Pub Date : 2024-11-30DOI: 10.1186/s12964-024-01949-4
Fang Hua, Wenzhuo Hao, Lingyan Wang, Kun Song, Abdul Hasan, Yakun Wu, Kevin Li, Zhen Lin, Yiwen Sun, Shitao Li
Human coronaviruses exhibit a spectrum of symptoms, ranging from mild seasonal colds to severe respiratory manifestations. Despite progress in understanding the host's innate defense mechanisms against coronaviruses, how these viruses manipulate the immune response to promote inflammation remains elusive. In this study, we unveil the role of the coronavirus nonstructural protein 14 (NSP14) in leveraging the host's linear ubiquitin chain assembly complex (LUBAC) to instigate NF-κB activation, thereby triggering proinflammatory responses. Our findings uncover that HOIL-1-interacting protein (HOIP) directly engages with NSP14, conferring linear polyubiquitin chains onto NSP14. Consequently, ubiquitinated NSP14 recruits NEMO and initiates the activation of the IKK complex. This NSP14-induced NF-κB activation stimulates the expression of proinflammatory factors but not type I interferon, leading to a skewed host innate immune response tilting to inflammation. Collectively, our study sheds light on a virus-initiated linear ubiquitination pathway that induces NF-κB signaling and provokes proinflammatory responses.
{"title":"Linear ubiquitination mediates coronavirus NSP14-induced NF-κB activation.","authors":"Fang Hua, Wenzhuo Hao, Lingyan Wang, Kun Song, Abdul Hasan, Yakun Wu, Kevin Li, Zhen Lin, Yiwen Sun, Shitao Li","doi":"10.1186/s12964-024-01949-4","DOIUrl":"https://doi.org/10.1186/s12964-024-01949-4","url":null,"abstract":"<p><p>Human coronaviruses exhibit a spectrum of symptoms, ranging from mild seasonal colds to severe respiratory manifestations. Despite progress in understanding the host's innate defense mechanisms against coronaviruses, how these viruses manipulate the immune response to promote inflammation remains elusive. In this study, we unveil the role of the coronavirus nonstructural protein 14 (NSP14) in leveraging the host's linear ubiquitin chain assembly complex (LUBAC) to instigate NF-κB activation, thereby triggering proinflammatory responses. Our findings uncover that HOIL-1-interacting protein (HOIP) directly engages with NSP14, conferring linear polyubiquitin chains onto NSP14. Consequently, ubiquitinated NSP14 recruits NEMO and initiates the activation of the IKK complex. This NSP14-induced NF-κB activation stimulates the expression of proinflammatory factors but not type I interferon, leading to a skewed host innate immune response tilting to inflammation. Collectively, our study sheds light on a virus-initiated linear ubiquitination pathway that induces NF-κB signaling and provokes proinflammatory responses.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"573"},"PeriodicalIF":8.2,"publicationDate":"2024-11-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607897/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142774956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-29DOI: 10.1186/s12964-024-01952-9
Mahla Sanati, Soudeh Ghafouri-Fard
Doxorubicin is an anthracyline recognized as an antitumor antibiotic agent. It is widely used in the chemotherapeutic regimens in different types of cancers. Resistance to doxorubicin is a major clinical obstacle and main cause of failure in cancer chemotherapy. Among different mechanisms involved in this process, the role of epigenetic factors has been highlighted. Circular RNAs (circRNAs) have a prominent role in this process. Here, we summarize the recent findings on the role of circRNAs in doxorubicin resistance, particularly in breast cancer and osteosarcoma and underscore their clinical application as potential biomarkers and therapeutic targets in this field. Recognition of the underlying mechanism of circRNAs involvement in doxorubicin resistance will expand our understanding of chemoresistance establishment and may provide a prospect to develop circRNA-based predictive biomarkers of chemotherapy or therapeutic strategies for cancer patients.
{"title":"The role of circRNAs in resistance to doxorubicin.","authors":"Mahla Sanati, Soudeh Ghafouri-Fard","doi":"10.1186/s12964-024-01952-9","DOIUrl":"10.1186/s12964-024-01952-9","url":null,"abstract":"<p><p>Doxorubicin is an anthracyline recognized as an antitumor antibiotic agent. It is widely used in the chemotherapeutic regimens in different types of cancers. Resistance to doxorubicin is a major clinical obstacle and main cause of failure in cancer chemotherapy. Among different mechanisms involved in this process, the role of epigenetic factors has been highlighted. Circular RNAs (circRNAs) have a prominent role in this process. Here, we summarize the recent findings on the role of circRNAs in doxorubicin resistance, particularly in breast cancer and osteosarcoma and underscore their clinical application as potential biomarkers and therapeutic targets in this field. Recognition of the underlying mechanism of circRNAs involvement in doxorubicin resistance will expand our understanding of chemoresistance establishment and may provide a prospect to develop circRNA-based predictive biomarkers of chemotherapy or therapeutic strategies for cancer patients.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"572"},"PeriodicalIF":8.2,"publicationDate":"2024-11-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11607985/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142755861","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Loss-of-function mutations in the human gene encoding the neuron-specific Ca2+ channel CaV2.1 are linked to the neurological disease episodic ataxia type 2 (EA2), as well as neurodevelopmental disorders such as developmental delay and developmental epileptic encephalopathy. Disease-associated CaV2.1 mutants may exhibit defective proteostasis and promote endoplasmic reticulum (ER)-associated degradation of their wild-type (WT) counterpart in a dominant-negative manner. The E3 ubiquitin ligase RNF138 was previously shown to mediate EA2-related aberrant degradation of CaV2.1 at the ER. Herein we aimed to elucidate the ER proteostasis mechanism of CaV2.1. The peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (Pin1) was identified as a novel neuronal CaV2.1 binding partner that promoted polyubiquitination and proteasomal degradation of CaV2.1. Suppression of endogenous Pin1 level with either shRNA knockdown or the Pin1 inhibitor all-trans retinoic acid (ATRA) enhanced endogenous CaV2.1 protein level in neurons, and attenuated ER-associated degradation of CaV2.1 WT and EA2-causing mutants. Detailed mutation analyses suggested that Pin1 interacted with specific phosphorylated serine/threonine-proline motifs in the intracellular II-III loop and the distal carboxy-terminal region of human CaV2.1. We further generated Pin1-insensitive CaV2.1 constructs and demonstrated that, during ER quality control, Pin1 served as an upstream regulator of CaV2.1 polyubiquitination and degradation by RNF138. Pin1 regulation was required for the dominant-negative effect of EA2 missense mutants, but not nonsense mutants, on CaV2.1 WT protein expression. Our data are consistent with the idea that CaV2.1 proteostasis at the ER, as well as dominant-negative suppression of disease-causing loss-of-function mutants on CaV2.1 WT, entail both Pin1/RNF138-dependent and -independent mechanisms.
{"title":"Pin1 promotes human Ca<sub>V</sub>2.1 channel polyubiquitination by RNF138: pathophysiological implication for episodic ataxia type 2.","authors":"Ssu-Ju Fu, Kai-Min Cheng, Cheng-Tsung Hsiao, Ya-Ching Fang, Chung-Jiuan Jeng, Chih-Yung Tang","doi":"10.1186/s12964-024-01960-9","DOIUrl":"10.1186/s12964-024-01960-9","url":null,"abstract":"<p><p>Loss-of-function mutations in the human gene encoding the neuron-specific Ca<sup>2+</sup> channel Ca<sub>V</sub>2.1 are linked to the neurological disease episodic ataxia type 2 (EA2), as well as neurodevelopmental disorders such as developmental delay and developmental epileptic encephalopathy. Disease-associated Ca<sub>V</sub>2.1 mutants may exhibit defective proteostasis and promote endoplasmic reticulum (ER)-associated degradation of their wild-type (WT) counterpart in a dominant-negative manner. The E3 ubiquitin ligase RNF138 was previously shown to mediate EA2-related aberrant degradation of Ca<sub>V</sub>2.1 at the ER. Herein we aimed to elucidate the ER proteostasis mechanism of Ca<sub>V</sub>2.1. The peptidyl-prolyl cis/trans isomerase, NIMA-interacting 1 (Pin1) was identified as a novel neuronal Ca<sub>V</sub>2.1 binding partner that promoted polyubiquitination and proteasomal degradation of Ca<sub>V</sub>2.1. Suppression of endogenous Pin1 level with either shRNA knockdown or the Pin1 inhibitor all-trans retinoic acid (ATRA) enhanced endogenous Ca<sub>V</sub>2.1 protein level in neurons, and attenuated ER-associated degradation of Ca<sub>V</sub>2.1 WT and EA2-causing mutants. Detailed mutation analyses suggested that Pin1 interacted with specific phosphorylated serine/threonine-proline motifs in the intracellular II-III loop and the distal carboxy-terminal region of human Ca<sub>V</sub>2.1. We further generated Pin1-insensitive Ca<sub>V</sub>2.1 constructs and demonstrated that, during ER quality control, Pin1 served as an upstream regulator of Ca<sub>V</sub>2.1 polyubiquitination and degradation by RNF138. Pin1 regulation was required for the dominant-negative effect of EA2 missense mutants, but not nonsense mutants, on Ca<sub>V</sub>2.1 WT protein expression. Our data are consistent with the idea that Ca<sub>V</sub>2.1 proteostasis at the ER, as well as dominant-negative suppression of disease-causing loss-of-function mutants on Ca<sub>V</sub>2.1 WT, entail both Pin1/RNF138-dependent and -independent mechanisms.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"571"},"PeriodicalIF":8.2,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603662/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142752245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1186/s12964-024-01939-6
Bining Zhao, Haowen Wu, Qiyang Yao, Wenpei Bai, Jihong Kang
Background: Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility. The ketogenic diet (KD), a diet high in fat and low in carbohydrates, has been applied clinically for the treatment of obese women with PCOS. We have previously demonstrated that KD improved the reproductive phenotype in an androgen-induced PCOS mouse model, yet the underlying molecular mechanisms remain largely unclear. The aim of the present study was to investigate the effect of KD on the reproductive phenotype of a letrozole-induced PCOS mouse model.
Methods: Female C57BL/6N mice were divided into three groups, designated control, letrozole, and letrozole + KD groups. Mice of control and letrozole groups were fed the control diet, whereas letrozole + KD mice were fed a KD with 89.9% (kcal) fat for 3 weeks after the PCOS mouse model was generated. β-hydroxybutyrate (BHB), the most abundant ketone body in the body, was used to treat KGN cells with testosterone (T) to simulate the KD effect on PCOS mouse ovaries in vitro.
Results: Our data showed that KD treatment significantly increased blood ketone levels and reduced body weight. Ovarian functions were improved in some letrozole + KD mice. Results from in vitro experiments indicated mitochondrial damage owing to high T levels, which resulted in the leakage of cytochrome C and mitochondrial DNA into the cytosol and thus induced the activation of the intracellular caspase cascade and the cGAS-STING-NF-κB pathway, leading to granulosa cell inflammation and apoptosis. BHB exhibited certain protective effects on mitochondria of T-treated KGN cells via inhibiting the cGAS-STING pathway. Moreover, the cGAS-STING pathway was activated in ovaries of letrozole mice and was down-regulated in letrozole + KD mice.
Conclusion: These findings, for the first time, revealed that hyperandrogenism induced ovarian dysfunction possibly through activation of the cGAS-STING pathway, which could be partially inhibited by ketone bodies produced from KD administration.
{"title":"A ketogenic diet alleviates the apoptosis of granulosa cells by inhibiting the activation of cGAS-STING signaling pathway in PCOS mice.","authors":"Bining Zhao, Haowen Wu, Qiyang Yao, Wenpei Bai, Jihong Kang","doi":"10.1186/s12964-024-01939-6","DOIUrl":"10.1186/s12964-024-01939-6","url":null,"abstract":"<p><strong>Background: </strong>Polycystic ovary syndrome (PCOS) is the most common cause of anovulatory infertility. The ketogenic diet (KD), a diet high in fat and low in carbohydrates, has been applied clinically for the treatment of obese women with PCOS. We have previously demonstrated that KD improved the reproductive phenotype in an androgen-induced PCOS mouse model, yet the underlying molecular mechanisms remain largely unclear. The aim of the present study was to investigate the effect of KD on the reproductive phenotype of a letrozole-induced PCOS mouse model.</p><p><strong>Methods: </strong>Female C57BL/6N mice were divided into three groups, designated control, letrozole, and letrozole + KD groups. Mice of control and letrozole groups were fed the control diet, whereas letrozole + KD mice were fed a KD with 89.9% (kcal) fat for 3 weeks after the PCOS mouse model was generated. β-hydroxybutyrate (BHB), the most abundant ketone body in the body, was used to treat KGN cells with testosterone (T) to simulate the KD effect on PCOS mouse ovaries in vitro.</p><p><strong>Results: </strong>Our data showed that KD treatment significantly increased blood ketone levels and reduced body weight. Ovarian functions were improved in some letrozole + KD mice. Results from in vitro experiments indicated mitochondrial damage owing to high T levels, which resulted in the leakage of cytochrome C and mitochondrial DNA into the cytosol and thus induced the activation of the intracellular caspase cascade and the cGAS-STING-NF-κB pathway, leading to granulosa cell inflammation and apoptosis. BHB exhibited certain protective effects on mitochondria of T-treated KGN cells via inhibiting the cGAS-STING pathway. Moreover, the cGAS-STING pathway was activated in ovaries of letrozole mice and was down-regulated in letrozole + KD mice.</p><p><strong>Conclusion: </strong>These findings, for the first time, revealed that hyperandrogenism induced ovarian dysfunction possibly through activation of the cGAS-STING pathway, which could be partially inhibited by ketone bodies produced from KD administration.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"568"},"PeriodicalIF":8.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600848/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-27DOI: 10.1186/s12964-024-01929-8
Agata Braniewska, Marcin Skorzynski, Zuzanna Sas, Magdalena Dlugolecka, Ilona Marszalek, Daria Kurpiel, Marcel Bühler, Damian Strzemecki, Aneta Magiera, Maciej Bialasek, Jaroslaw Walczak, Lukasz Cheda, Michal Komorowski, Tobias Weiss, Małgorzata Czystowska-Kuzmicz, Karina Kwapiszewska, Alberto Boffi, Magdalena Krol, Tomasz P Rygiel
Hemoglobin (Hb) performs its physiological function within the erythrocyte. Extracellular Hb has prooxidative and proinflammatory properties and is therefore sequestered by haptoglobin and bound by the CD163 receptor on macrophages. In the present study, we demonstrate a novel process of Hb uptake by macrophages independent of haptoglobin and CD163. Unexpectedly, macrophages do not degrade the entire Hb, but instead transfer it to neighboring cells. We have shown that the phenomenon of Hb transfer from macrophages to other cells is mainly mediated by extracellular vesicles. In contrast to the canonical Hb degradation pathway by macrophages, Hb transfer has not been reported before. In addition, we have used the process of Hb transfer in anticancer therapy, where macrophages are loaded with a Hb-anticancer drug conjugate and act as cellular drug carriers. Both mouse and human macrophages loaded with Hb-monomethyl auristatin E (MMAE) effectively killed cancer cells when co-cultured in vitro.
{"title":"A novel process for transcellular hemoglobin transport from macrophages to cancer cells.","authors":"Agata Braniewska, Marcin Skorzynski, Zuzanna Sas, Magdalena Dlugolecka, Ilona Marszalek, Daria Kurpiel, Marcel Bühler, Damian Strzemecki, Aneta Magiera, Maciej Bialasek, Jaroslaw Walczak, Lukasz Cheda, Michal Komorowski, Tobias Weiss, Małgorzata Czystowska-Kuzmicz, Karina Kwapiszewska, Alberto Boffi, Magdalena Krol, Tomasz P Rygiel","doi":"10.1186/s12964-024-01929-8","DOIUrl":"10.1186/s12964-024-01929-8","url":null,"abstract":"<p><p>Hemoglobin (Hb) performs its physiological function within the erythrocyte. Extracellular Hb has prooxidative and proinflammatory properties and is therefore sequestered by haptoglobin and bound by the CD163 receptor on macrophages. In the present study, we demonstrate a novel process of Hb uptake by macrophages independent of haptoglobin and CD163. Unexpectedly, macrophages do not degrade the entire Hb, but instead transfer it to neighboring cells. We have shown that the phenomenon of Hb transfer from macrophages to other cells is mainly mediated by extracellular vesicles. In contrast to the canonical Hb degradation pathway by macrophages, Hb transfer has not been reported before. In addition, we have used the process of Hb transfer in anticancer therapy, where macrophages are loaded with a Hb-anticancer drug conjugate and act as cellular drug carriers. Both mouse and human macrophages loaded with Hb-monomethyl auristatin E (MMAE) effectively killed cancer cells when co-cultured in vitro.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"570"},"PeriodicalIF":8.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603754/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Osteoarthritis (OA) is the most common degenerative joint disease characterized by cartilage degradation and various degrees of inflammation in the synovium. Growing evidence highlights that neutrophil extracellular vesicles (EVs) play a protective role in arthritic joints by promoting the resolution of inflammation and the synthesis of proteoglycans in cartilage. However, this homeostatic function is dependent on the activation state of neutrophils and the surrounding environment/tissues. Hence, we explored the chondroprotective functions of neutrophil-derived EVs under different stimulation conditions and the underlying molecular mechanism.
Methods: Human blood-derived neutrophils, murine bone marrow-derived neutrophils, C-28I2 cells and primary chondrocytes were used. Neutrophils were stimulated with different cytokines, and their EVs were isolated for chondrocyte stimulation and further subjected to RNA-sequencing analysis. Two experimental murine OA models were used, and the treatment was performed by intraarticular injections.
Results: Conditioned medium from neutrophils stimulated with TGF-β (N-β) had the greatest inhibitory effect on the expression of catabolic factors in stimulated chondrocytes. These protective effects were not impaired when conditioned medium of N-β from AnxA1-deficient mice was used. Consistent with these results, EVs isolated from N-β significantly reduced the expression of catabolic factors in stimulated chondrocytes. Bulk RNA-seq analysis revealed that secreted frizzled-related protein 5 (SFRP5) is upregulated in N-β-EV-stimulated chondrocytes. Furthermore, recombinant SFRP5 treatment significantly reduced the expression of catabolic factors in vitro and catabolic process in experimental murine OA models.
Conclusions: The current study emphasizes the potential therapeutic application of neutrophils in OA and provides new knowledge on the molecular mechanisms underlying their function.
背景:骨关节炎(OA)是最常见的退行性关节疾病,以软骨退化和滑膜不同程度的炎症为特征。越来越多的证据表明,中性粒细胞胞外囊泡(EVs)通过促进炎症消退和软骨中蛋白聚糖的合成,在关节炎关节中发挥着保护作用。然而,这种平衡功能取决于中性粒细胞的活化状态和周围环境/组织。因此,我们探讨了中性粒细胞衍生的 EVs 在不同刺激条件下的软骨保护功能及其潜在的分子机制。用不同的细胞因子刺激中性粒细胞,分离出EVs用于刺激软骨细胞,并进一步进行RNA序列分析。采用两种实验性小鼠 OA 模型,通过关节内注射进行治疗:结果:嗜中性粒细胞在TGF-β(N-β)刺激下产生的条件培养基对受刺激软骨细胞中分解因子的表达具有最大的抑制作用。当使用来自 AnxA1 缺陷小鼠的 N-β 的条件培养基时,这些保护作用并未受到影响。与这些结果一致的是,从 N-β 中分离出的 EVs 能显著降低受刺激软骨细胞中分解代谢因子的表达。大量RNA-seq分析显示,在N-β-EV刺激的软骨细胞中,分泌型脆裂相关蛋白5(SFRP5)被上调。此外,重组 SFRP5 能显著降低体外分解因子的表达,并减少实验性小鼠 OA 模型的分解过程:本研究强调了中性粒细胞在治疗 OA 中的潜在应用,并提供了有关中性粒细胞功能分子机制的新知识。
{"title":"Chondroprotective functions of neutrophil-derived extracellular vesicles by promoting the production of secreted frizzled-related protein 5 in cartilage.","authors":"Keita Kitahara, Taku Ebata, Chen Liyile, Yoshio Nishida, Yuki Ogawa, Taiki Tokuhiro, Junki Shiota, Tatsuya Nagano, Taichi E Takasuka, Tsutomu Endo, Tomohiro Shimizu, Hend Alhasan, Tsuyoshi Asano, Daisuke Takahashi, Kentaro Homan, Tomohiro Onodera, Ken Kadoya, M Alaa Terkawi, Norimasa Iwasaki","doi":"10.1186/s12964-024-01953-8","DOIUrl":"10.1186/s12964-024-01953-8","url":null,"abstract":"<p><strong>Background: </strong>Osteoarthritis (OA) is the most common degenerative joint disease characterized by cartilage degradation and various degrees of inflammation in the synovium. Growing evidence highlights that neutrophil extracellular vesicles (EVs) play a protective role in arthritic joints by promoting the resolution of inflammation and the synthesis of proteoglycans in cartilage. However, this homeostatic function is dependent on the activation state of neutrophils and the surrounding environment/tissues. Hence, we explored the chondroprotective functions of neutrophil-derived EVs under different stimulation conditions and the underlying molecular mechanism.</p><p><strong>Methods: </strong>Human blood-derived neutrophils, murine bone marrow-derived neutrophils, C-28I2 cells and primary chondrocytes were used. Neutrophils were stimulated with different cytokines, and their EVs were isolated for chondrocyte stimulation and further subjected to RNA-sequencing analysis. Two experimental murine OA models were used, and the treatment was performed by intraarticular injections.</p><p><strong>Results: </strong>Conditioned medium from neutrophils stimulated with TGF-β (N-β) had the greatest inhibitory effect on the expression of catabolic factors in stimulated chondrocytes. These protective effects were not impaired when conditioned medium of N-β from AnxA1-deficient mice was used. Consistent with these results, EVs isolated from N-β significantly reduced the expression of catabolic factors in stimulated chondrocytes. Bulk RNA-seq analysis revealed that secreted frizzled-related protein 5 (SFRP5) is upregulated in N-β-EV-stimulated chondrocytes. Furthermore, recombinant SFRP5 treatment significantly reduced the expression of catabolic factors in vitro and catabolic process in experimental murine OA models.</p><p><strong>Conclusions: </strong>The current study emphasizes the potential therapeutic application of neutrophils in OA and provides new knowledge on the molecular mechanisms underlying their function.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"569"},"PeriodicalIF":8.2,"publicationDate":"2024-11-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11603793/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142741505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-26DOI: 10.1186/s12964-024-01934-x
James Y Yang
miR-574-5p is an unusual microRNA (miRNA) that is often upregulated or downregulated following exposure to irradiation or toxic chemicals; bacterial, parasitic or viral infection; and a variety of other disease conditions. Canonically, miR-574-5p epigenetically regulates the expression of many messenger RNAs (mRNAs) through miRNA-mediated posttranscriptional regulation, thereby affecting cellular physiology or pathophysiology and contributing to the pathogenesis or progression of a variety of diseases. However, recent studies have established that in addition to serving as a fine-tuning repressor of gene expression, miR-574-5p also stimulates gene expression as an endogenous ligand for Toll-like receptor-8/7 (TLR8/7). Indeed, the binding of miR-574-5p to TLR8/7 triggers the TLR signaling pathway, leading to the induction of interferons, inflammatory cytokines and autoimmune signaling. These findings suggest that miR-574-5p is not only an important epigenetic regulator of gene expression, but also an important regulator of immune and inflammatory responses. Abnormal miR-574-5p-TLR8/7 signaling has been shown to be tightly associated with inflammation-related cancers and a number of autoimmune disorders. miR-574-5p can serve as a potential biomarker for many diseases. Most importantly, miR-574-5p is a promising therapeutic target for the treatment or prevention of human disorders, especially infectious diseases, cancers and autoimmune diseases.
{"title":"miR-574-5p in epigenetic regulation and Toll-like receptor signaling.","authors":"James Y Yang","doi":"10.1186/s12964-024-01934-x","DOIUrl":"10.1186/s12964-024-01934-x","url":null,"abstract":"<p><p>miR-574-5p is an unusual microRNA (miRNA) that is often upregulated or downregulated following exposure to irradiation or toxic chemicals; bacterial, parasitic or viral infection; and a variety of other disease conditions. Canonically, miR-574-5p epigenetically regulates the expression of many messenger RNAs (mRNAs) through miRNA-mediated posttranscriptional regulation, thereby affecting cellular physiology or pathophysiology and contributing to the pathogenesis or progression of a variety of diseases. However, recent studies have established that in addition to serving as a fine-tuning repressor of gene expression, miR-574-5p also stimulates gene expression as an endogenous ligand for Toll-like receptor-8/7 (TLR8/7). Indeed, the binding of miR-574-5p to TLR8/7 triggers the TLR signaling pathway, leading to the induction of interferons, inflammatory cytokines and autoimmune signaling. These findings suggest that miR-574-5p is not only an important epigenetic regulator of gene expression, but also an important regulator of immune and inflammatory responses. Abnormal miR-574-5p-TLR8/7 signaling has been shown to be tightly associated with inflammation-related cancers and a number of autoimmune disorders. miR-574-5p can serve as a potential biomarker for many diseases. Most importantly, miR-574-5p is a promising therapeutic target for the treatment or prevention of human disorders, especially infectious diseases, cancers and autoimmune diseases.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"567"},"PeriodicalIF":8.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11600836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142734856","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Background: Cadmium is a ubiquitous toxic metal and environmental pollutant. More and more studies have shown that cadmium exposure can damage lung function. Alveolar epithelial cells (AECs) are structural cells that maintain the stability of lung function. The injury of AECs is an essential determinant of many lung diseases. In the lung, cadmium accumulation can cause damage to AECs. However, the specific mechanism is still unclear. This study aimed to explore the key mechanism underlying the injury of AECs caused by cadmium exposure.
Methods: The main modes of death of AECs induced by cadmium exposure were evaluated in vivo and in vitro. Transcriptomic changes of AECs induced by cadmium exposure were analyzed using RNA-sequence. Mitochondrial ROS scavengers (mitoQ), voltage-dependent anion channel 1 (VDAC1) oligomer inhibitor (VBIT4), and cyclic GMP-AMP synthase (cGAS) inhibitor (RU.521) were used to assess whether cadmium exposure triggered pyroptosis of AECs by inducing mitochondrial stress to activate the cGAS-STING-NLRP3 axis.
Results: In this study, the expression of pyroptosis-related proteins was significantly up-regulated in the cadmium-exposed AECs, while the expression of apoptosis, necroptosis, and ferroptosis-related proteins had no significant up-regulated. The pan-caspase inhibitor ZVAD-FMK significantly reduced cell death. Thus, our research indicates that pyroptosis is the primary type of AEC death exported to cadmium. Mechanistically, RNA-seq and Western Blot results showed that cadmium exposure activated the cGAS-STING pathway in AECs and promoted pyroptosis by activating the NLRP3 inflammasome. Further investigation of the mechanism found that cadmium exposure caused mitochondrial oxidative stress, which led to mtDNA leakage into the cytoplasm and activated the cGAS-STING pathway. In addition, inhibition of the cGAS-STING pathway significantly alleviated lung injury induced by cadmium exposure in mice.
Conclusion: Our study confirmed that pyroptosis of AECs was a vital mechanism of lung injury after cadmium exposure in a cGAS-STING-dependent manner, which may provide a new target for the treatment of lung diseases induced by cadmium exposure.
{"title":"Cadmium exposure triggers alveolar epithelial cell pyroptosis by inducing mitochondrial oxidative stress and activating the cGAS-STING pathway.","authors":"Chen-Yu Zhang, An-Jun Ou, Ling Jin, Nan-Shi-Yu Yang, Ping Deng, Cha-Xiang Guan, Xiao-Ting Huang, Jia-Xi Duan, Yong Zhou","doi":"10.1186/s12964-024-01946-7","DOIUrl":"10.1186/s12964-024-01946-7","url":null,"abstract":"<p><strong>Background: </strong>Cadmium is a ubiquitous toxic metal and environmental pollutant. More and more studies have shown that cadmium exposure can damage lung function. Alveolar epithelial cells (AECs) are structural cells that maintain the stability of lung function. The injury of AECs is an essential determinant of many lung diseases. In the lung, cadmium accumulation can cause damage to AECs. However, the specific mechanism is still unclear. This study aimed to explore the key mechanism underlying the injury of AECs caused by cadmium exposure.</p><p><strong>Methods: </strong>The main modes of death of AECs induced by cadmium exposure were evaluated in vivo and in vitro. Transcriptomic changes of AECs induced by cadmium exposure were analyzed using RNA-sequence. Mitochondrial ROS scavengers (mitoQ), voltage-dependent anion channel 1 (VDAC1) oligomer inhibitor (VBIT4), and cyclic GMP-AMP synthase (cGAS) inhibitor (RU.521) were used to assess whether cadmium exposure triggered pyroptosis of AECs by inducing mitochondrial stress to activate the cGAS-STING-NLRP3 axis.</p><p><strong>Results: </strong>In this study, the expression of pyroptosis-related proteins was significantly up-regulated in the cadmium-exposed AECs, while the expression of apoptosis, necroptosis, and ferroptosis-related proteins had no significant up-regulated. The pan-caspase inhibitor ZVAD-FMK significantly reduced cell death. Thus, our research indicates that pyroptosis is the primary type of AEC death exported to cadmium. Mechanistically, RNA-seq and Western Blot results showed that cadmium exposure activated the cGAS-STING pathway in AECs and promoted pyroptosis by activating the NLRP3 inflammasome. Further investigation of the mechanism found that cadmium exposure caused mitochondrial oxidative stress, which led to mtDNA leakage into the cytoplasm and activated the cGAS-STING pathway. In addition, inhibition of the cGAS-STING pathway significantly alleviated lung injury induced by cadmium exposure in mice.</p><p><strong>Conclusion: </strong>Our study confirmed that pyroptosis of AECs was a vital mechanism of lung injury after cadmium exposure in a cGAS-STING-dependent manner, which may provide a new target for the treatment of lung diseases induced by cadmium exposure.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"566"},"PeriodicalIF":8.2,"publicationDate":"2024-11-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11590492/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717981","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1186/s12964-024-01947-6
Federica Felice, Pamela De Falco, Martina Milani, Serena Castelli, Antonella Ragnini-Wilson, Giacomo Lazzarino, Nadia D'Ambrosi, Fabio Ciccarone, Maria Rosa Ciriolo
Background: Microglia play a crucial role in brain development and repair by facilitating processes such as synaptic pruning and debris clearance. They can be activated in response to various stimuli, leading to either pro-inflammatory or anti-inflammatory responses associated with specific metabolic alterations. The imbalances between microglia activation states contribute to chronic neuroinflammation, a hallmark of neurodegenerative diseases. N-acetylaspartate (NAA) is a brain metabolite predominantly produced by neurons and is crucial for central nervous system health. Alterations in NAA metabolism are observed in disorders such as Multiple Sclerosis and Canavan disease. While NAA's role in oligodendrocytes and astrocytes has been investigated, its impact on microglial function remains less understood.
Methods: The murine BV2 microglial cell line and primary microglia were used as experimental models. Cells were treated with exogenous NAA and stimulated with LPS/IFN-γ to reproduce the pro-inflammatory phenomenon. HPLC and immunofluorescence analysis were used to study lipid metabolism following NAA treatment. Automated fluorescence microscopy was used to analyze phagocytic activity. The effects on the pro-inflammatory response were evaluated by analysis of protein/mRNA expression and ChIP assay of typical inflammatory markers.
Results: NAA treatment promotes an increase in both lipid synthesis and degradation, and enhances the phagocytic activity of BV2 cells, thus fostering surveillant microglia characteristics. Importantly, NAA decreases the pro-inflammatory state induced by LPS/IFN-γ via the activation of histone deacetylases (HDACs). These findings were validated in primary microglial cells, highlighting the impact on cellular metabolism and inflammatory responses.
Conclusions: The study highlighted the role of NAA in reinforcing the oxidative metabolism of surveillant microglial cells and, most importantly, in buffering the inflammatory processes characterizing reactive microglia. These results suggest that the decreased levels of NAA observed in neurodegenerative disorders can contribute to chronic neuroinflammation.
{"title":"N-acetylaspartate mitigates pro-inflammatory responses in microglial cells by intersecting lipid metabolism and acetylation processes.","authors":"Federica Felice, Pamela De Falco, Martina Milani, Serena Castelli, Antonella Ragnini-Wilson, Giacomo Lazzarino, Nadia D'Ambrosi, Fabio Ciccarone, Maria Rosa Ciriolo","doi":"10.1186/s12964-024-01947-6","DOIUrl":"10.1186/s12964-024-01947-6","url":null,"abstract":"<p><strong>Background: </strong>Microglia play a crucial role in brain development and repair by facilitating processes such as synaptic pruning and debris clearance. They can be activated in response to various stimuli, leading to either pro-inflammatory or anti-inflammatory responses associated with specific metabolic alterations. The imbalances between microglia activation states contribute to chronic neuroinflammation, a hallmark of neurodegenerative diseases. N-acetylaspartate (NAA) is a brain metabolite predominantly produced by neurons and is crucial for central nervous system health. Alterations in NAA metabolism are observed in disorders such as Multiple Sclerosis and Canavan disease. While NAA's role in oligodendrocytes and astrocytes has been investigated, its impact on microglial function remains less understood.</p><p><strong>Methods: </strong>The murine BV2 microglial cell line and primary microglia were used as experimental models. Cells were treated with exogenous NAA and stimulated with LPS/IFN-γ to reproduce the pro-inflammatory phenomenon. HPLC and immunofluorescence analysis were used to study lipid metabolism following NAA treatment. Automated fluorescence microscopy was used to analyze phagocytic activity. The effects on the pro-inflammatory response were evaluated by analysis of protein/mRNA expression and ChIP assay of typical inflammatory markers.</p><p><strong>Results: </strong>NAA treatment promotes an increase in both lipid synthesis and degradation, and enhances the phagocytic activity of BV2 cells, thus fostering surveillant microglia characteristics. Importantly, NAA decreases the pro-inflammatory state induced by LPS/IFN-γ via the activation of histone deacetylases (HDACs). These findings were validated in primary microglial cells, highlighting the impact on cellular metabolism and inflammatory responses.</p><p><strong>Conclusions: </strong>The study highlighted the role of NAA in reinforcing the oxidative metabolism of surveillant microglial cells and, most importantly, in buffering the inflammatory processes characterizing reactive microglia. These results suggest that the decreased levels of NAA observed in neurodegenerative disorders can contribute to chronic neuroinflammation.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"564"},"PeriodicalIF":8.2,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587775/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717991","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-25DOI: 10.1186/s12964-024-01919-w
Xiangyu Jin, Yanqing Yang, Didi Liu, Xinru Zhou, Yi Huang
Aberrant activation of NLRP3 inflammasome is associated with a variety of inflammatory diseases. Advances in understanding the molecular mechanisms of NLRP3 inflammasome have revealed that NEK7 is an essential component for its activation, but the development of drugs specifically targeting NEK7 remains challenging. Here we identify rociletinib (ROC), an anticancer drug in phase III clinical trial with high safety profile, as a highly potent and specific small-molecule antagonists of NEK7. Mechanistically, ROC covalent binds to the cysteine 79 of NEK7 through its reactive α, β-unsaturated carbonyl group, thereby inhibiting the interaction between NLRP3 and NEK7, and the subsequent assembly and activation of NLRP3 inflammasome. Furthermore, ROC alleviates the pathological features of metainflammation on the mouse model of type 2 diabetes (T2D). In summary, our results identify ROC as a covalent inhibitor of NEK7 and demonstrates that targeting NEK7 provides a potential and promising strategy for the treatment of NLRP3 inflammasome-driven T2D.
{"title":"Identification of a covalent NEK7 inhibitor to alleviate NLRP3 inflammasome-driven metainflammation.","authors":"Xiangyu Jin, Yanqing Yang, Didi Liu, Xinru Zhou, Yi Huang","doi":"10.1186/s12964-024-01919-w","DOIUrl":"10.1186/s12964-024-01919-w","url":null,"abstract":"<p><p>Aberrant activation of NLRP3 inflammasome is associated with a variety of inflammatory diseases. Advances in understanding the molecular mechanisms of NLRP3 inflammasome have revealed that NEK7 is an essential component for its activation, but the development of drugs specifically targeting NEK7 remains challenging. Here we identify rociletinib (ROC), an anticancer drug in phase III clinical trial with high safety profile, as a highly potent and specific small-molecule antagonists of NEK7. Mechanistically, ROC covalent binds to the cysteine 79 of NEK7 through its reactive α, β-unsaturated carbonyl group, thereby inhibiting the interaction between NLRP3 and NEK7, and the subsequent assembly and activation of NLRP3 inflammasome. Furthermore, ROC alleviates the pathological features of metainflammation on the mouse model of type 2 diabetes (T2D). In summary, our results identify ROC as a covalent inhibitor of NEK7 and demonstrates that targeting NEK7 provides a potential and promising strategy for the treatment of NLRP3 inflammasome-driven T2D.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"565"},"PeriodicalIF":8.2,"publicationDate":"2024-11-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587601/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717985","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}