Pub Date : 2023-02-01DOI: 10.1007/s10686-022-09881-6
D. Götz, M. Boutelier, V. Burwitz, R. Chipaux, B. Cordier, C. Feldman, P. Ferrando, A. Fort, F. Gonzalez, A. Gros, S. Hussein, J.-M. Le Duigou, N. Meidinger, K. Mercier, A. Meuris, J. Pearson, N. Renault-Tinacci, F. Robinet, B. Schneider, R. Willingale
The Microchannel X-ray Telescope (MXT) will be the first focusing X-ray telescope based on a narrow field “Lobster-Eye” optical design to be flown on a satellite, namely the Sino-French mission SVOM. SVOM will be dedicated to the study of Gamma-Ray Bursts and more generally time-domain astrophysics. The MXT telescope is a compact (focal length (sim ) 1.15 m) and light (< 42 kg) instrument, sensitive in the 0.2–10 keV energy range. It is composed of an optical system, based on micro-pore optics (MPOs) of 40 μ m pore size, coupled to a low-noise pnCDD X-ray detector. In this paper we describe the expected scientific performance of the MXT telescope, based on the End-to-End calibration campaign performed in fall 2021, before the integration of the SVOM payload on the satellite.
{"title":"The scientific performance of the microchannel X-ray telescope on board the SVOM mission","authors":"D. Götz, M. Boutelier, V. Burwitz, R. Chipaux, B. Cordier, C. Feldman, P. Ferrando, A. Fort, F. Gonzalez, A. Gros, S. Hussein, J.-M. Le Duigou, N. Meidinger, K. Mercier, A. Meuris, J. Pearson, N. Renault-Tinacci, F. Robinet, B. Schneider, R. Willingale","doi":"10.1007/s10686-022-09881-6","DOIUrl":"10.1007/s10686-022-09881-6","url":null,"abstract":"<div><p>The Microchannel X-ray Telescope (MXT) will be the first focusing X-ray telescope based on a narrow field “Lobster-Eye” optical design to be flown on a satellite, namely the Sino-French mission SVOM. SVOM will be dedicated to the study of Gamma-Ray Bursts and more generally time-domain astrophysics. The MXT telescope is a compact (focal length <span>(sim )</span> 1.15 m) and light (< 42 kg) instrument, sensitive in the 0.2–10 keV energy range. It is composed of an optical system, based on micro-pore optics (MPOs) of 40 <i>μ</i> m pore size, coupled to a low-noise pnCDD X-ray detector. In this paper we describe the expected scientific performance of the MXT telescope, based on the End-to-End calibration campaign performed in fall 2021, before the integration of the SVOM payload on the satellite.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 2","pages":"487 - 519"},"PeriodicalIF":3.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09881-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4022528","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-02-01DOI: 10.1007/s10686-023-09889-6
Juan Wang, Josef Eder, Jia Ma, YanJi Yang, WeiWei Cui, XiongTao Yang, XuLiang Duan, JianChao Feng, XiaoFeng Zhang, Bing Lu, He Lv, WenXin Sun, FangJun Lu, DaWei Han, YuSa Wang, Tianxiang Chen, Qian Zhang, Xiyan Bi, DongTai Li, JiaWei Zhang, Peter Friedrich, Katinka Hartmann, Arnoud Keereman, Andrea Santovincenzo, Dervis Vernani, Giovanni Bianucci, Giuseppe Valsecchi, QingJun Tang, HouLei Chen, Yong Chen
The Follow-up X-ray Telescope (FXT) is one of the key payloads onboard EP. It is a Wolter-I type X-ray focusing telescope equipped with two telescope modules (focal length 1.6 m), with a total effective area of ~ 600 cm2 at 1.25 keV and an energy range of 0.3–10 keV. FXT is mainly composed of an X-ray focusing mirror assembly (MA) and a camera assembly with a PNCCD detector module. The two FXT modules are completely independent from each other, thus avoiding a single point failure. We completed the internal composites of FXT structural design, which meets the function and performance requirements of mechanical, thermal, contamination control and X-ray optics. The FXT passed successfully the mechanical, thermal qualification level tests on the spacecraft platform in the phase C.
{"title":"The structural design and thermo-mechanical performance of the FXT for the EP mission","authors":"Juan Wang, Josef Eder, Jia Ma, YanJi Yang, WeiWei Cui, XiongTao Yang, XuLiang Duan, JianChao Feng, XiaoFeng Zhang, Bing Lu, He Lv, WenXin Sun, FangJun Lu, DaWei Han, YuSa Wang, Tianxiang Chen, Qian Zhang, Xiyan Bi, DongTai Li, JiaWei Zhang, Peter Friedrich, Katinka Hartmann, Arnoud Keereman, Andrea Santovincenzo, Dervis Vernani, Giovanni Bianucci, Giuseppe Valsecchi, QingJun Tang, HouLei Chen, Yong Chen","doi":"10.1007/s10686-023-09889-6","DOIUrl":"10.1007/s10686-023-09889-6","url":null,"abstract":"<div><p>The Follow-up X-ray Telescope (FXT) is one of the key payloads onboard EP. It is a Wolter-I type X-ray focusing telescope equipped with two telescope modules (focal length 1.6 m), with a total effective area of ~ 600 cm2 at 1.25 keV and an energy range of 0.3–10 keV. FXT is mainly composed of an X-ray focusing mirror assembly (MA) and a camera assembly with a PNCCD detector module. The two FXT modules are completely independent from each other, thus avoiding a single point failure. We completed the internal composites of FXT structural design, which meets the function and performance requirements of mechanical, thermal, contamination control and X-ray optics. The FXT passed successfully the mechanical, thermal qualification level tests on the spacecraft platform in the phase C.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 3","pages":"639 - 659"},"PeriodicalIF":3.0,"publicationDate":"2023-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-023-09889-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4022527","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-27DOI: 10.1007/s10686-022-09887-0
Jingye Yan, Ji Wu, Leonid I. Gurvits, Lin Wu, Li Deng, Fei Zhao, Li Zhou, Ailan Lan, Wenjie Fan, Min Yi, Yang Yang, Zhen Yang, Mingchuan Wei, Jinsheng Guo, Shi Qiu, Fan Wu, Chaoran Hu, Xuelei Chen, Hanna Rothkaehl, Marek Morawski
This paper introduces the first results of observations with the Ultra-Long-Wavelength (ULW) —- Low Frequency Interferometer and Spectrometer (LFIS) on board the selenocentric satellite Longjiang-2. We present a brief description of the satellite and focus on the LFIS payload. The in-orbit commissioning confirmed a reliable operational status of the instrumentation. We also present results of a transition observation, which offers unique measurements on several novel aspects. We estimate the RFI suppression required for such a radio astronomy instrumentation at the Moon-distances from Earth as order of − 80 dB. We analyse a method of separating Earth- and satellite-originated radio frequency interference (RFI). It is found that the RFI level at frequencies lower than a few MHz is smaller than the receiver noise floor.
{"title":"Ultra-low-frequency radio astronomy observations from a Seleno-centric orbit","authors":"Jingye Yan, Ji Wu, Leonid I. Gurvits, Lin Wu, Li Deng, Fei Zhao, Li Zhou, Ailan Lan, Wenjie Fan, Min Yi, Yang Yang, Zhen Yang, Mingchuan Wei, Jinsheng Guo, Shi Qiu, Fan Wu, Chaoran Hu, Xuelei Chen, Hanna Rothkaehl, Marek Morawski","doi":"10.1007/s10686-022-09887-0","DOIUrl":"10.1007/s10686-022-09887-0","url":null,"abstract":"<div><p>This paper introduces the first results of observations with the Ultra-Long-Wavelength (ULW) —- Low Frequency Interferometer and Spectrometer (LFIS) on board the selenocentric satellite <i>Longjiang-2</i>. We present a brief description of the satellite and focus on the LFIS payload. The in-orbit commissioning confirmed a reliable operational status of the instrumentation. We also present results of a transition observation, which offers unique measurements on several novel aspects. We estimate the RFI suppression required for such a radio astronomy instrumentation at the Moon-distances from Earth as order of − 80 dB. We analyse a method of separating Earth- and satellite-originated radio frequency interference (RFI). It is found that the RFI level at frequencies lower than a few MHz is smaller than the receiver noise floor.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"333 - 353"},"PeriodicalIF":3.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5039693","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-27DOI: 10.1007/s10686-022-09880-7
Didier Barret, Vincent Albouys, Jan-Willem den Herder, Luigi Piro, Massimo Cappi, Juhani Huovelin, Richard Kelley, J. Miguel Mas-Hesse, Stéphane Paltani, Gregor Rauw, Agata Rozanska, Jiri Svoboda, Joern Wilms, Noriko Yamasaki, Marc Audard, Simon Bandler, Marco Barbera, Xavier Barcons, Enrico Bozzo, Maria Teresa Ceballos, Ivan Charles, Elisa Costantini, Thomas Dauser, Anne Decourchelle, Lionel Duband, Jean-Marc Duval, Fabrizio Fiore, Flavio Gatti, Andrea Goldwurm, Roland den Hartog, Brian Jackson, Peter Jonker, Caroline Kilbourne, Seppo Korpela, Claudio Macculi, Mariano Mendez, Kazuhisa Mitsuda, Silvano Molendi, François Pajot, Etienne Pointecouteau, Frederick Porter, Gabriel W. Pratt, Damien Prêle, Laurent Ravera, Kosuke Sato, Joop Schaye, Keisuke Shinozaki, Konrad Skup, Jan Soucek, Tanguy Thibert, Jacco Vink, Natalie Webb, Laurence Chaoul, Desi Raulin, Aurora Simionescu, Jose Miguel Torrejon, Fabio Acero, Graziella Branduardi-Raymont, Stefano Ettori, Alexis Finoguenov, Nicolas Grosso, Jelle Kaastra, Pasquale Mazzotta, Jon Miller, Giovanni Miniutti, Fabrizio Nicastro, Salvatore Sciortino, Hiroya Yamaguchi, Sophie Beaumont, Edoardo Cucchetti, Matteo D’Andrea, Megan Eckart, Philippe Ferrando, Elias Kammoun, Simone Lotti, Jean-Michel Mesnager, Lorenzo Natalucci, Philippe Peille, Jelle de Plaa, Florence Ardellier, Andrea Argan, Elise Bellouard, Jérôme Carron, Elisabetta Cavazzuti, Mauro Fiorini, Pourya Khosropanah, Sylvain Martin, James Perry, Frederic Pinsard, Alice Pradines, Manuela Rigano, Peter Roelfsema, Denis Schwander, Guido Torrioli, Joel Ullom, Isabel Vera, Eduardo Medinaceli Villegas, Monika Zuchniak, Frank Brachet, Ugo Lo Cicero, William Doriese, Malcom Durkin, Valentina Fioretti, Hervé Geoffray, Lionel Jacques, Christian Kirsch, Stephen Smith, Joseph Adams, Emilie Gloaguen, Ruud Hoogeveen, Paul van der Hulst, Mikko Kiviranta, Jan van der Kuur, Aurélien Ledot, Bert-Joost van Leeuwen, Dennis van Loon, Bertrand Lyautey, Yann Parot, Kazuhiro Sakai, Henk van Weers, Shariefa Abdoelkariem, Thomas Adam, Christophe Adami, Corinne Aicardi, Hiroki Akamatsu, Pablo Eleazar Merino Alonso, Roberta Amato, Jérôme André, Matteo Angelinelli, Manuel Anon-Cancela, Shebli Anvar, Ricardo Atienza, Anthony Attard, Natalia Auricchio, Ana Balado, Florian Bancel, Lorenzo Ferrari Barusso, Arturo Bascuñan, Vivian Bernard, Alicia Berrocal, Sylvie Blin, Donata Bonino, François Bonnet, Patrick Bonny, Peter Boorman, Charles Boreux, Ayoub Bounab, Martin Boutelier, Kevin Boyce, Daniele Brienza, Marcel Bruijn, Andrea Bulgarelli, Simona Calarco, Paul Callanan, Alberto Prada Campello, Thierry Camus, Florent Canourgues, Vito Capobianco, Nicolas Cardiel, Florent Castellani, Oscar Cheatom, James Chervenak, Fabio Chiarello, Laurent Clerc, Nicolas Clerc, Beatriz Cobo, Odile Coeur-Joly, Alexis Coleiro, Stéphane Colonges, Leonardo Corcione, Mickael Coriat, Alexandre Coynel, Francesco Cuttaia, Antonino D’Ai, Fabio D’anca, Mauro Dadina, Christophe Daniel, Lea Dauner, Natalie DeNigris, Johannes Dercksen, Michael DiPirro, Eric Doumayrou, Luc Dubbeldam, Michel Dupieux, Simon Dupourqué, Jean Louis Durand, Dominique Eckert, Valvanera Eiriz, Eric Ercolani, Christophe Etcheverry, Fred Finkbeiner, Mariateresa Fiocchi, Hervé Fossecave, Philippe Franssen, Martin Frericks, Stefano Gabici, Florent Gant, Jian-Rong Gao, Fabio Gastaldello, Ludovic Genolet, Simona Ghizzardi, Ma Angeles Alcacera Gil, Elisa Giovannini, Olivier Godet, Javier Gomez-Elvira, Raoul Gonzalez, Manuel Gonzalez, Luciano Gottardi, Dolorès Granat, Michel Gros, Nicolas Guignard, Paul Hieltjes, Adolfo Jesús Hurtado, Kent Irwin, Christian Jacquey, Agnieszka Janiuk, Jean Jaubert, Maria Jiménez, Antoine Jolly, Thierry Jourdan, Sabine Julien, Bartosz Kedziora, Andrew Korb, Ingo Kreykenbohm, Ole König, Mathieu Langer, Philippe Laudet, Philippe Laurent, Monica Laurenza, Jean Lesrel, Sebastiano Ligori, Maximilian Lorenz, Alfredo Luminari, Bruno Maffei, Océane Maisonnave, Lorenzo Marelli, Didier Massonet, Irwin Maussang, Alejandro Gonzalo Melchor, Isabelle Le Mer, Francisco Javier San Millan, Jean-Pierre Millerioux, Teresa Mineo, Gabriele Minervini, Alexeï Molin, David Monestes, Nicola Montinaro, Baptiste Mot, David Murat, Kenichiro Nagayoshi, Yaël Nazé, Loïc Noguès, Damien Pailot, Francesca Panessa, Luigi Parodi, Pascal Petit, Enrico Piconcelli, Ciro Pinto, Jose Miguel Encinas Plaza, Borja Plaza, David Poyatos, Thomas Prouvé, Andy Ptak, Simonetta Puccetti, Elena Puccio, Pascale Ramon, Manuel Reina, Guillaume Rioland, Louis Rodriguez, Anton Roig, Bertrand Rollet, Mauro Roncarelli, Gilles Roudil, Tomasz Rudnicki, Julien Sanisidro, Luisa Sciortino, Vitor Silva, Michael Sordet, Javier Soto-Aguilar, Pierre Spizzi, Christian Surace, Miguel Fernández Sánchez, Emanuele Taralli, Guilhem Terrasa, Régis Terrier, Michela Todaro, Pietro Ubertini, Michela Uslenghi, Jan Geralt Bij de Vaate, Davide Vaccaro, Salvatore Varisco, Peggy Varnière, Laurent Vibert, María Vidriales, Fabrizio Villa, Boris Martin Vodopivec, Angela Volpe, Cor de Vries, Nicholas Wakeham, Gavin Walmsley, Michael Wise, Martin de Wit, Grzegorz Woźniak
The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.
{"title":"The Athena X-ray Integral Field Unit: a consolidated design for the system requirement review of the preliminary definition phase","authors":"Didier Barret, Vincent Albouys, Jan-Willem den Herder, Luigi Piro, Massimo Cappi, Juhani Huovelin, Richard Kelley, J. Miguel Mas-Hesse, Stéphane Paltani, Gregor Rauw, Agata Rozanska, Jiri Svoboda, Joern Wilms, Noriko Yamasaki, Marc Audard, Simon Bandler, Marco Barbera, Xavier Barcons, Enrico Bozzo, Maria Teresa Ceballos, Ivan Charles, Elisa Costantini, Thomas Dauser, Anne Decourchelle, Lionel Duband, Jean-Marc Duval, Fabrizio Fiore, Flavio Gatti, Andrea Goldwurm, Roland den Hartog, Brian Jackson, Peter Jonker, Caroline Kilbourne, Seppo Korpela, Claudio Macculi, Mariano Mendez, Kazuhisa Mitsuda, Silvano Molendi, François Pajot, Etienne Pointecouteau, Frederick Porter, Gabriel W. Pratt, Damien Prêle, Laurent Ravera, Kosuke Sato, Joop Schaye, Keisuke Shinozaki, Konrad Skup, Jan Soucek, Tanguy Thibert, Jacco Vink, Natalie Webb, Laurence Chaoul, Desi Raulin, Aurora Simionescu, Jose Miguel Torrejon, Fabio Acero, Graziella Branduardi-Raymont, Stefano Ettori, Alexis Finoguenov, Nicolas Grosso, Jelle Kaastra, Pasquale Mazzotta, Jon Miller, Giovanni Miniutti, Fabrizio Nicastro, Salvatore Sciortino, Hiroya Yamaguchi, Sophie Beaumont, Edoardo Cucchetti, Matteo D’Andrea, Megan Eckart, Philippe Ferrando, Elias Kammoun, Simone Lotti, Jean-Michel Mesnager, Lorenzo Natalucci, Philippe Peille, Jelle de Plaa, Florence Ardellier, Andrea Argan, Elise Bellouard, Jérôme Carron, Elisabetta Cavazzuti, Mauro Fiorini, Pourya Khosropanah, Sylvain Martin, James Perry, Frederic Pinsard, Alice Pradines, Manuela Rigano, Peter Roelfsema, Denis Schwander, Guido Torrioli, Joel Ullom, Isabel Vera, Eduardo Medinaceli Villegas, Monika Zuchniak, Frank Brachet, Ugo Lo Cicero, William Doriese, Malcom Durkin, Valentina Fioretti, Hervé Geoffray, Lionel Jacques, Christian Kirsch, Stephen Smith, Joseph Adams, Emilie Gloaguen, Ruud Hoogeveen, Paul van der Hulst, Mikko Kiviranta, Jan van der Kuur, Aurélien Ledot, Bert-Joost van Leeuwen, Dennis van Loon, Bertrand Lyautey, Yann Parot, Kazuhiro Sakai, Henk van Weers, Shariefa Abdoelkariem, Thomas Adam, Christophe Adami, Corinne Aicardi, Hiroki Akamatsu, Pablo Eleazar Merino Alonso, Roberta Amato, Jérôme André, Matteo Angelinelli, Manuel Anon-Cancela, Shebli Anvar, Ricardo Atienza, Anthony Attard, Natalia Auricchio, Ana Balado, Florian Bancel, Lorenzo Ferrari Barusso, Arturo Bascuñan, Vivian Bernard, Alicia Berrocal, Sylvie Blin, Donata Bonino, François Bonnet, Patrick Bonny, Peter Boorman, Charles Boreux, Ayoub Bounab, Martin Boutelier, Kevin Boyce, Daniele Brienza, Marcel Bruijn, Andrea Bulgarelli, Simona Calarco, Paul Callanan, Alberto Prada Campello, Thierry Camus, Florent Canourgues, Vito Capobianco, Nicolas Cardiel, Florent Castellani, Oscar Cheatom, James Chervenak, Fabio Chiarello, Laurent Clerc, Nicolas Clerc, Beatriz Cobo, Odile Coeur-Joly, Alexis Coleiro, Stéphane Colonges, Leonardo Corcione, Mickael Coriat, Alexandre Coynel, Francesco Cuttaia, Antonino D’Ai, Fabio D’anca, Mauro Dadina, Christophe Daniel, Lea Dauner, Natalie DeNigris, Johannes Dercksen, Michael DiPirro, Eric Doumayrou, Luc Dubbeldam, Michel Dupieux, Simon Dupourqué, Jean Louis Durand, Dominique Eckert, Valvanera Eiriz, Eric Ercolani, Christophe Etcheverry, Fred Finkbeiner, Mariateresa Fiocchi, Hervé Fossecave, Philippe Franssen, Martin Frericks, Stefano Gabici, Florent Gant, Jian-Rong Gao, Fabio Gastaldello, Ludovic Genolet, Simona Ghizzardi, Ma Angeles Alcacera Gil, Elisa Giovannini, Olivier Godet, Javier Gomez-Elvira, Raoul Gonzalez, Manuel Gonzalez, Luciano Gottardi, Dolorès Granat, Michel Gros, Nicolas Guignard, Paul Hieltjes, Adolfo Jesús Hurtado, Kent Irwin, Christian Jacquey, Agnieszka Janiuk, Jean Jaubert, Maria Jiménez, Antoine Jolly, Thierry Jourdan, Sabine Julien, Bartosz Kedziora, Andrew Korb, Ingo Kreykenbohm, Ole König, Mathieu Langer, Philippe Laudet, Philippe Laurent, Monica Laurenza, Jean Lesrel, Sebastiano Ligori, Maximilian Lorenz, Alfredo Luminari, Bruno Maffei, Océane Maisonnave, Lorenzo Marelli, Didier Massonet, Irwin Maussang, Alejandro Gonzalo Melchor, Isabelle Le Mer, Francisco Javier San Millan, Jean-Pierre Millerioux, Teresa Mineo, Gabriele Minervini, Alexeï Molin, David Monestes, Nicola Montinaro, Baptiste Mot, David Murat, Kenichiro Nagayoshi, Yaël Nazé, Loïc Noguès, Damien Pailot, Francesca Panessa, Luigi Parodi, Pascal Petit, Enrico Piconcelli, Ciro Pinto, Jose Miguel Encinas Plaza, Borja Plaza, David Poyatos, Thomas Prouvé, Andy Ptak, Simonetta Puccetti, Elena Puccio, Pascale Ramon, Manuel Reina, Guillaume Rioland, Louis Rodriguez, Anton Roig, Bertrand Rollet, Mauro Roncarelli, Gilles Roudil, Tomasz Rudnicki, Julien Sanisidro, Luisa Sciortino, Vitor Silva, Michael Sordet, Javier Soto-Aguilar, Pierre Spizzi, Christian Surace, Miguel Fernández Sánchez, Emanuele Taralli, Guilhem Terrasa, Régis Terrier, Michela Todaro, Pietro Ubertini, Michela Uslenghi, Jan Geralt Bij de Vaate, Davide Vaccaro, Salvatore Varisco, Peggy Varnière, Laurent Vibert, María Vidriales, Fabrizio Villa, Boris Martin Vodopivec, Angela Volpe, Cor de Vries, Nicholas Wakeham, Gavin Walmsley, Michael Wise, Martin de Wit, Grzegorz Woźniak","doi":"10.1007/s10686-022-09880-7","DOIUrl":"10.1007/s10686-022-09880-7","url":null,"abstract":"<div><p>The Athena X-ray Integral Unit (X-IFU) is the high resolution X-ray spectrometer studied since 2015 for flying in the mid-30s on the Athena space X-ray Observatory. Athena is a versatile observatory designed to address the Hot and Energetic Universe science theme, as selected in November 2013 by the Survey Science Committee. Based on a large format array of Transition Edge Sensors (TES), X-IFU aims to provide spatially resolved X-ray spectroscopy, with a spectral resolution of 2.5 eV (up to 7 keV) over a hexagonal field of view of 5 arc minutes (equivalent diameter). The X-IFU entered its System Requirement Review (SRR) in June 2022, at about the same time when ESA called for an overall X-IFU redesign (including the X-IFU cryostat and the cooling chain), due to an unanticipated cost overrun of Athena. In this paper, after illustrating the breakthrough capabilities of the X-IFU, we describe the instrument as presented at its SRR (i.e. in the course of its preliminary definition phase, so-called B1), browsing through all the subsystems and associated requirements. We then show the instrument budgets, with a particular emphasis on the anticipated budgets of some of its key performance parameters, such as the instrument efficiency, spectral resolution, energy scale knowledge, count rate capability, non X-ray background and target of opportunity efficiency. Finally, we briefly discuss the ongoing key technology demonstration activities, the calibration and the activities foreseen in the X-IFU Instrument Science Center, touch on communication and outreach activities, the consortium organisation and the life cycle assessment of X-IFU aiming at minimising the environmental footprint, associated with the development of the instrument. Thanks to the studies conducted so far on X-IFU, it is expected that along the design-to-cost exercise requested by ESA, the X-IFU will maintain flagship capabilities in spatially resolved high resolution X-ray spectroscopy, enabling most of the original X-IFU related scientific objectives of the Athena mission to be retained. <i>The X-IFU will be provided by an international consortium led by France, The Netherlands and Italy, with ESA member state contributions from Belgium, Czech Republic, Finland, Germany, Poland, Spain, Switzerland, with additional contributions from the United States and Japan.</i></p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 2","pages":"373 - 426"},"PeriodicalIF":3.0,"publicationDate":"2023-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"5045818","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-23DOI: 10.1007/s10686-022-09888-z
Julian Oppermann, Mitchell B. Mickaliger, Oliver Sinnen
The Square Kilometre Array (SKA) is the world’s largest radio telescope currently under construction, and will employ elaborate signal processing to detect new pulsars, i.e. highly magnetised rotating neutron stars. This paper addresses the acceleration of demanding computations for this pulsar search on Field-Programmable Gate Arrays (FPGAs) using a new high-level design process based on OpenCL templates that is transferable to other scientific problems. The successful FPGA acceleration of large-scale scientific workloads requires custom architectures that fully exploit the parallel computing capabilities of modern reconfigurable hardware and are amenable to substantial design space exploration. OpenCL-based high-level synthesis toolchains, with their ability to express interconnected multi-kernel pipelines in a single source language, excel in this domain. However, the achievable performance strongly depends on how well the compiler can infer desirable hardware structures from the code. One key aspect to excellent performance is commonly the uninterrupted, high-bandwidth streaming of data into and through the design. This is difficult to achieve in complex designs when data order needs to be re-arranged, e.g. transposed. It is equally hard to pre-fetch and burst-load from DDR memory when reading occurs in non-trivial patterns. In this paper, we propose new approaches to these two problems that use OpenCL-based code templates.
We demonstrate the practical benefits of these approaches with the acceleration of a key component in the SKA’s pulsar search pipeline: the Fourier Domain Acceleration Search (FDAS) module. Using our proposed methodology, we are able to develop a more scalable FDAS accelerator architecture than previously possible. We explore its design space to eventually achieve a 10x throughput improvement over a prior, thoroughly optimised implementation in plain OpenCL.
{"title":"Pulsar search acceleration using FPGAs and OpenCL templates","authors":"Julian Oppermann, Mitchell B. Mickaliger, Oliver Sinnen","doi":"10.1007/s10686-022-09888-z","DOIUrl":"10.1007/s10686-022-09888-z","url":null,"abstract":"<div><p>The Square Kilometre Array (SKA) is the world’s largest radio telescope currently under construction, and will employ elaborate signal processing to detect new pulsars, i.e. highly magnetised rotating neutron stars. This paper addresses the acceleration of demanding computations for this pulsar search on Field-Programmable Gate Arrays (FPGAs) using a new high-level design process based on OpenCL templates that is transferable to other scientific problems. The successful FPGA acceleration of large-scale scientific workloads requires custom architectures that fully exploit the parallel computing capabilities of modern reconfigurable hardware and are amenable to substantial design space exploration. OpenCL-based high-level synthesis toolchains, with their ability to express interconnected multi-kernel pipelines in a single source language, excel in this domain. However, the achievable performance strongly depends on how well the compiler can infer desirable hardware structures from the code. One key aspect to excellent performance is commonly the uninterrupted, high-bandwidth streaming of data into and through the design. This is difficult to achieve in complex designs when data order needs to be re-arranged, e.g. transposed. It is equally hard to pre-fetch and burst-load from DDR memory when reading occurs in non-trivial patterns. In this paper, we propose new approaches to these two problems that use OpenCL-based code templates.</p><p>We demonstrate the practical benefits of these approaches with the acceleration of a key component in the SKA’s pulsar search pipeline: the Fourier Domain Acceleration Search (FDAS) module. Using our proposed methodology, we are able to develop a more scalable FDAS accelerator architecture than previously possible. We explore its design space to eventually achieve a 10x throughput improvement over a prior, thoroughly optimised implementation in plain OpenCL.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"239 - 266"},"PeriodicalIF":3.0,"publicationDate":"2023-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09888-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4896279","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-17DOI: 10.1007/s10686-022-09883-4
S. Okukawa, M. Anzorena, S. Asano, C. A. H. Condori, E. de la Fuente, A. Gomi, K. Hibino, N. Hotta, A. Jimenez-Meza, Y. Katayose, C. Kato, S. Kato, T. Kawashima, K. Kawata, T. Koi, H. Kojima, D. Kurashige, J. Lozoya, R. Mayta, P. Miranda, K. Munakata, K. Nagaya, Y. Nakamura, Y. Nakazawa, C. Nina, M. Nishizawa, S. Ogio, M. Ohnishi, A. Oshima, M. Raljevic, H. Rivera, T. Saito, Y. Sakakibara, T. Sako, T. K. Sako, S. Shibata, A. Shiomi, M. Subieta, N. Tajima, W. Takano, M. Takita, Y. Tameda, K. Tanaka, R. Ticona, I. Toledano-Juarez, H. Tsuchiya, Y. Tsunesada, S. Udo, K. Yamazaki, Y. Yokoe
Observation techniques of high-energy gamma rays using air showers have remarkably progressed via the Tibet ASγ, HAWC, and LHAASO experiments. These observations have significantly contributed to gamma-ray astronomy in the northern sky’s sub-PeV region. Moreover, in the southern sky, the ALPACA experiment is underway at 4,740 m altitude on the Chacaltaya plateau in Bolivia. This experiment estimates the gamma-ray flux from the difference between the number of on-source and off-source events by real data, utilizing the gamma-ray detection efficiency calculated through Monte Carlo simulations, which in turn depends on the hadronic interaction models. Even though the number of cosmic-ray background events can be experimentally estimated, this model dependence affects the estimation of gamma-ray detection efficiency. However, previous reports have assumed that the model dependence is negligible and have not included it in the error of gamma-ray flux estimation. Using ALPAQUITA, the prototype experiment of ALPACA, we quantitatively evaluated the model dependence on hadronic interaction models for the first time. We evaluate the model dependence on hadronic interactions as less than 3.6 % in the typical gamma-ray flux estimation performed by ALPAQUITA; this is negligible compared with other uncertainties such as energy scale uncertainty in the energy range from 6 to 300 TeV, which is dominated by the Monte Carlo statistics. This upper limit of 3.6 % model dependence is expected to apply to ALPACA.
{"title":"Hadronic interaction model dependence in cosmic Gamma-ray flux estimation using an extensive air shower array with a muon detector","authors":"S. Okukawa, M. Anzorena, S. Asano, C. A. H. Condori, E. de la Fuente, A. Gomi, K. Hibino, N. Hotta, A. Jimenez-Meza, Y. Katayose, C. Kato, S. Kato, T. Kawashima, K. Kawata, T. Koi, H. Kojima, D. Kurashige, J. Lozoya, R. Mayta, P. Miranda, K. Munakata, K. Nagaya, Y. Nakamura, Y. Nakazawa, C. Nina, M. Nishizawa, S. Ogio, M. Ohnishi, A. Oshima, M. Raljevic, H. Rivera, T. Saito, Y. Sakakibara, T. Sako, T. K. Sako, S. Shibata, A. Shiomi, M. Subieta, N. Tajima, W. Takano, M. Takita, Y. Tameda, K. Tanaka, R. Ticona, I. Toledano-Juarez, H. Tsuchiya, Y. Tsunesada, S. Udo, K. Yamazaki, Y. Yokoe","doi":"10.1007/s10686-022-09883-4","DOIUrl":"10.1007/s10686-022-09883-4","url":null,"abstract":"<div><p>Observation techniques of high-energy gamma rays using air showers have remarkably progressed via the Tibet AS<i>γ</i>, HAWC, and LHAASO experiments. These observations have significantly contributed to gamma-ray astronomy in the northern sky’s sub-PeV region. Moreover, in the southern sky, the ALPACA experiment is underway at 4,740 m altitude on the Chacaltaya plateau in Bolivia. This experiment estimates the gamma-ray flux from the difference between the number of on-source and off-source events by real data, utilizing the gamma-ray detection efficiency calculated through Monte Carlo simulations, which in turn depends on the hadronic interaction models. Even though the number of cosmic-ray background events can be experimentally estimated, this model dependence affects the estimation of gamma-ray detection efficiency. However, previous reports have assumed that the model dependence is negligible and have not included it in the error of gamma-ray flux estimation. Using ALPAQUITA, the prototype experiment of ALPACA, we quantitatively evaluated the model dependence on hadronic interaction models for the first time. We evaluate the model dependence on hadronic interactions as less than 3.6 % in the typical gamma-ray flux estimation performed by ALPAQUITA; this is negligible compared with other uncertainties such as energy scale uncertainty in the energy range from 6 to 300 TeV, which is dominated by the Monte Carlo statistics. This upper limit of 3.6 % model dependence is expected to apply to ALPACA.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 2","pages":"325 - 342"},"PeriodicalIF":3.0,"publicationDate":"2023-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4680569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-01-07DOI: 10.1007/s10686-022-09885-2
Ali M. Altıngün, Emrah Kalemci, Efe Öztaban
Sharjah-Sat-1 is a 3U cubesat with a CdZnTe based hard X-ray detector, called iXRD (improved X-ray Detector) as a scientific payload with the primary objective of monitoring bright X-ray sources in the galaxy. We investigated the effects of the in-orbit background radiation on the iXRD based on Geant4 simulations. Several background components were included in the simulations such as the cosmic diffuse gamma-rays, galactic cosmic rays (protons and alpha particles), trapped protons and electrons, and albedo radiation arising from the upper layer of the atmosphere. The most dominant component is the albedo photon radiation which contributes at low and high energies alike in the instrument energy range of 20 keV - 200 keV. On the other hand, the cosmic diffuse gamma-ray contribution is the strongest between 20 keV and 60 keV in which most of the astrophysics source flux is expected. The third effective component is the galactic cosmic protons. The radiation due to the trapped particles, the albedo neutrons, and the cosmic alpha particles are negligible when the polar regions and the South Atlantic Anomaly region are excluded in the analysis. The total background count rates are (sim )0.36 and (sim )0.85 counts/s for the energy bands of 20 - 60 keV and 20 - 200 keV, respectively. We performed charge transportation simulations to determine the spectral response of the iXRD and used it in sensitivity calculations as well. The simulation framework was validated with experimental studies. The estimated sensitivity of 180 mCrab between the energy band of 20 keV - 100 keV indicates that the iXRD could achieve its scientific goals.
{"title":"A simulation study for the expected performance of Sharjah-Sat-1 payload improved X-Ray Detector (iXRD) in the orbital background radiation","authors":"Ali M. Altıngün, Emrah Kalemci, Efe Öztaban","doi":"10.1007/s10686-022-09885-2","DOIUrl":"10.1007/s10686-022-09885-2","url":null,"abstract":"<div><p>Sharjah-Sat-1 is a 3U cubesat with a CdZnTe based hard X-ray detector, called iXRD (improved X-ray Detector) as a scientific payload with the primary objective of monitoring bright X-ray sources in the galaxy. We investigated the effects of the in-orbit background radiation on the iXRD based on Geant4 simulations. Several background components were included in the simulations such as the cosmic diffuse gamma-rays, galactic cosmic rays (protons and alpha particles), trapped protons and electrons, and albedo radiation arising from the upper layer of the atmosphere. The most dominant component is the albedo photon radiation which contributes at low and high energies alike in the instrument energy range of 20 keV - 200 keV. On the other hand, the cosmic diffuse gamma-ray contribution is the strongest between 20 keV and 60 keV in which most of the astrophysics source flux is expected. The third effective component is the galactic cosmic protons. The radiation due to the trapped particles, the albedo neutrons, and the cosmic alpha particles are negligible when the polar regions and the South Atlantic Anomaly region are excluded in the analysis. The total background count rates are <span>(sim )</span>0.36 and <span>(sim )</span>0.85 counts/s for the energy bands of 20 - 60 keV and 20 - 200 keV, respectively. We performed charge transportation simulations to determine the spectral response of the iXRD and used it in sensitivity calculations as well. The simulation framework was validated with experimental studies. The estimated sensitivity of 180 mCrab between the energy band of 20 keV - 100 keV indicates that the iXRD could achieve its scientific goals.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"117 - 140"},"PeriodicalIF":3.0,"publicationDate":"2023-01-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09885-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4302679","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In time-domain astronomy, a substantial number of transients will be discovered by multi-wavelength and multi-messenger observatories, posing a great challenge for follow-up capabilities. We have thus proposed an intelligent X-ray constellation, the Chasing All Transients Constellation Hunters (CATCH) space mission. Consisting of 126 micro-satellites in three types, CATCH will have the capability to perform follow-up observations for a large number of different types of transients simultaneously. Each satellite in the constellation will carry lightweight X-ray optics and use a deployable mast to increase the focal length. The combination of different optics and detector systems enables different types of satellites to have multiform observation capabilities, including timing, spectroscopy, imaging, and polarization. Controlled by the intelligent system, different satellites can cooperate to perform uninterrupted monitoring, all-sky follow-up observations, and scanning observations with a flexible field of view (FOV) and multi-dimensional observations. Therefore, CATCH will be a powerful mission to study the dynamic universe. Here, we present the current design of the spacecraft, optics, detector system, constellation configuration and observing modes, as well as the development plan.
{"title":"CATCH: chasing all transients constellation hunters space mission","authors":"Panping Li, Qian-Qing Yin, Zhengwei Li, Lian Tao, Xiangyang Wen, Shuang-Nan Zhang, Liqiang Qi, Juan Zhang, Donghua Zhao, Dalin Li, Xizheng Yu, Qingcui Bu, Wen Chen, Yupeng Chen, Yiming Huang, Yue Huang, Ge Jin, Gang Li, Hongbang Liu, Xiaojing Liu, Ruican Ma, Wenxi Peng, Ruijing Tang, Yusa Wang, Jingyu Xiao, Shaolin Xiong, Sheng Yang, Yanji Yang, Chen Zhang, Tianchong Zhang, Liang Zhang, Xuan Zhang, Haisheng Zhao, Kang Zhao, Qingchang Zhao, Shujie Zhao, Xing Zhou","doi":"10.1007/s10686-022-09879-0","DOIUrl":"10.1007/s10686-022-09879-0","url":null,"abstract":"<div><p>In time-domain astronomy, a substantial number of transients will be discovered by multi-wavelength and multi-messenger observatories, posing a great challenge for follow-up capabilities. We have thus proposed an intelligent X-ray constellation, the Chasing All Transients Constellation Hunters (<i>CATCH</i>) space mission. Consisting of 126 micro-satellites in three types, <i>CATCH</i> will have the capability to perform follow-up observations for a large number of different types of transients simultaneously. Each satellite in the constellation will carry lightweight X-ray optics and use a deployable mast to increase the focal length. The combination of different optics and detector systems enables different types of satellites to have multiform observation capabilities, including timing, spectroscopy, imaging, and polarization. Controlled by the intelligent system, different satellites can cooperate to perform uninterrupted monitoring, all-sky follow-up observations, and scanning observations with a flexible field of view (FOV) and multi-dimensional observations. Therefore, <i>CATCH</i> will be a powerful mission to study the dynamic universe. Here, we present the current design of the spacecraft, optics, detector system, constellation configuration and observing modes, as well as the development plan.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"55 2","pages":"447 - 486"},"PeriodicalIF":3.0,"publicationDate":"2023-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09879-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4249463","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-21DOI: 10.1007/s10686-022-09877-2
E. Scullion, H. Morgan, H. Lin, V. Fedun, R. Morton
Magnetism dominates the structure and dynamics of the solar corona. To understand the true nature of the solar corona and the long-standing coronal heating problem requires measuring the vector magnetic field of the corona at a sufficiently high resolution (spatially and temporally) across a large Field-of-View (FOV). Despite the importance of the magnetic field in the physics of the corona and despite the tremendous progress made recently in the remote sensing of solar magnetic fields, reliable measurements of the coronal magnetic field strength and orientation do not exist. This is largely due to the weakness of coronal magnetic fields, previously estimated to be on the order of 1-10 G, and the difficulty associated with observing the extremely faint solar corona emission. With the Solar cUbesats for Linked Imaging Spectro-polarimetry (SULIS) mission, we plan to finally observe, in detail and over the long-term, uninterrupted measurements of the coronal magnetic vector field using a new and very affordable instrument design concept. This will be profoundly important in the study of local atmospheric coronal heating processes, as well as in measuring the nature of magnetic clouds, in particular, within geoeffective Earth-bound Coronal Mass Ejections (CMEs) for more accurate forecasting of severe space weather activity.
{"title":"SULIS: A coronal magnetism explorer for ESA’s Voyage 2050","authors":"E. Scullion, H. Morgan, H. Lin, V. Fedun, R. Morton","doi":"10.1007/s10686-022-09877-2","DOIUrl":"10.1007/s10686-022-09877-2","url":null,"abstract":"<div><p>Magnetism dominates the structure and dynamics of the solar corona. To understand the true nature of the solar corona and the long-standing coronal heating problem requires measuring the vector magnetic field of the corona at a sufficiently high resolution (spatially and temporally) across a large Field-of-View (FOV). Despite the importance of the magnetic field in the physics of the corona and despite the tremendous progress made recently in the remote sensing of solar magnetic fields, reliable measurements of the coronal magnetic field strength and orientation do not exist. This is largely due to the weakness of coronal magnetic fields, previously estimated to be on the order of 1-10 G, and the difficulty associated with observing the extremely faint solar corona emission. With the Solar cUbesats for Linked Imaging Spectro-polarimetry (SULIS) mission, we plan to finally observe, in detail and over the long-term, uninterrupted measurements of the coronal magnetic vector field using a new and very affordable instrument design concept. This will be profoundly important in the study of local atmospheric coronal heating processes, as well as in measuring the nature of magnetic clouds, in particular, within geoeffective Earth-bound Coronal Mass Ejections (CMEs) for more accurate forecasting of severe space weather activity.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"54 2-3","pages":"317 - 334"},"PeriodicalIF":3.0,"publicationDate":"2022-12-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10686-022-09877-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4814665","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2022-12-14DOI: 10.1007/s10686-022-09884-3
Mattia Villani, Federico Sabbatini, Catia Grimani, Michele Fabi, Andrea Cesarini
The European Space Agency Laser Interferometer Space Antenna (LISA) will be the first mission dedicated to the detection of low-frequency gravitational waves in space. Particles of galactic and solar origin above tens of MeV will penetrate the spacecraft and charge the metal free-falling test masses (TMs) playing the role of mirrors of the interferometer. The poissonian fluctuations of the charging process and associated spurious Coulomb forces acting on the TMs limit the sensitivity of LISA mainly below 1 mHz. Moreover, galactic cosmic-ray (GCR) flux short-term variations will modulate differently the TM charging on the three satellites of the LISA constellation. Without a proper GCR flux monitoring, the LISA TM charging estimates will be carried out on the basis of the long-term solar modulation only. In this work we report about models of galactic cosmic-ray short-term variations to investigate to which extent the galactic cosmic-ray depressions can be also used as a proxy of the increase of interplanetary magnetic field and solar wind speed observed at the passage of high-speed solar wind streams and interplanetary coronal mass ejections. Our final aim is to study the optimum characteristics of particle detectors for both TM charging estimate and interplanetary medium monitoring for LISA.
{"title":"Modelization of galactic cosmic-ray short-term variations for LISA","authors":"Mattia Villani, Federico Sabbatini, Catia Grimani, Michele Fabi, Andrea Cesarini","doi":"10.1007/s10686-022-09884-3","DOIUrl":"10.1007/s10686-022-09884-3","url":null,"abstract":"<div><p>The European Space Agency Laser Interferometer Space Antenna (LISA) will be the first mission dedicated to the detection of low-frequency gravitational waves in space. Particles of galactic and solar origin above tens of MeV will penetrate the spacecraft and charge the metal free-falling test masses (TMs) playing the role of mirrors of the interferometer. The poissonian fluctuations of the charging process and associated spurious Coulomb forces acting on the TMs limit the sensitivity of LISA mainly below 1 mHz. Moreover, galactic cosmic-ray (GCR) flux short-term variations will modulate differently the TM charging on the three satellites of the LISA constellation. Without a proper GCR flux monitoring, the LISA TM charging estimates will be carried out on the basis of the long-term solar modulation only. In this work we report about models of galactic cosmic-ray short-term variations to investigate to which extent the galactic cosmic-ray depressions can be also used as a proxy of the increase of interplanetary magnetic field and solar wind speed observed at the passage of high-speed solar wind streams and interplanetary coronal mass ejections. Our final aim is to study the optimum characteristics of particle detectors for both TM charging estimate and interplanetary medium monitoring for LISA.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 1","pages":"1 - 30"},"PeriodicalIF":3.0,"publicationDate":"2022-12-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"4564994","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}