In recent years, researchers and practitioners have focused on Industry 4.0, emphasizing the role of cyber-physical systems (CPSs) in manufacturing. However, the operationalization of Industry 4.0 has presented many implementation challenges caused by the inability of available technologies to meet industry needs effectively. Furthermore, Industry 4.0 has been criticized for the absence of focus on the human component in CPSs impacting the concept of sustainability in the long run. Responding to this critique and building on the foundation of the Industry 5.0 concept, this article proposes a holistic methodology empowered by human expert knowledge for human-cyber-physical system (HCPS) implementation. The proposed novel HCPS methodology represents a more sustainable solution for companies that consists of five phases to promote the integration of human expert knowledge and cyber and physical parts empowered by big data analytics for real-time anomaly detection. Specifically, real-time anomaly detection is enabled by industrial edge computing for big data optimization, data processing, and the industrial Internet of Things (IIoTs) real-time product quality control. Finally, we implement the developed HCPS solution in a case study from the process industry, where automated system decision-making is achieved. The results obtained indicate that an HCPS, as a strategy for companies, must augment human capabilities and require human involvement in final decision-making, foster meaningful human impact, and create new employment opportunities.
{"title":"Toward a Human-Cyber-Physical System for Real-Time Anomaly Detection","authors":"Bojana Bajic;Aleksandar Rikalovic;Nikola Suzic;Vincenzo Piuri","doi":"10.1109/JSYST.2024.3402978","DOIUrl":"https://doi.org/10.1109/JSYST.2024.3402978","url":null,"abstract":"In recent years, researchers and practitioners have focused on Industry 4.0, emphasizing the role of cyber-physical systems (CPSs) in manufacturing. However, the operationalization of Industry 4.0 has presented many implementation challenges caused by the inability of available technologies to meet industry needs effectively. Furthermore, Industry 4.0 has been criticized for the absence of focus on the human component in CPSs impacting the concept of sustainability in the long run. Responding to this critique and building on the foundation of the Industry 5.0 concept, this article proposes a holistic methodology empowered by human expert knowledge for human-cyber-physical system (HCPS) implementation. The proposed novel HCPS methodology represents a more sustainable solution for companies that consists of five phases to promote the integration of human expert knowledge and cyber and physical parts empowered by big data analytics for real-time anomaly detection. Specifically, real-time anomaly detection is enabled by industrial edge computing for big data optimization, data processing, and the industrial Internet of Things (IIoTs) real-time product quality control. Finally, we implement the developed HCPS solution in a case study from the process industry, where automated system decision-making is achieved. The results obtained indicate that an HCPS, as a strategy for companies, must augment human capabilities and require human involvement in final decision-making, foster meaningful human impact, and create new employment opportunities.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1308-1319"},"PeriodicalIF":4.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10555342","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-06-12DOI: 10.1109/JSYST.2024.3403500
Khaled Alanezi;Shivakant Mishra
Modern Internet of Things (IoT) environments with thousands of low-end and diverse IoT nodes with complex interactions among them and often deployed in remote and/or wild locations present some unique challenges that make traditional node compromise detection services less effective. This article presents the design, implementation, and evaluation of a fog-based architecture that utilizes the concept of a digital twin to detect compromised IoT nodes exhibiting malicious behaviors by either producing erroneous data and/or being used to launch network intrusion attacks to hijack other nodes eventually causing service disruption. By defining a digital twin of an IoT infrastructure at a fog server, the architecture is focused on monitoring relevant information to save energy and storage space. This article presents a prototype implementation for the architecture utilizing malicious behavior datasets to perform misbehaving node classification. An extensive accuracy and system performance evaluation was conducted based on this prototype. Results show good accuracy and negligible overhead especially when employing deep learning techniques, such as multilayer perceptron.
{"title":"An IoT Architecture Leveraging Digital Twins: Compromised Node Detection Scenario","authors":"Khaled Alanezi;Shivakant Mishra","doi":"10.1109/JSYST.2024.3403500","DOIUrl":"https://doi.org/10.1109/JSYST.2024.3403500","url":null,"abstract":"Modern Internet of Things (IoT) environments with thousands of low-end and diverse IoT nodes with complex interactions among them and often deployed in remote and/or wild locations present some unique challenges that make traditional node compromise detection services less effective. This article presents the design, implementation, and evaluation of a fog-based architecture that utilizes the concept of a digital twin to detect compromised IoT nodes exhibiting malicious behaviors by either producing erroneous data and/or being used to launch network intrusion attacks to hijack other nodes eventually causing service disruption. By defining a digital twin of an IoT infrastructure at a fog server, the architecture is focused on monitoring relevant information to save energy and storage space. This article presents a prototype implementation for the architecture utilizing malicious behavior datasets to perform misbehaving node classification. An extensive accuracy and system performance evaluation was conducted based on this prototype. Results show good accuracy and negligible overhead especially when employing deep learning techniques, such as multilayer perceptron.","PeriodicalId":55017,"journal":{"name":"IEEE Systems Journal","volume":"18 2","pages":"1224-1235"},"PeriodicalIF":4.0,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141435546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}