justify the relevance of CBL, especially in terms of adaptive and personalized learning. Moreover, the workload and complexity imposed by CBL, particularly on teachers, warrant further study to facilitate implementation and engagement.
{"title":"Challenge-Based Learning for Competency Development in Engineering Education, a Prisma-Based Systematic Literature Review","authors":"Andreia Leles;Luciana Zaina;José Roberto Cardoso","doi":"10.1109/TE.2024.3417908","DOIUrl":"10.1109/TE.2024.3417908","url":null,"abstract":"The teaching-learning process in engineering aims to meet current societal demands and address real challenges faced by businesses and the job market. Challenge-based learning (CBL) has gained traction as an active and innovative approach in engineering education, introducing real challenges and open questions to the classroom regarding environmental sustainability and issues faced by Industry 4.0. These challenges require resources and technology that turn the teaching-learning process into an open system, demanding partnerships beyond academia for validating deliverables and projects. Following the PRISMA 2020 guidelines, this study aimed to systematically analyze the implementation and implications of CBL for competencies development. Following the inclusion and exclusion criteria of the PRISMA method, 62 articles were used for abstract analyses to identify methods, workload, resources, structure, technology, and stakeholder integration, as well as to answer the research questions. The studies were categorized into three types of applied challenges: 1) social and environmental sustainability; 2) Industry 4.0; and 3) those related to Educational Institutions. A total of 46 articles were analyzed in their entirety, and summarized in three tables. All analyzed studies showed that CBL is effective according to summative and formative assessments, leading to sociotechnical competencies development through experience with real-world challenges, teamwork, and interaction with external partners. As most studies are qualitative, there is room for quantitative investigations to better justify the relevance of CBL, especially in terms of adaptive and personalized learning. Moreover, the workload and complexity imposed by CBL, particularly on teachers, warrant further study to facilitate implementation and engagement.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10600095","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141720036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Manal Kharbouch;Ambrosio Toval;Francisco Garcia-Sanchez;Alberto Garcia Berna;Jose Luis Fernandez Aleman
Contribution: This article provides evidence on the influence of serious games (SGs) in software engineering (SE) education on students’ scores, exam attendance, and chance of passing. It also highlights the impact of teachers’ experience with the implementation of SGs as a learning approach on the aforementioned metrics.Background: Although there are previous studies validating SGs in SE subjects, examining the effects that SGs and the expertise to implement them can have on students’ academic achievement by means of rigorous scientific methods is lacking.Research Questions: Do students achieve better academic results when SGs are used? Are the exam attendance and chance of passing higher among students enrolled in courses that use SGs compared to those following a traditional approach? Does the teachers’ expertise with SGs have an impact on students’ achievement? Are students satisfied using SGs in SE courses?Methodology: A controlled experiment was conducted on undergraduate students who were enrolled in an SE course during the years 2012/2013-2013/2014 and 2021/2022 to compare the effects of SGs with traditional teaching on students’ achievement in this subject. The students from the academic year 2012/2013 attended traditional lectures only, while the students from the academic years 2013/2014 and 2021/2022 had SGs incorporated within their lectures, led by teachers without and with expertise to deploy SGs, respectively.Findings: Students’ scores are higher when SGs are used compared to traditional teaching. Teachers’ experience and expertise are key factors to improve the chances of attending and passing the final exam when SGs are used.
{"title":"In-Class Teaching With Serious Games—Does Experience Matter?","authors":"Manal Kharbouch;Ambrosio Toval;Francisco Garcia-Sanchez;Alberto Garcia Berna;Jose Luis Fernandez Aleman","doi":"10.1109/TE.2024.3416816","DOIUrl":"10.1109/TE.2024.3416816","url":null,"abstract":"Contribution: This article provides evidence on the influence of serious games (SGs) in software engineering (SE) education on students’ scores, exam attendance, and chance of passing. It also highlights the impact of teachers’ experience with the implementation of SGs as a learning approach on the aforementioned metrics.Background: Although there are previous studies validating SGs in SE subjects, examining the effects that SGs and the expertise to implement them can have on students’ academic achievement by means of rigorous scientific methods is lacking.Research Questions: Do students achieve better academic results when SGs are used? Are the exam attendance and chance of passing higher among students enrolled in courses that use SGs compared to those following a traditional approach? Does the teachers’ expertise with SGs have an impact on students’ achievement? Are students satisfied using SGs in SE courses?Methodology: A controlled experiment was conducted on undergraduate students who were enrolled in an SE course during the years 2012/2013-2013/2014 and 2021/2022 to compare the effects of SGs with traditional teaching on students’ achievement in this subject. The students from the academic year 2012/2013 attended traditional lectures only, while the students from the academic years 2013/2014 and 2021/2022 had SGs incorporated within their lectures, led by teachers without and with expertise to deploy SGs, respectively.Findings: Students’ scores are higher when SGs are used compared to traditional teaching. Teachers’ experience and expertise are key factors to improve the chances of attending and passing the final exam when SGs are used.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141586445","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. Sanchez Padilla;Albert Espinal;Jennifer M. Case;Jose Cordova-Garcia;Homero Murzi
Contribution: This study explores industry members’ perceptions about the ABET-based accreditation in a developing country, using the case study of a program in a publicly funded polytechnic university in Ecuador. Background: Engineering programs often seek international accreditations to enhance the education quality, align with the global standards or gain academic reputation. ABET-based accreditation originates in United States, and thus presents some challenges for institutions in developing countries. Intended Outcomes: This study aimed to investigate the significance of international academic accreditation, as seen through the perspective of industry members. It focused on identifying fundamental competencies valued by employers and aimed to provide insights for institutions in similar contexts. Application Design: The research employed an approach informed by a qualitative methodology, involving in-depth interviews with five industry members who had served on the advisory committee board of an engineering program from a higher education institution in Ecuador. Findings: The findings identified three main areas of competencies that the industry members value: communication skills for teamwork, a problem-solving orientation, and an ability for effective task planning. The study also showed that these industry members value international accreditation as a means for enhancing education quality and ensuring graduates develop the necessary skills and competencies, yet the overall awareness with their peers remains relatively low.
{"title":"Industry Members’ Perceptions About ABET-Based Accreditation: An Exploratory Study in a Developing Country","authors":"V. Sanchez Padilla;Albert Espinal;Jennifer M. Case;Jose Cordova-Garcia;Homero Murzi","doi":"10.1109/TE.2024.3410996","DOIUrl":"10.1109/TE.2024.3410996","url":null,"abstract":"Contribution: This study explores industry members’ perceptions about the ABET-based accreditation in a developing country, using the case study of a program in a publicly funded polytechnic university in Ecuador. Background: Engineering programs often seek international accreditations to enhance the education quality, align with the global standards or gain academic reputation. ABET-based accreditation originates in United States, and thus presents some challenges for institutions in developing countries. Intended Outcomes: This study aimed to investigate the significance of international academic accreditation, as seen through the perspective of industry members. It focused on identifying fundamental competencies valued by employers and aimed to provide insights for institutions in similar contexts. Application Design: The research employed an approach informed by a qualitative methodology, involving in-depth interviews with five industry members who had served on the advisory committee board of an engineering program from a higher education institution in Ecuador. Findings: The findings identified three main areas of competencies that the industry members value: communication skills for teamwork, a problem-solving orientation, and an ability for effective task planning. The study also showed that these industry members value international accreditation as a means for enhancing education quality and ensuring graduates develop the necessary skills and competencies, yet the overall awareness with their peers remains relatively low.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-07-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141548843","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alicia García-Holgado;Andrea Vázquez-Ingelmo;Francisco José García-Peñalvo
Contribution: Gender mainstreaming in university teaching should be covered in all the knowledge areas. This work successfully introduces the gender perspective as part of the methodological approach to teaching and learning in Computer Science. Background: This study describes how gender mainstreaming has been introduced and matured during six academic years, from 2016–2017 to 2021–2022, in Software Engineering I course in the Degree of Computer Science at the University of Salamanca. Intended Outcomes: The aim that has been pursued is to raise awareness among students of Computer Science about equality, equity, inclusion, and respect for diversity to build better professional ethics and advance in eliminating any gender-related gap in Computer Science. Application Design: The introduction of gender mainstreaming in the Software Engineering I course has been done in six stages to advance in the gender-gap reduction improving in each academic year with the experience and voluntary feedback from the students of the previous year, using anonymized questionnaires. Findings: Gender mainstreaming requires special attention in careers with a visible gender gap, such as Computer Science. Incorporating the gender perspective as part of the teaching-learning process does not have a measurable impact in a short period but instead aims to make software engineers reflect in such a way that they reason about the need to promote diversity in software development contexts.
贡献:大学教学中的性别主流化应涵盖所有知识领域。这项工作成功地引入了性别视角,将其作为计算机科学教学方法的一部分。背景:本研究描述了从 2016-2017 学年到 2021-2022 学年的六个学年中,萨拉曼卡大学计算机科学学位的软件工程 I 课程是如何引入性别主流化并使其日趋成熟的。预期成果:所追求的目标是提高计算机科学专业学生对平等、公平、包容和尊重多样性的认识,以建立更好的职业道德,推动消除计算机科学专业中与性别相关的任何差距。应用设计:在软件工程(一)课程中引入性别主流化的工作分六个阶段进行,每学年都会利用前一年学生的经验和自愿反馈,通过匿名问卷调查的方式,进一步缩小性别差距。研究结果在计算机科学等性别差距明显的职业中,需要特别关注性别主流化问题。将性别观点纳入教学过程并不能在短期内产生可衡量的影响,而是要让软件工程师进行反思,使他们认识到在软件开发过程中促进多样性的必要性。
{"title":"Gender Mainstreaming and Diversity in Higher Education: An Experience in Software Engineering Education","authors":"Alicia García-Holgado;Andrea Vázquez-Ingelmo;Francisco José García-Peñalvo","doi":"10.1109/TE.2024.3411409","DOIUrl":"10.1109/TE.2024.3411409","url":null,"abstract":"Contribution: Gender mainstreaming in university teaching should be covered in all the knowledge areas. This work successfully introduces the gender perspective as part of the methodological approach to teaching and learning in Computer Science. Background: This study describes how gender mainstreaming has been introduced and matured during six academic years, from 2016–2017 to 2021–2022, in Software Engineering I course in the Degree of Computer Science at the University of Salamanca. Intended Outcomes: The aim that has been pursued is to raise awareness among students of Computer Science about equality, equity, inclusion, and respect for diversity to build better professional ethics and advance in eliminating any gender-related gap in Computer Science. Application Design: The introduction of gender mainstreaming in the Software Engineering I course has been done in six stages to advance in the gender-gap reduction improving in each academic year with the experience and voluntary feedback from the students of the previous year, using anonymized questionnaires. Findings: Gender mainstreaming requires special attention in careers with a visible gender gap, such as Computer Science. Incorporating the gender perspective as part of the teaching-learning process does not have a measurable impact in a short period but instead aims to make software engineers reflect in such a way that they reason about the need to promote diversity in software development contexts.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505598","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Contribution: This study uses a qualitative research method to analyze interviews where participants simplified an electric circuit while explaining their thought process.Background: Rearranging circuit diagrams is a fundamental skill in electrical and electronic engineering, yet students can struggle with unfamiliar configurations. Current research in the discipline is often quantitative, centered on conceptual understanding. By using a qualitative method, the process of “How” students interact with circuit diagrams is investigated. Research Question: How do students approach circuit diagram simplifications? Methodology: 15-min individual discussions with ten participants (undergraduate years 1–4) simplifying an unconventionally presented circuit diagram were recorded. Reflexive thematic analysis was used to identify common themes. Findings: 1) Participants initially rely upon pattern recognition to solve circuit problems before applying other analysis techniques; 2) two rearrangement methods were identified: “component focused,” where combinations of components are grouped and then connected together, and “ground focused” where components in the circuit are related to ground and then connected together; 3) students using a ground focused strategy were less hesitant in their circuit rearrangement process; and 4) students broadly used mechanicalistic methods of error checking, selecting software tools rather than applying conceptual understanding.
{"title":"Investigating Student Approaches to Rearranging Circuit Diagrams","authors":"Leah M. Ridgway;Tom Cox","doi":"10.1109/TE.2024.3410375","DOIUrl":"10.1109/TE.2024.3410375","url":null,"abstract":"Contribution: This study uses a qualitative research method to analyze interviews where participants simplified an electric circuit while explaining their thought process.Background: Rearranging circuit diagrams is a fundamental skill in electrical and electronic engineering, yet students can struggle with unfamiliar configurations. Current research in the discipline is often quantitative, centered on conceptual understanding. By using a qualitative method, the process of “How” students interact with circuit diagrams is investigated. Research Question: How do students approach circuit diagram simplifications? Methodology: 15-min individual discussions with ten participants (undergraduate years 1–4) simplifying an unconventionally presented circuit diagram were recorded. Reflexive thematic analysis was used to identify common themes. Findings: 1) Participants initially rely upon pattern recognition to solve circuit problems before applying other analysis techniques; 2) two rearrangement methods were identified: “component focused,” where combinations of components are grouped and then connected together, and “ground focused” where components in the circuit are related to ground and then connected together; 3) students using a ground focused strategy were less hesitant in their circuit rearrangement process; and 4) students broadly used mechanicalistic methods of error checking, selecting software tools rather than applying conceptual understanding.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10577445","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141529200","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Contribution: This article analyzes the learning effectiveness of a virtual educational escape room for teaching software engineering and compares this activity with traditional teaching through a randomized controlled trial. Background: Educational escape rooms have been used across a wide variety of disciplines at all levels of education and they are becoming increasingly popular among teachers. Nevertheless, there is a clear general need for more robust empirical evidence on the learning effectiveness of these novel activities and, particularly, on their application in software engineering education. Research Questions: Is game-based learning using educational escape rooms more effective than traditional lectures for teaching software engineering? What are the perceptions of software engineering students toward game-based learning using educational escape rooms? Methodology: The study presented in this article is a randomized controlled trial with a pre- and post-test design that was completed by a total of 326 software engineering students. The 164 students belonging to the experimental group learned software modeling by playing an educational escape room whereas the 162 students belonging to the control group learned the same subject matter through a traditional lecture. Findings: The results of the randomized controlled trial show that the students who learned software modeling through the educational escape room had very positive perceptions toward this activity, significantly increased their knowledge, and outperformed those students who learned through a traditional lecture in terms of knowledge acquisition.
{"title":"Are Educational Escape Rooms More Effective Than Traditional Lectures for Teaching Software Engineering? A Randomized Controlled Trial","authors":"Aldo Gordillo;Daniel López-Fernández","doi":"10.1109/TE.2024.3403913","DOIUrl":"10.1109/TE.2024.3403913","url":null,"abstract":"Contribution: This article analyzes the learning effectiveness of a virtual educational escape room for teaching software engineering and compares this activity with traditional teaching through a randomized controlled trial. Background: Educational escape rooms have been used across a wide variety of disciplines at all levels of education and they are becoming increasingly popular among teachers. Nevertheless, there is a clear general need for more robust empirical evidence on the learning effectiveness of these novel activities and, particularly, on their application in software engineering education. Research Questions: Is game-based learning using educational escape rooms more effective than traditional lectures for teaching software engineering? What are the perceptions of software engineering students toward game-based learning using educational escape rooms? Methodology: The study presented in this article is a randomized controlled trial with a pre- and post-test design that was completed by a total of 326 software engineering students. The 164 students belonging to the experimental group learned software modeling by playing an educational escape room whereas the 162 students belonging to the control group learned the same subject matter through a traditional lecture. Findings: The results of the randomized controlled trial show that the students who learned software modeling through the educational escape room had very positive perceptions toward this activity, significantly increased their knowledge, and outperformed those students who learned through a traditional lecture in terms of knowledge acquisition.","PeriodicalId":55011,"journal":{"name":"IEEE Transactions on Education","volume":null,"pages":null},"PeriodicalIF":2.1,"publicationDate":"2024-06-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10571851","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141505597","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}