Pub Date : 2023-06-08DOI: 10.1007/s10686-023-09904-w
Somita Dhal, Sneha Singh, Koustav Konar, R. K. Paul
In this paper, we estimate the Cosmic Microwave Background (CMB) temperature using the data of the monopole spectrum from the Cosmic Background Explorer/ Far-Infrared Absolute Spectrophotometer (COBE/FIRAS). Utilising the idea of straight-line fitting, we obtain the temperature and chemical potential. The temperature of the CMB is found to be (2.725007 ± 0.000024) K (only statistical error) by using the monopole spectrum. Handling the data of the monopole spectrum the chemical potential is obtained as (-1.1 ± 3.4) × 10–5 with an upper bound |µ| < 5.7 × 10–5 (95% confidence level). The amplitude of the CMB dipole is found to be, Tamp = (3.47 ± 0.11) mK. We estimate an upper limit for the rms value of the fluctuation in chemical potential as Δµ < 1.2 × 10–4 (95% confidence level). The upper limit of y- distortion is calculated as y < 1.0 × 10–4 (95% confidence level).
{"title":"Calculation of Cosmic microwave background radiation parameters using COBE/FIRAS dataset","authors":"Somita Dhal, Sneha Singh, Koustav Konar, R. K. Paul","doi":"10.1007/s10686-023-09904-w","DOIUrl":"10.1007/s10686-023-09904-w","url":null,"abstract":"<div><p>In this paper, we estimate the Cosmic Microwave Background (CMB) temperature using the data of the monopole spectrum from the Cosmic Background Explorer/ Far-Infrared Absolute Spectrophotometer (COBE/FIRAS). Utilising the idea of straight-line fitting, we obtain the temperature and chemical potential. The temperature of the CMB is found to be (2.725007 ± 0.000024) K (only statistical error) by using the monopole spectrum. Handling the data of the monopole spectrum the chemical potential is obtained as (-1.1 ± 3.4) × 10<sup>–5</sup> with an upper bound |µ| < 5.7 × 10<sup>–5 </sup>(95% confidence level). The amplitude of the CMB dipole is found to be, T<sub>amp</sub> = (3.47 ± 0.11) mK. We estimate an upper limit for the rms value of the fluctuation in chemical potential as Δµ < 1.2 × 10<sup>–4</sup> (95% confidence level). The upper limit of y- distortion is calculated as y < 1.0 × 10<sup>–4</sup> (95% confidence level).</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"715 - 726"},"PeriodicalIF":3.0,"publicationDate":"2023-06-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"81402484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-25DOI: 10.1007/s10686-023-09895-8
Li Fu, Jiansen Tang, Rongbing Zhao, Yongbin Jiang, Jinqing Wang, Qinghui Liu, Zhiqiang Shen, Xu Wang, Haiming Liu
Two infrared thermal imagers have been installed on the TianMa radio telescope (TMRT) to continuously monitor the temperature distributions of the back-up structure (BUS). In order to compensate the measurement error of the infrared thermal imager (ITI) for a BUS, a correction formula, as a function of measuring distance and viewing angle, is proposed. According to the relationship between the locations of the measurement points in the thermographic image and those in the actual structure, the 3D coordinates of the measurement points are determined by a finite element model of the BUS. Then, the measuring distances and viewing angles are calculated using 3D coordinates of the measurement points. The measurement accuracy of the ITI improves from ±2(^{circ })C to ±0.5(^{circ })C with the proposed formula. Additionally, based on the information of rotation angle and rotation speed of the elevation, the problem of the ITI moving with the elevation of the telescope in real time is solved. The temperature data at each elevation are recorded in excel documents respectively which are integrated into a document in chronological order through compiling program. Finally, the temperature of the measurement points at different altazimuthal positions is displayed as curves or contours. The thermal states of about 40% measuring points of the BUS are simultaneously monitored by the ITI, which provides accurate temperature distribution for the prediction of thermal deformations of the BUS.
在天马射电望远镜(TMRT)上安装了2台红外热成像仪,连续监测备用结构(BUS)的温度分布。为了补偿红外热像仪(ITI)对总线的测量误差,提出了测量距离和观测角度的修正公式。根据热成像图像中测点位置与实际结构中测点位置的关系,利用总线的有限元模型确定测点的三维坐标。然后,利用测点的三维坐标计算测量距离和观测角度。利用该公式,ITI的测量精度从±2 (^{circ })℃提高到±0.5 (^{circ })℃。此外,基于仰角旋转角度和仰角旋转速度信息,解决了ITI随望远镜仰角实时移动的问题。每个海拔高度的温度数据分别记录在excel文档中,通过编译程序按时间顺序整合成一个文档。最后,以曲线或等高线的形式显示测量点在不同高度位置的温度。热态约为40% measuring points of the BUS are simultaneously monitored by the ITI, which provides accurate temperature distribution for the prediction of thermal deformations of the BUS.
{"title":"Application of Infrared Thermal Imager to measure the temperature of Back-Up Structure of the TianMa radio telescope","authors":"Li Fu, Jiansen Tang, Rongbing Zhao, Yongbin Jiang, Jinqing Wang, Qinghui Liu, Zhiqiang Shen, Xu Wang, Haiming Liu","doi":"10.1007/s10686-023-09895-8","DOIUrl":"10.1007/s10686-023-09895-8","url":null,"abstract":"<div><p>Two infrared thermal imagers have been installed on the TianMa radio telescope (TMRT) to continuously monitor the temperature distributions of the back-up structure (BUS). In order to compensate the measurement error of the infrared thermal imager (ITI) for a BUS, a correction formula, as a function of measuring distance and viewing angle, is proposed. According to the relationship between the locations of the measurement points in the thermographic image and those in the actual structure, the 3D coordinates of the measurement points are determined by a finite element model of the BUS. Then, the measuring distances and viewing angles are calculated using 3D coordinates of the measurement points. The measurement accuracy of the ITI improves from ±2<span>(^{circ })</span>C to ±0.5<span>(^{circ })</span>C with the proposed formula. Additionally, based on the information of rotation angle and rotation speed of the elevation, the problem of the ITI moving with the elevation of the telescope in real time is solved. The temperature data at each elevation are recorded in excel documents respectively which are integrated into a document in chronological order through compiling program. Finally, the temperature of the measurement points at different altazimuthal positions is displayed as curves or contours. The thermal states of about 40% measuring points of the BUS are simultaneously monitored by the ITI, which provides accurate temperature distribution for the prediction of thermal deformations of the BUS.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"223 - 238"},"PeriodicalIF":3.0,"publicationDate":"2023-05-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4981005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-05DOI: 10.1007/s10686-023-09893-w
Renato Sortino, Daniel Magro, Giuseppe Fiameni, Eva Sciacca, Simone Riggi, Andrea DeMarco, Concetto Spampinato, Andrew M. Hopkins, Filomena Bufano, Francesco Schillirò, Cristobal Bordiu, Carmelo Pino
In recent years, deep learning has been successfully applied in various scientific domains. Following these promising results and performances, it has recently also started being evaluated in the domain of radio astronomy. In particular, since radio astronomy is entering the Big Data era, with the advent of the largest telescope in the world - the Square Kilometre Array (SKA), the task of automatic object detection and instance segmentation is crucial for source finding and analysis. In this work, we explore the performance of the most affirmed deep learning approaches, applied to astronomical images obtained by radio interferometric instrumentation, to solve the task of automatic source detection. This is carried out by applying models designed to accomplish two different kinds of tasks: object detection and semantic segmentation. The goal is to provide an overview of existing techniques, in terms of prediction performance and computational efficiency, to scientists in the astrophysics community who would like to employ machine learning in their research.
{"title":"Radio astronomical images object detection and segmentation: a benchmark on deep learning methods","authors":"Renato Sortino, Daniel Magro, Giuseppe Fiameni, Eva Sciacca, Simone Riggi, Andrea DeMarco, Concetto Spampinato, Andrew M. Hopkins, Filomena Bufano, Francesco Schillirò, Cristobal Bordiu, Carmelo Pino","doi":"10.1007/s10686-023-09893-w","DOIUrl":"10.1007/s10686-023-09893-w","url":null,"abstract":"<div><p>In recent years, deep learning has been successfully applied in various scientific domains. Following these promising results and performances, it has recently also started being evaluated in the domain of radio astronomy. In particular, since radio astronomy is entering the Big Data era, with the advent of the largest telescope in the world - the Square Kilometre Array (SKA), the task of automatic object detection and instance segmentation is crucial for source finding and analysis. In this work, we explore the performance of the most affirmed deep learning approaches, applied to astronomical images obtained by radio interferometric instrumentation, to solve the task of automatic source detection. This is carried out by applying models designed to accomplish two different kinds of tasks: object detection and semantic segmentation. The goal is to provide an overview of existing techniques, in terms of prediction performance and computational efficiency, to scientists in the astrophysics community who would like to employ machine learning in their research.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"293 - 331"},"PeriodicalIF":3.0,"publicationDate":"2023-05-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4221746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-05-02DOI: 10.1007/s10686-023-09899-4
Rupnath Sikdar, Sandip K. Chakrabarti, Debashis Bhowmick
Solar flare intensity is strongly dependent on the phase in the solar cycle, the structure and dynamics of the magnetic field near sunspots, and also on occasional solar coronal mass ejections. In this paper we study some of the solar flares detected by the stratospheric balloon borne experiments of Indian Centre for Space Physics. We also observe a gamma-ray burst which is believed to be originated from sudden energy release in gamma rays. In the hard X-ray region of 10 − 100 keV, we present and analyze data from various classes of solar flares and a gamma-ray burst. Because of natural constraints present in balloon borne experiments we receive data up to about a height of ∼ 42 km. The Earth’s residual atmosphere at this height absorbs the lower energy part of the spectrum. Moreover, the background radiation (mainly secondary cosmic rays) introduces noise. We show how we circumvent these limitations and create the accurate light curves and the spectra of a few solar flares and a gamma-ray burst.
{"title":"Study of solar flares and gamma-ray bursts using low-cost stratospheric balloon borne experiments","authors":"Rupnath Sikdar, Sandip K. Chakrabarti, Debashis Bhowmick","doi":"10.1007/s10686-023-09899-4","DOIUrl":"10.1007/s10686-023-09899-4","url":null,"abstract":"<div><p>Solar flare intensity is strongly dependent on the phase in the solar cycle, the structure and dynamics of the magnetic field near sunspots, and also on occasional solar coronal mass ejections. In this paper we study some of the solar flares detected by the stratospheric balloon borne experiments of Indian Centre for Space Physics. We also observe a gamma-ray burst which is believed to be originated from sudden energy release in gamma rays. In the hard X-ray region of 10 − 100 keV, we present and analyze data from various classes of solar flares and a gamma-ray burst. Because of natural constraints present in balloon borne experiments we receive data up to about a height of ∼ 42 km. The Earth’s residual atmosphere at this height absorbs the lower energy part of the spectrum. Moreover, the background radiation (mainly secondary cosmic rays) introduces noise. We show how we circumvent these limitations and create the accurate light curves and the spectra of a few solar flares and a gamma-ray burst.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"61 - 76"},"PeriodicalIF":3.0,"publicationDate":"2023-05-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09899-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4096710","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-04-04DOI: 10.1007/s10686-022-09886-1
B. Schneider, N. Renault-Tinacci, D. Götz, A. Meuris, P. Ferrando, V. Burwitz, E. Doumayrou, T. Lavanant, N. Meidinger, K. Mercier
The Microchannel X-ray Telescope (MXT) is an innovative compact X-ray instrument on board the SVOM astronomical mission dedicated to the study of transient phenomena such as gamma-ray bursts. During 3 weeks, we have tested the MXT flight model at the Panter X-ray test facility under the nominal temperature and vacuum conditions that MXT will undergo in-flight. We collected data at series of characteristic energies probing the entire MXT energy range, from 0.28 keV up to 9 keV, for multiple source positions with the center of the point spread function (PSF) inside and outside the detector field of view (FOV). We stacked the data of the positions with the PSF outside the FOV to obtain a uniformly illuminated matrix and reduced all data sets using a dedicated pipeline. We determined the best spectral performance of MXT using an optimized data processing, especially for the energy calibration and the charge sharing effect induced by the pixel low energy thresholding. Our results demonstrate that MXT is compliant with the instrument requirement regarding the energy resolution (< 80 eV at 1.5 keV), the low and high energy threshold, and the accuracy of the energy calibration (± 20 eV). We also determined the charge transfer inefficiency ((sim 10^{-5})) of the detector and modeled its evolution with energy prior to the irradiation that MXT will undergo during its in-orbit lifetime. Finally, we measured the relation of the energy resolution as function of the photon energy. We determined an equivalent noise charge of (4.9 pm 0.2 mathrm {e}^{-}_{text {rms}}) for the MXT detection chain and a Fano factor of 0.131 ± 0.003 in silicon at 208 K, in agreement with previous works. This campaign confirmed the promising scientific performance that MXT will be able to deliver during the mission lifetime.
{"title":"Spectral performance of the Microchannel X-ray Telescope on board the SVOM mission","authors":"B. Schneider, N. Renault-Tinacci, D. Götz, A. Meuris, P. Ferrando, V. Burwitz, E. Doumayrou, T. Lavanant, N. Meidinger, K. Mercier","doi":"10.1007/s10686-022-09886-1","DOIUrl":"10.1007/s10686-022-09886-1","url":null,"abstract":"<div><p>The Microchannel X-ray Telescope (MXT) is an innovative compact X-ray instrument on board the SVOM astronomical mission dedicated to the study of transient phenomena such as gamma-ray bursts. During 3 weeks, we have tested the MXT flight model at the Panter X-ray test facility under the nominal temperature and vacuum conditions that MXT will undergo in-flight. We collected data at series of characteristic energies probing the entire MXT energy range, from 0.28 keV up to 9 keV, for multiple source positions with the center of the point spread function (PSF) inside and outside the detector field of view (FOV). We stacked the data of the positions with the PSF outside the FOV to obtain a uniformly illuminated matrix and reduced all data sets using a dedicated pipeline. We determined the best spectral performance of MXT using an optimized data processing, especially for the energy calibration and the charge sharing effect induced by the pixel low energy thresholding. Our results demonstrate that MXT is compliant with the instrument requirement regarding the energy resolution (< 80 eV at 1.5 keV), the low and high energy threshold, and the accuracy of the energy calibration (± 20 eV). We also determined the charge transfer inefficiency (<span>(sim 10^{-5})</span>) of the detector and modeled its evolution with energy prior to the irradiation that MXT will undergo during its in-orbit lifetime. Finally, we measured the relation of the energy resolution as function of the photon energy. We determined an equivalent noise charge of <span>(4.9 pm 0.2 mathrm {e}^{-}_{text {rms}})</span> for the MXT detection chain and a Fano factor of 0.131 ± 0.003 in silicon at 208 K, in agreement with previous works. This campaign confirmed the promising scientific performance that MXT will be able to deliver during the mission lifetime.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"77 - 97"},"PeriodicalIF":3.0,"publicationDate":"2023-04-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4149135","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-03-08DOI: 10.1007/s10686-023-09890-z
Emrah Kalemci, Ali M. Altıngün, Ayhan Bozkurt, Alim Rüstem Aslan, Refik Yalçın, Kaya Gökalp, Kaan Veziroğlu, Ilias Fernini, Antonios Manousakis, Ali Yaşar, Milad Diba, Boğaç Karabulut, Egemen Çatal, Onur Öztekin
The iXRD is the primary science payload on Sharjah-Sat-1, a 3U CubeSat expected to be launched in Q4, 2022. Its main scientific goal is monitoring bright hard X-ray sources and transients in 20 - 200 keV band. The iXRD consists of a CdZnTe crystal (6.45 cm2 area, 5 mm thickness), a Tungsten collimator with square holes with an opening angle of 4.26∘, readout and control electronics and power supply circuitry, a back-shield and mechanical structures. Some of the design elements of iXRD have been inherited from the XRD on BeEagleSat with significant improvements in terms of collecting area, X-ray background and electronic noise. In this article, the design of the iXRD is discussed in detail taking into account mechanical, electronic, control software and data handling aspects. Its expected performance is determined after ground calibration. Depending on the pixel size, the energy resolution is 4 - 7 keV at 60 keV and the minimum detectable energy is 19 - 23 keV.
iXRD是沙迦- sat -1的主要科学有效载荷,沙迦- sat -1是一颗3U立方体卫星,预计将于2022年第四季度发射。它的主要科学目标是监测20 - 200kev波段的明亮硬x射线源和瞬态。iXRD由一个CdZnTe晶体(面积6.45平方厘米,厚度5毫米)、一个开口角为4.26°的方孔钨准直器、读出和控制电子器件及供电电路、后屏蔽和机械结构组成。iXRD的一些设计元素继承了BeEagleSat上的XRD,在收集面积、x射线背景和电子噪声方面有了显着改进。在本文中,从机械、电子、控制软件和数据处理方面详细讨论了iXRD的设计。其预期性能由地面标定后确定。根据像素大小,能量分辨率在60 keV时为4 - 7 keV,最小可探测能量为19 - 23 keV。
{"title":"The Improved X-ray Detector (iXRD) on Sharjah-Sat-1, design principles, tests and ground calibration","authors":"Emrah Kalemci, Ali M. Altıngün, Ayhan Bozkurt, Alim Rüstem Aslan, Refik Yalçın, Kaya Gökalp, Kaan Veziroğlu, Ilias Fernini, Antonios Manousakis, Ali Yaşar, Milad Diba, Boğaç Karabulut, Egemen Çatal, Onur Öztekin","doi":"10.1007/s10686-023-09890-z","DOIUrl":"10.1007/s10686-023-09890-z","url":null,"abstract":"<div><p>The iXRD is the primary science payload on <i>Sharjah-Sat-1</i>, a 3U CubeSat expected to be launched in Q4, 2022. Its main scientific goal is monitoring bright hard X-ray sources and transients in 20 - 200 keV band. The iXRD consists of a CdZnTe crystal (6.45 cm<sup>2</sup> area, 5 mm thickness), a Tungsten collimator with square holes with an opening angle of 4.26<sup>∘</sup>, readout and control electronics and power supply circuitry, a back-shield and mechanical structures. Some of the design elements of iXRD have been inherited from the XRD on BeEagleSat with significant improvements in terms of collecting area, X-ray background and electronic noise. In this article, the design of the iXRD is discussed in detail taking into account mechanical, electronic, control software and data handling aspects. Its expected performance is determined after ground calibration. Depending on the pixel size, the energy resolution is 4 - 7 keV at 60 keV and the minimum detectable energy is 19 - 23 keV.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"99 - 116"},"PeriodicalIF":3.0,"publicationDate":"2023-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4352007","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
The Einstein Probe (EP) satellite is designed for X-ray time-domain astronomy. The Follow-up X-ray Telescope (FXT) is one of the scientific payloads onboard EP. It will mainly be used for the follow-up X-ray observation, and it will also be used for the sky survey and Target of Opportunity (ToO) observation. The focal plane detector of FXT provided by the Max Planck Institute for Extraterrestrial Physics (MPE) adopts a PNCCD sensor. For detector cooling, a helium pulse tube refrigerator is used, provided by the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS), to keep the detector working at a temperature of −90 ± 0.5 °C. The PNCCD driving and data acquisition electronics are developed by the Institute of High Energy Physics (IHEP), CAS. To observe different celestial sources, we designed six filter wheel positions and three scientific operating modes for the PNCCD detector: the full-frame mode, the partial-window mode, and the timing mode. In the full-frame mode, the system frame rate is 20 frame/s and the energy resolution of the whole system reaches 92 eV @ 1.49 keV (FWHM). The frame rate of partial-window mode is 500 frame/s. In the timing mode, the time resolution is about 94 μs. This paper mainly introduces the design and test results of the focal plane camera.
爱因斯坦探测器(EP)卫星是为x射线时域天文学设计的。后续x射线望远镜(FXT)是EP上的科学有效载荷之一。它将主要用于后续的x射线观测,也将用于巡天和机会目标(ToO)观测。由马克斯普朗克地外物理研究所(MPE)提供的FXT焦平面探测器采用了PNCCD传感器。探测器冷却采用中国科学院理化技术研究所提供的氦脉冲管制冷机,使探测器在−90±0.5℃的温度下工作。PNCCD驱动和数据采集电子器件由中国科学院高能物理研究所研制。为了观测不同的天体源,我们为PNCCD探测器设计了6种滤光轮位置和3种科学工作模式:全帧模式、部分窗口模式和定时模式。在全帧模式下,系统帧率为20帧/秒,整个系统的能量分辨率达到92 eV @ 1.49 keV (FWHM)。部分窗口模式的帧率为500帧/秒。在定时模式下,时间分辨率约为94 μs。本文主要介绍了焦平面相机的设计和测试结果。
{"title":"Design and performance of the focal plane camera for FXT onboard the Einstein Probe satellite","authors":"Weiwei Cui, Hao Wang, Xiaofan Zhao, Juan Zhang, Norbert Meidinger, Yanji Yang, Isabell Keil, Ziliang Zhang, Jia Huo, Juan Wang, Zeyu Song, Fangjun Lu, Jia Ma, Yusa Wang, Jingjing Xu, Yuxuan Zhu, Tianming Li, Wei Li, Laidan Luo, Dawei Han, Zijian Zhao, Dongjie Hou, Xiongtao Yang, Haoyang Geng, Shuo Li, HouLei Chen, QingJun Tang, Yehai Chen, Yong Chen","doi":"10.1007/s10686-023-09891-y","DOIUrl":"10.1007/s10686-023-09891-y","url":null,"abstract":"<div><p>The Einstein Probe (EP) satellite is designed for X-ray time-domain astronomy. The Follow-up X-ray Telescope (FXT) is one of the scientific payloads onboard EP. It will mainly be used for the follow-up X-ray observation, and it will also be used for the sky survey and Target of Opportunity (ToO) observation. The focal plane detector of FXT provided by the Max Planck Institute for Extraterrestrial Physics (MPE) adopts a PNCCD sensor. For detector cooling, a helium pulse tube refrigerator is used, provided by the Technical Institute of Physics and Chemistry (TIPC), Chinese Academy of Sciences (CAS), to keep the detector working at a temperature of −90 ± 0.5 °C. The PNCCD driving and data acquisition electronics are developed by the Institute of High Energy Physics (IHEP), CAS. To observe different celestial sources, we designed six filter wheel positions and three scientific operating modes for the PNCCD detector: the full-frame mode, the partial-window mode, and the timing mode. In the full-frame mode, the system frame rate is 20 frame/s and the energy resolution of the whole system reaches 92 eV @ 1.49 keV (FWHM). The frame rate of partial-window mode is 500 frame/s. In the timing mode, the time resolution is about 94 μs. This paper mainly introduces the design and test results of the focal plane camera.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 3","pages":"603 - 624"},"PeriodicalIF":3.0,"publicationDate":"2023-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09891-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5195772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-13DOI: 10.1007/s10686-022-09882-5
Jean-Philippe Bernard, Adam Bernard, Hélène Roussel, Ilyes Choubani, Dana Alina, Jonathan Aumont, Annie Hughes, Isabelle Ristorcelli, Samantha Stever, Tomotake Matsumura, Shinya Sugiyama, Kunimoto Komatsu, Giancarlo de Gasperis, Katia Ferrière, Vincent Guillet, Nathalie Ysard, Peter Ade, Paolo de Bernardis, Nicolas Bray, Bruno Crane, Jean-Pierre Dubois, Matt Griffin, Peter Hargrave, Yuying Longval, Stephane Louvel, Bruno Maffei, Silvia Masi, Baptiste Mot, Johan Montel, François Pajot, Etienne Pérot, Nicolas Ponthieu, Louis Rodriguez, Valentin Sauvage, Giorgio Savini, Carole Tucker, François Vacher
The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (PILOT) is a balloon-borne experiment that aims to measure the polarized emission of thermal dust at a wavelength of 240µm (1.2 THz). The PILOT experiment flew from Timmins, Ontario, Canada in 2015 and 2019 and from Alice Springs, Australia in April 2017. The in-flight performance of the instrument during the second flight was described in [1]. In this paper, we present data processing steps that were not presented in [1] and that we have recently implemented to correct for several remaining instrumental effects. The additional data processing concerns corrections related to detector cross-talk and readout circuit memory effects, and leakage from total intensity to polarization. We illustrate the above effects and the performance of our corrections using data obtained during the third flight of PILOT, but the methods used to assess the impact of these effects on the final science-ready data, and our strategies for correcting them will be applied to all PILOT data. We show that the above corrections, and in particular that for the intensity to polarization leakage, which is most critical for accurate polarization measurements with PILOT, are accurate to better than 0.4% as measured on Jupiter during flight#3.
{"title":"Performance of the polarization leakage correction in the PILOT data","authors":"Jean-Philippe Bernard, Adam Bernard, Hélène Roussel, Ilyes Choubani, Dana Alina, Jonathan Aumont, Annie Hughes, Isabelle Ristorcelli, Samantha Stever, Tomotake Matsumura, Shinya Sugiyama, Kunimoto Komatsu, Giancarlo de Gasperis, Katia Ferrière, Vincent Guillet, Nathalie Ysard, Peter Ade, Paolo de Bernardis, Nicolas Bray, Bruno Crane, Jean-Pierre Dubois, Matt Griffin, Peter Hargrave, Yuying Longval, Stephane Louvel, Bruno Maffei, Silvia Masi, Baptiste Mot, Johan Montel, François Pajot, Etienne Pérot, Nicolas Ponthieu, Louis Rodriguez, Valentin Sauvage, Giorgio Savini, Carole Tucker, François Vacher","doi":"10.1007/s10686-022-09882-5","DOIUrl":"10.1007/s10686-022-09882-5","url":null,"abstract":"<div><p>The Polarized Instrument for Long-wavelength Observation of the Tenuous interstellar medium (<i>PILOT</i>) is a balloon-borne experiment that aims to measure the polarized emission of thermal dust at a wavelength of 240µm (1.2 THz). The <i>PILOT</i> experiment flew from Timmins, Ontario, Canada in 2015 and 2019 and from Alice Springs, Australia in April 2017. The in-flight performance of the instrument during the second flight was described in [1]. In this paper, we present data processing steps that were not presented in [1] and that we have recently implemented to correct for several remaining instrumental effects. The additional data processing concerns corrections related to detector cross-talk and readout circuit memory effects, and leakage from total intensity to polarization. We illustrate the above effects and the performance of our corrections using data obtained during the third flight of <i>PILOT</i>, but the methods used to assess the impact of these effects on the final science-ready data, and our strategies for correcting them will be applied to all <i>PILOT</i> data. We show that the above corrections, and in particular that for the intensity to polarization leakage, which is most critical for accurate polarization measurements with <i>PILOT</i>, are accurate to better than 0.4% as measured on Jupiter during flight#3.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"197 - 222"},"PeriodicalIF":3.0,"publicationDate":"2023-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4536468","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-06DOI: 10.1007/s10686-022-09870-9
Yanji Yang, Yusa Wang, Dawei Han, Juan Wang, Weiwei Cui, Yuxuan Zhu, Min Cong, Jia Ma, Zijian Zhao, Dongjie Hou, Xiongtao Yang, Can Chen, Bing Lu, He Lv, Wenxin Sun, Jiawei Zhang, Ke Yu, Shaohuai Wang, Dongxu Liu, Qian Zhang, Xiyan Bi, Fangjun Lu, Peter Friedrich, Josef Eder, Katinka Hartmann, Vadim Burwitz, Arnoud Keereman, Andrea Santovincenzo, Dervis Vernani, Giovanni Bianucci, Giuseppe Valsecch, Lizhi Sheng, Yongqing Yan, Pengfei Qiang, Bo Wang, Langping Wang, Dianlong Wang, Fei Ding, Lei Wang, Junsheng Cheng, Yong Chen
The Einstein Probe (EP) mission is a science mission designed for the time domain astronomy, which is approved by the Chinese Academy of Sciences (CAS) in 2017 and is to be launched in 2023 with a duration time of more than 3 years. The Follow-up X-ray Telescope (FXT) is an important payload onboard EP, which employs the Wolter I focusing mirror as the X-ray collection unit and the PNCCD as the focal plane detector. The Phase C study has been finished in 2021. During the Phase C, the structural and thermal model (STM) of the mirror assembly of FXT, provided by the European Space Agency (ESA), a mirror assembly developed by the Institute of High Energy Physics (IHEP), a qualification model (QM) PNCCD and other components, are integrated and tested in IHEP. All optical performances meet the goal requirement of EP, such as the field of view of 60 arcmins, the angular resolution of less than 30 arcsec HEW on-axis, and the focal length of ab. 1600 mm. After that, the FXT is assembled, integrated, and tested on the EP satellite platform. Furthermore, these performances are not changed after the mechanical and thermal tests on the spacecraft platform.
{"title":"Design and testing of the Optics for FXT onboard EP satellite","authors":"Yanji Yang, Yusa Wang, Dawei Han, Juan Wang, Weiwei Cui, Yuxuan Zhu, Min Cong, Jia Ma, Zijian Zhao, Dongjie Hou, Xiongtao Yang, Can Chen, Bing Lu, He Lv, Wenxin Sun, Jiawei Zhang, Ke Yu, Shaohuai Wang, Dongxu Liu, Qian Zhang, Xiyan Bi, Fangjun Lu, Peter Friedrich, Josef Eder, Katinka Hartmann, Vadim Burwitz, Arnoud Keereman, Andrea Santovincenzo, Dervis Vernani, Giovanni Bianucci, Giuseppe Valsecch, Lizhi Sheng, Yongqing Yan, Pengfei Qiang, Bo Wang, Langping Wang, Dianlong Wang, Fei Ding, Lei Wang, Junsheng Cheng, Yong Chen","doi":"10.1007/s10686-022-09870-9","DOIUrl":"10.1007/s10686-022-09870-9","url":null,"abstract":"<div><p>The Einstein Probe (EP) mission is a science mission designed for the time domain astronomy, which is approved by the Chinese Academy of Sciences (CAS) in 2017 and is to be launched in 2023 with a duration time of more than 3 years. The Follow-up X-ray Telescope (FXT) is an important payload onboard EP, which employs the Wolter I focusing mirror as the X-ray collection unit and the PNCCD as the focal plane detector. The Phase C study has been finished in 2021. During the Phase C, the structural and thermal model (STM) of the mirror assembly of FXT, provided by the European Space Agency (ESA), a mirror assembly developed by the Institute of High Energy Physics (IHEP), a qualification model (QM) PNCCD and other components, are integrated and tested in IHEP. All optical performances meet the goal requirement of EP, such as the field of view of 60 arcmins, the angular resolution of less than 30 arcsec HEW on-axis, and the focal length of ab. 1600 mm. After that, the FXT is assembled, integrated, and tested on the EP satellite platform. Furthermore, these performances are not changed after the mechanical and thermal tests on the spacecraft platform.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 3","pages":"625 - 637"},"PeriodicalIF":3.0,"publicationDate":"2023-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09870-9.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4246207","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-04DOI: 10.1007/s10686-022-09878-1
Vladimir Krasnoselskikh, Bruce T. Tsurutani, Thierry Dudok de Wit, Simon Walker, Michael Balikhin, Marianne Balat-Pichelin, Marco Velli, Stuart D. Bale, Milan Maksimovic, Oleksiy Agapitov, Wolfgang Baumjohann, Matthieu Berthomier, Roberto Bruno, Steven R. Cranmer, Bart de Pontieu, Domingos de Sousa Meneses, Jonathan Eastwood, Robertus Erdelyi, Robert Ergun, Viktor Fedun, Natalia Ganushkina, Antonella Greco, Louise Harra, Pierre Henri, Timothy Horbury, Hugh Hudson, Justin Kasper, Yuri Khotyaintsev, Matthieu Kretzschmar, Säm Krucker, Harald Kucharek, Yves Langevin, Benoît Lavraud, Jean-Pierre Lebreton, Susan Lepri, Michael Liemohn, Philippe Louarn, Eberhard Moebius, Forrest Mozer, Zdenek Nemecek, Olga Panasenco, Alessandro Retino, Jana Safrankova, Jack Scudder, Sergio Servidio, Luca Sorriso-Valvo, Jan Souček, Adam Szabo, Andris Vaivads, Grigory Vekstein, Zoltan Vörös, Teimuraz Zaqarashvili, Gaetano Zimbardo, Andrei Fedorov
The primary scientific goal of ICARUS (Investigation of Coronal AcceleRation and heating of solar wind Up to the Sun), a mother-daughter satellite mission, proposed in response to the ESA “Voyage 2050” Call, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind, and the entire heliosphere. Reaching this goal will be a Rosetta Stone step, with results that are broadly applicable within the fields of space plasma physics and astrophysics. Within ESA’s Cosmic Vision roadmap, these science goals address Theme 2: “How does the Solar System work?” by investigating basic processes occurring “From the Sun to the edge of the Solar System”. ICARUS will not only advance our understanding of the plasma environment around our Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the first direct in situ measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution, and flows directly in the regions in which the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion altitude of 1 solar radius and will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow winds are generated. It will probe the local characteristics of the plasma and provide unique information about the physical processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous, contextual information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will thus provide bridges for understanding the magnetic links between the heliosphere and the solar atmosphere. Such information is crucial to our understanding of the plasma physics and electrodynamics of the solar atmosphere. ICARUS II will also play a very important relay role, enabling the radio-link with ICARUS I. It will receive, collect, and store information transmitted from ICARUS I during its closest approach to the Sun. It will also perform preliminary data processing before transmitting it to Earth. Performing such unique in situ observations in the area where presumably hazardous solar energetic particles are energized, ICARUS will provide fundamental advances in our capabilities to monitor and forecast the space radiation environment. Therefore, the results from the ICARUS mission will be extremely crucial for future space explorations, especially for long-term crewed space missions.
{"title":"ICARUS: in-situ studies of the solar corona beyond Parker Solar Probe and Solar Orbiter","authors":"Vladimir Krasnoselskikh, Bruce T. Tsurutani, Thierry Dudok de Wit, Simon Walker, Michael Balikhin, Marianne Balat-Pichelin, Marco Velli, Stuart D. Bale, Milan Maksimovic, Oleksiy Agapitov, Wolfgang Baumjohann, Matthieu Berthomier, Roberto Bruno, Steven R. Cranmer, Bart de Pontieu, Domingos de Sousa Meneses, Jonathan Eastwood, Robertus Erdelyi, Robert Ergun, Viktor Fedun, Natalia Ganushkina, Antonella Greco, Louise Harra, Pierre Henri, Timothy Horbury, Hugh Hudson, Justin Kasper, Yuri Khotyaintsev, Matthieu Kretzschmar, Säm Krucker, Harald Kucharek, Yves Langevin, Benoît Lavraud, Jean-Pierre Lebreton, Susan Lepri, Michael Liemohn, Philippe Louarn, Eberhard Moebius, Forrest Mozer, Zdenek Nemecek, Olga Panasenco, Alessandro Retino, Jana Safrankova, Jack Scudder, Sergio Servidio, Luca Sorriso-Valvo, Jan Souček, Adam Szabo, Andris Vaivads, Grigory Vekstein, Zoltan Vörös, Teimuraz Zaqarashvili, Gaetano Zimbardo, Andrei Fedorov","doi":"10.1007/s10686-022-09878-1","DOIUrl":"10.1007/s10686-022-09878-1","url":null,"abstract":"<div><p>The primary scientific goal of ICARUS (Investigation of Coronal AcceleRation and heating of solar wind Up to the Sun), a mother-daughter satellite mission, proposed in response to the ESA “Voyage 2050” Call, will be to determine how the magnetic field and plasma dynamics in the outer solar atmosphere give rise to the corona, the solar wind, and the entire heliosphere. Reaching this goal will be a Rosetta Stone step, with results that are broadly applicable within the fields of space plasma physics and astrophysics. Within ESA’s Cosmic Vision roadmap, these science goals address Theme 2: “How does the Solar System work?” by investigating basic processes occurring “From the Sun to the edge of the Solar System”. ICARUS will not only advance our understanding of the plasma environment around our Sun, but also of the numerous magnetically active stars with hot plasma coronae. ICARUS I will perform the first direct <i>in situ</i> measurements of electromagnetic fields, particle acceleration, wave activity, energy distribution, and flows directly in the regions in which the solar wind emerges from the coronal plasma. ICARUS I will have a perihelion altitude of 1 solar radius and will cross the region where the major energy deposition occurs. The polar orbit of ICARUS I will enable crossing the regions where both the fast and slow winds are generated. It will probe the local characteristics of the plasma and provide unique information about the physical processes involved in the creation of the solar wind. ICARUS II will observe this region using remote-sensing instruments, providing simultaneous, contextual information about regions crossed by ICARUS I and the solar atmosphere below as observed by solar telescopes. It will thus provide bridges for understanding the magnetic links between the heliosphere and the solar atmosphere. Such information is crucial to our understanding of the plasma physics and electrodynamics of the solar atmosphere. ICARUS II will also play a very important relay role, enabling the radio-link with ICARUS I. It will receive, collect, and store information transmitted from ICARUS I during its closest approach to the Sun. It will also perform preliminary data processing before transmitting it to Earth. Performing such unique <i>in situ</i> observations in the area where presumably hazardous solar energetic particles are energized, ICARUS will provide fundamental advances in our capabilities to monitor and forecast the space radiation environment. Therefore, the results from the ICARUS mission will be extremely crucial for future space explorations, especially for long-term crewed space missions.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"54 2-3","pages":"277 - 315"},"PeriodicalIF":3.0,"publicationDate":"2023-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09878-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4160280","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}