Peroxisomes are dynamic organelles involved in various cellular processes, including lipid metabolism, redox homeostasis, and intracellular metabolite transfer. Accumulating evidence suggests that peroxisomal homeostasis plays a crucial role in human health and disease, particularly in metabolic disorders and ferroptosis. The abundance and function of peroxisomes are regulated by a complex interplay between biogenesis and degradation pathways, involving peroxins, membrane proteins, and pexophagy. Peroxisome-dependent lipid metabolism, especially the synthesis of ether-linked phospholipids, has been implicated in modulating cellular susceptibility to ferroptosis, a newly discovered form of iron-dependent cell death. This review discusses the current understanding of peroxisome homeostasis, its roles in redox regulation and lipid metabolism, and its implications in human diseases. We also summarize the main mechanisms of ferroptosis and highlight recent discoveries on how peroxisome-dependent metabolism and signaling influence ferroptosis sensitivity. A better understanding of the interplay between peroxisomal homeostasis and ferroptosis may provide new insights into disease pathogenesis and reveal novel therapeutic strategies for peroxisome-related metabolic disorders and ferroptosis-associated diseases.
{"title":"Peroxisomal homeostasis in metabolic diseases and its implication in ferroptosis.","authors":"Jiwei Han, Daheng Zheng, Pu-Ste Liu, Shanshan Wang, Xin Xie","doi":"10.1186/s12964-024-01862-w","DOIUrl":"10.1186/s12964-024-01862-w","url":null,"abstract":"<p><p>Peroxisomes are dynamic organelles involved in various cellular processes, including lipid metabolism, redox homeostasis, and intracellular metabolite transfer. Accumulating evidence suggests that peroxisomal homeostasis plays a crucial role in human health and disease, particularly in metabolic disorders and ferroptosis. The abundance and function of peroxisomes are regulated by a complex interplay between biogenesis and degradation pathways, involving peroxins, membrane proteins, and pexophagy. Peroxisome-dependent lipid metabolism, especially the synthesis of ether-linked phospholipids, has been implicated in modulating cellular susceptibility to ferroptosis, a newly discovered form of iron-dependent cell death. This review discusses the current understanding of peroxisome homeostasis, its roles in redox regulation and lipid metabolism, and its implications in human diseases. We also summarize the main mechanisms of ferroptosis and highlight recent discoveries on how peroxisome-dependent metabolism and signaling influence ferroptosis sensitivity. A better understanding of the interplay between peroxisomal homeostasis and ferroptosis may provide new insights into disease pathogenesis and reveal novel therapeutic strategies for peroxisome-related metabolic disorders and ferroptosis-associated diseases.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"475"},"PeriodicalIF":8.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11451054/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376349","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-04DOI: 10.1186/s12964-024-01841-1
Song-Hee Lee, Kyu Hong Kim, Seong Min Lee, Seong Joon Park, Sunhwa Lee, Ran-Hui Cha, Jae Wook Lee, Dong Ki Kim, Yon Su Kim, Sang-Kyu Ye, Seung Hee Yang
Background: Signal transducer and activator of transcription 3 (STAT3), a multifaceted transcription factor, modulates host immune responses by activating cellular response to signaling ligands. STAT3 has a pivotal role in the pathophysiology of kidney injury by counterbalancing resident macrophage phenotypes under inflammation conditions. However, STAT3's role in acute kidney injury (AKI), particularly in macrophage migration, and in chronic kidney disease (CKD) through fibrosis development, remains unclear.
Methods: Stattic (a JAK2/STAT3 inhibitor, 5 mg/kg or 10 mg/kg) was administered to evaluate the therapeutic effect on LPS-induced AKI (L-AKI) and LPS-induced CKD (L-CKD), with animals sacrificed 6-24 h and 14 days post-LPS induction, respectively. The immune mechanisms of STAT3 blockade were determined by comparing the macrophage phenotypes and correlated with renal function parameters. Also, the transcriptomic analysis was used to confirm the anti-inflammatory effect of L-AKI, and the anti-fibrotic role was further evaluated in the L-CKD model.
Results: In the L-AKI model, sequential increases in BUN and blood creatinine levels were time-dependent, with a marked elevation of 0-6 h after LPS injection. Notably, two newly identified macrophage subpopulations (CD11bhighF4/80low and CD11blowF4/80high), exhibited population changes, with an increase in the CD11bhighF4/80low population and a decrease in the CD11blowF4/80high macrophages. Corresponding to the FACS results, the tubular injury score, NGAL, F4/80, and p-STAT3 expression in the tubular regions were elevated. STAT3 inhibitor injection in L-AKI and L-CKD mice reduced renal injury and fibrosis. M2-type subpopulation with CD206 in CD11blowF4/80high population increased in the Stattic-treated group compared with that in the LPS-alone group in the L-AKI model. Additionally, STAT3 inhibitor reduced inflammation driven by LPS-stimulated macrophages and epithelial cells injury in the co-culture system. Transcriptomic profiling identified 3 common genes in the JAK-STAT, TLR, and TNF signaling pathways and 11 common genes in the LPS with macrophage response. The PI3K-AKT (IL-6, Akt3, and Pik3r1) and JAK-STAT pathways were determined as potential Stattic targets. Further confirmation through mRNA and protein expressions analyses showed that Stattic treatment reduced inflammation in the L-AKI and fibrosis in the L-CKD mice.
Conclusions: STAT3 blockade effectively mitigated inflammation by retrieving the CD11blowF4/80high population, further emphasizing the role of STAT3-associated macrophage-driven inflammation in kidney injury.
{"title":"STAT3 blockade ameliorates LPS-induced kidney injury through macrophage-driven inflammation.","authors":"Song-Hee Lee, Kyu Hong Kim, Seong Min Lee, Seong Joon Park, Sunhwa Lee, Ran-Hui Cha, Jae Wook Lee, Dong Ki Kim, Yon Su Kim, Sang-Kyu Ye, Seung Hee Yang","doi":"10.1186/s12964-024-01841-1","DOIUrl":"10.1186/s12964-024-01841-1","url":null,"abstract":"<p><strong>Background: </strong>Signal transducer and activator of transcription 3 (STAT3), a multifaceted transcription factor, modulates host immune responses by activating cellular response to signaling ligands. STAT3 has a pivotal role in the pathophysiology of kidney injury by counterbalancing resident macrophage phenotypes under inflammation conditions. However, STAT3's role in acute kidney injury (AKI), particularly in macrophage migration, and in chronic kidney disease (CKD) through fibrosis development, remains unclear.</p><p><strong>Methods: </strong>Stattic (a JAK2/STAT3 inhibitor, 5 mg/kg or 10 mg/kg) was administered to evaluate the therapeutic effect on LPS-induced AKI (L-AKI) and LPS-induced CKD (L-CKD), with animals sacrificed 6-24 h and 14 days post-LPS induction, respectively. The immune mechanisms of STAT3 blockade were determined by comparing the macrophage phenotypes and correlated with renal function parameters. Also, the transcriptomic analysis was used to confirm the anti-inflammatory effect of L-AKI, and the anti-fibrotic role was further evaluated in the L-CKD model.</p><p><strong>Results: </strong>In the L-AKI model, sequential increases in BUN and blood creatinine levels were time-dependent, with a marked elevation of 0-6 h after LPS injection. Notably, two newly identified macrophage subpopulations (CD11b<sup>high</sup>F4/80<sup>low</sup> and CD11b<sup>low</sup>F4/80<sup>high</sup>), exhibited population changes, with an increase in the CD11b<sup>high</sup>F4/80<sup>low</sup> population and a decrease in the CD11b<sup>low</sup>F4/80<sup>high</sup> macrophages. Corresponding to the FACS results, the tubular injury score, NGAL, F4/80, and p-STAT3 expression in the tubular regions were elevated. STAT3 inhibitor injection in L-AKI and L-CKD mice reduced renal injury and fibrosis. M2-type subpopulation with CD206 in CD11b<sup>low</sup>F4/80<sup>high</sup> population increased in the Stattic-treated group compared with that in the LPS-alone group in the L-AKI model. Additionally, STAT3 inhibitor reduced inflammation driven by LPS-stimulated macrophages and epithelial cells injury in the co-culture system. Transcriptomic profiling identified 3 common genes in the JAK-STAT, TLR, and TNF signaling pathways and 11 common genes in the LPS with macrophage response. The PI3K-AKT (IL-6, Akt3, and Pik3r1) and JAK-STAT pathways were determined as potential Stattic targets. Further confirmation through mRNA and protein expressions analyses showed that Stattic treatment reduced inflammation in the L-AKI and fibrosis in the L-CKD mice.</p><p><strong>Conclusions: </strong>STAT3 blockade effectively mitigated inflammation by retrieving the CD11b<sup>low</sup>F4/80<sup>high</sup> population, further emphasizing the role of STAT3-associated macrophage-driven inflammation in kidney injury.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"476"},"PeriodicalIF":8.2,"publicationDate":"2024-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11453053/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142376350","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Aryl hydrocarbon receptor (AhR) plays an important role in inflammation and immunity as a new therapeutic target for infectious disease and sepsis. Punicalagin (PUN) is a Chinese herbal monomer extract of pomegranate peel that has beneficial anti-inflammatory, antioxidant and anti-infective effects. However, whether PUN is a ligand of AhR, its effect on AhR expression, and its signaling pathway remain poorly understood. In this study, we found that PUN was a unique polyphenolic compound that upregulated AhR expression at the transcriptional level, and regulated the AhR nongenomic pathway. AhR expression in lipopolysaccharide-induced macrophages was upregulated by PUN in vitro and in vivo in a time- and dose-dependent manner. Using specific inhibitors and siRNA, induction of AhR by PUN depended on sequential phosphorylation of 90-kDa ribosomal S6 kinase (p90RSK), which was activated by the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide-dependent protein kinase (PDK)1 pathways. PUN promoted p90RSK-mediated activator protein-1 (AP-1) activation. AhR knockout or inhibitors reversed suppression of interleukin (IL)-6 and IL-1β expression by PUN. PUN decreased Listeria load and increased macrophage survival via AhR upregulation. In conclusion, we identified PUN as a novel selective AhR modulator involved in AhR expression via the MEK/ERK and PDK1 pathways targeting p90RSK/AP-1 in inflammatory macrophages, which inhibited macrophage inflammation and promoted bactericidal activity.
{"title":"Punicalagin as a novel selective aryl hydrocarbon receptor (AhR) modulator upregulates AhR expression through the PDK1/p90RSK/AP-1 pathway to promote the anti-inflammatory response and bactericidal activity of macrophages.","authors":"Weihong Dai, Shuangqin Yin, Fangjie Wang, Tianyin Kuang, Hongyan Xiao, Wenyuan Kang, Caihong Yun, Fei Wang, Li Luo, Shengxiang Ao, Jing Zhou, Xue Yang, Chao Fan, Wei Li, Dongmei He, He Jin, Wanqi Tang, Lizhu Liu, Rixing Wang, Huaping Liang, Junyu Zhu","doi":"10.1186/s12964-024-01847-9","DOIUrl":"10.1186/s12964-024-01847-9","url":null,"abstract":"<p><p>Aryl hydrocarbon receptor (AhR) plays an important role in inflammation and immunity as a new therapeutic target for infectious disease and sepsis. Punicalagin (PUN) is a Chinese herbal monomer extract of pomegranate peel that has beneficial anti-inflammatory, antioxidant and anti-infective effects. However, whether PUN is a ligand of AhR, its effect on AhR expression, and its signaling pathway remain poorly understood. In this study, we found that PUN was a unique polyphenolic compound that upregulated AhR expression at the transcriptional level, and regulated the AhR nongenomic pathway. AhR expression in lipopolysaccharide-induced macrophages was upregulated by PUN in vitro and in vivo in a time- and dose-dependent manner. Using specific inhibitors and siRNA, induction of AhR by PUN depended on sequential phosphorylation of 90-kDa ribosomal S6 kinase (p90RSK), which was activated by the mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) and phosphoinositide-dependent protein kinase (PDK)1 pathways. PUN promoted p90RSK-mediated activator protein-1 (AP-1) activation. AhR knockout or inhibitors reversed suppression of interleukin (IL)-6 and IL-1β expression by PUN. PUN decreased Listeria load and increased macrophage survival via AhR upregulation. In conclusion, we identified PUN as a novel selective AhR modulator involved in AhR expression via the MEK/ERK and PDK1 pathways targeting p90RSK/AP-1 in inflammatory macrophages, which inhibited macrophage inflammation and promoted bactericidal activity.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"473"},"PeriodicalIF":8.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448010/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373621","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-03DOI: 10.1186/s12964-024-01827-z
Yunjie Liu, Xin Xiao, Likai Wang, Yao Fu, Songyang Yao, Xuening Liu, Boda Chen, Jiarui Gao, Yaying Zhai, Zixia Shen, Laiqing Yan, Yiwei Wang, Pengyun Ji, Bingyuan Wang, Guoshi Liu
In this study, we reported for the first time the dose-dependent dual effects of Alpha-Ketoglutarate (AKG) on cumulus oocyte complexes (COCs) during in vitro maturation (IVM). AKG at appropriate concentration (30 µM) has beneficial effects on IVM. This includes improved cumulus expansion, oocyte quality, and embryo development. These effects are mediated through multiple underlying mechanisms. AKG reduced the excessive accumulation of reactive oxygen species (ROS) in cumulus cells, reduced the consumption of GSH and NADPH. Cumulus GSH and NADPH were transported to oocytes via gap junctions, thereby reducing the oxidative stress, apoptosis and maintaining the redox balance in oocytes. In addition, AKG improved the mitochondrial function by regulating the mitochondrial complex 1 related gene expression in oocytes to maintain mitochondrial membrane potential and ATP production. On the other hand, oocyte generated GDF9 could also be transported to cumulus cells to promote cumulus expansion. Conversely, a high concentration of AKG (750 µM) exerted adverse effects on IVM and suppressed the cumulus expansion as well as reduced the oocyte quality. The suppression of the cumulus expansion caused by high concentration of AKG could be rescued with GDF9 supplementation in COCs, indicating the critical role of GDF9 in IVM. The results provide valuable information on the variable effects of AKG at different concentrations on reproductive physiology.
{"title":"The dose-dependent dual effects of alpha-ketoglutarate (AKG) on cumulus oocyte complexes during in vitro maturation.","authors":"Yunjie Liu, Xin Xiao, Likai Wang, Yao Fu, Songyang Yao, Xuening Liu, Boda Chen, Jiarui Gao, Yaying Zhai, Zixia Shen, Laiqing Yan, Yiwei Wang, Pengyun Ji, Bingyuan Wang, Guoshi Liu","doi":"10.1186/s12964-024-01827-z","DOIUrl":"10.1186/s12964-024-01827-z","url":null,"abstract":"<p><p>In this study, we reported for the first time the dose-dependent dual effects of Alpha-Ketoglutarate (AKG) on cumulus oocyte complexes (COCs) during in vitro maturation (IVM). AKG at appropriate concentration (30 µM) has beneficial effects on IVM. This includes improved cumulus expansion, oocyte quality, and embryo development. These effects are mediated through multiple underlying mechanisms. AKG reduced the excessive accumulation of reactive oxygen species (ROS) in cumulus cells, reduced the consumption of GSH and NADPH. Cumulus GSH and NADPH were transported to oocytes via gap junctions, thereby reducing the oxidative stress, apoptosis and maintaining the redox balance in oocytes. In addition, AKG improved the mitochondrial function by regulating the mitochondrial complex 1 related gene expression in oocytes to maintain mitochondrial membrane potential and ATP production. On the other hand, oocyte generated GDF9 could also be transported to cumulus cells to promote cumulus expansion. Conversely, a high concentration of AKG (750 µM) exerted adverse effects on IVM and suppressed the cumulus expansion as well as reduced the oocyte quality. The suppression of the cumulus expansion caused by high concentration of AKG could be rescued with GDF9 supplementation in COCs, indicating the critical role of GDF9 in IVM. The results provide valuable information on the variable effects of AKG at different concentrations on reproductive physiology.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"472"},"PeriodicalIF":8.2,"publicationDate":"2024-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11448289/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142373622","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-02DOI: 10.1186/s12964-024-01845-x
Chiara Huber, Omar Elsaeed, Pia Lahmer, Simone Moertl
Adverse effects of ionizing radiation on normal tissues limit the radiation dose in cancer treatment, thereby compromising treatment efficiency. Among the consistently affected non-cancer cells, peripheral blood mononuclear cells (PBMCs) exhibit high radiosensitivity and have the potential to induce systemic effects. PBMC-released extracellular vesicles (EVs), contribute to the communication of such systemic effects. This study aimed to investigate the effects of ionizing radiation on EVs as part of the systemic response of PBMCs in terms of microRNA cargo and biological functions.Therefore, whole blood samples from healthy donors were irradiated ex-vivo (0 Gy, 1 Gy, 2 Gy, 4 Gy) and EVs from PBMCs were isolated after 96 h by PEG precipitation or ultracentrifugation. Candidate microRNAs were examined in PBMC-derived EVs from individual donors. The uptake of membrane-stained fluorescent EVs by different recipient cells was quantified by fluorescence-activated cell sorting analysis. The biological effects of increased miR-34a-5p and of total EVs on recipient cells were assessed.Irradiation of PBMCs induced a dose-dependent upregulation of miR-34a-5p within EVs and PBMCs. However, interindividual differences between donors were noticed in the extent of upregulation, and small EVs displayed more pronounced changes in microRNA levels in comparison to large EVs. Irradiation in presence of the small molecule inhibitor KU-60019 demonstrated that this upregulation is dependent on ATM (Ataxia telangiectasia mutated) activation. Moreover, fibroblasts and keratinocytes were identified as preferred EV recipients. Increased miR-34a-5p levels led to a significant reduction in viability and induction of senescence in keratinocytes but not in fibroblasts, indicating a cell type-specific response.In conclusion, this study further elucidated the complex cellular response of normal tissue after radiation exposure. It confirmed radiation-induced modifications of microRNA expression levels in EVs from PBMCs and identified a robust upregulation of miR-34a-5p in the small EV subfraction, suggesting this microRNA as a potential novel candidate for the development of biomarkers for radiation exposure. Moreover, the different uptake efficiencies observed among specific cell types suggested that EVs induce cell type-specific responses in the intercellular communication of systemic radiation effects.
{"title":"Ionizing radiation effects on blood-derived extracellular vesicles: insights into miR-34a-5p-mediated cellular responses and biomarker potential.","authors":"Chiara Huber, Omar Elsaeed, Pia Lahmer, Simone Moertl","doi":"10.1186/s12964-024-01845-x","DOIUrl":"10.1186/s12964-024-01845-x","url":null,"abstract":"<p><p>Adverse effects of ionizing radiation on normal tissues limit the radiation dose in cancer treatment, thereby compromising treatment efficiency. Among the consistently affected non-cancer cells, peripheral blood mononuclear cells (PBMCs) exhibit high radiosensitivity and have the potential to induce systemic effects. PBMC-released extracellular vesicles (EVs), contribute to the communication of such systemic effects. This study aimed to investigate the effects of ionizing radiation on EVs as part of the systemic response of PBMCs in terms of microRNA cargo and biological functions.Therefore, whole blood samples from healthy donors were irradiated ex-vivo (0 Gy, 1 Gy, 2 Gy, 4 Gy) and EVs from PBMCs were isolated after 96 h by PEG precipitation or ultracentrifugation. Candidate microRNAs were examined in PBMC-derived EVs from individual donors. The uptake of membrane-stained fluorescent EVs by different recipient cells was quantified by fluorescence-activated cell sorting analysis. The biological effects of increased miR-34a-5p and of total EVs on recipient cells were assessed.Irradiation of PBMCs induced a dose-dependent upregulation of miR-34a-5p within EVs and PBMCs. However, interindividual differences between donors were noticed in the extent of upregulation, and small EVs displayed more pronounced changes in microRNA levels in comparison to large EVs. Irradiation in presence of the small molecule inhibitor KU-60019 demonstrated that this upregulation is dependent on ATM (Ataxia telangiectasia mutated) activation. Moreover, fibroblasts and keratinocytes were identified as preferred EV recipients. Increased miR-34a-5p levels led to a significant reduction in viability and induction of senescence in keratinocytes but not in fibroblasts, indicating a cell type-specific response.In conclusion, this study further elucidated the complex cellular response of normal tissue after radiation exposure. It confirmed radiation-induced modifications of microRNA expression levels in EVs from PBMCs and identified a robust upregulation of miR-34a-5p in the small EV subfraction, suggesting this microRNA as a potential novel candidate for the development of biomarkers for radiation exposure. Moreover, the different uptake efficiencies observed among specific cell types suggested that EVs induce cell type-specific responses in the intercellular communication of systemic radiation effects.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"471"},"PeriodicalIF":8.2,"publicationDate":"2024-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446100/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142367569","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Purpose: DNA methylation prominently inactivates tumor suppressor genes and facilitates oncogenesis. Previously, we delineated a chromosome 18 deletion encompassing the erythrocyte membrane protein band 4.1-like 3 (EPB41L3) gene, a progenitor for the tumor suppressor that is differentially expressed in adenocarcinoma of the lung-1 (DAL-1) in gastric cancer (GC).
Methods: Our current investigation aimed to elucidate EPB41L3 expression and methylation in GC, identify regulatory transcription factors, and identify affected downstream pathways. Immunohistochemistry demonstrated that DAL-1 expression is markedly reduced in GC tissues, with its downregulation serving as an independent prognostic marker.
Results: High-throughput bisulfite sequencing of 70 GC patient tissue pairs revealed that higher methylation of non-CpGs in the EPB41L3 promoter was correlated with more malignant tumor progression and higher-grade tissue classification. Such hypermethylation was shown to diminish DAL-1 expression, thus contributing to the malignancy of GC phenotypes. The DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) was found to partially restore DAL-1 expression. Moreover, direct binding of the transcription factor CDC5L to the upstream region of the EPB41L3 promoter was identified via chromosome immunoprecipitation (ChIP)-qPCR and luciferase reporter assays. Immunohistochemistry confirmed the positive correlation between CDC5L and DAL-1 protein levels. Subsequent RNA-seq analysis revealed that DAL-1 significantly influences the extracellular matrix and space-related pathways. GC cell RNA-seq post-5-Aza-CdR treatment and single-cell RNA-seq data of GC tissues confirmed the upregulation of AREG and COL17A1, pivotal tumor suppressors, in response to EPB41L3 demethylation or overexpression in GC epithelial cells.
Conclusion: In conclusion, this study elucidates the association between non-CpG methylation of EPB41L3 and GC progression and identifies the key transcription factors and downstream molecules involved. These findings enhance our understanding of the role of EPB41L3 in gastric cancer and provide a solid theoretical foundation for future research and potential clinical applications.
{"title":"Expression, DNA methylation pattern and transcription factor EPB41L3 in gastric cancer: a study of 262 cases.","authors":"Mengdi Cai, Haonan Guo, Dong Wang, Tie Zhao, Xiao Liang, Jiaqi Li, XiaoBo Cui, Songbin Fu, Jingcui Yu","doi":"10.1186/s12964-024-01849-7","DOIUrl":"10.1186/s12964-024-01849-7","url":null,"abstract":"<p><strong>Purpose: </strong>DNA methylation prominently inactivates tumor suppressor genes and facilitates oncogenesis. Previously, we delineated a chromosome 18 deletion encompassing the erythrocyte membrane protein band 4.1-like 3 (EPB41L3) gene, a progenitor for the tumor suppressor that is differentially expressed in adenocarcinoma of the lung-1 (DAL-1) in gastric cancer (GC).</p><p><strong>Methods: </strong>Our current investigation aimed to elucidate EPB41L3 expression and methylation in GC, identify regulatory transcription factors, and identify affected downstream pathways. Immunohistochemistry demonstrated that DAL-1 expression is markedly reduced in GC tissues, with its downregulation serving as an independent prognostic marker.</p><p><strong>Results: </strong>High-throughput bisulfite sequencing of 70 GC patient tissue pairs revealed that higher methylation of non-CpGs in the EPB41L3 promoter was correlated with more malignant tumor progression and higher-grade tissue classification. Such hypermethylation was shown to diminish DAL-1 expression, thus contributing to the malignancy of GC phenotypes. The DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine (5-aza-CdR) was found to partially restore DAL-1 expression. Moreover, direct binding of the transcription factor CDC5L to the upstream region of the EPB41L3 promoter was identified via chromosome immunoprecipitation (ChIP)-qPCR and luciferase reporter assays. Immunohistochemistry confirmed the positive correlation between CDC5L and DAL-1 protein levels. Subsequent RNA-seq analysis revealed that DAL-1 significantly influences the extracellular matrix and space-related pathways. GC cell RNA-seq post-5-Aza-CdR treatment and single-cell RNA-seq data of GC tissues confirmed the upregulation of AREG and COL17A1, pivotal tumor suppressors, in response to EPB41L3 demethylation or overexpression in GC epithelial cells.</p><p><strong>Conclusion: </strong>In conclusion, this study elucidates the association between non-CpG methylation of EPB41L3 and GC progression and identifies the key transcription factors and downstream molecules involved. These findings enhance our understanding of the role of EPB41L3 in gastric cancer and provide a solid theoretical foundation for future research and potential clinical applications.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"470"},"PeriodicalIF":8.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446029/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362523","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1186/s12964-024-01846-w
Milan Kuchař, Kristýna Sloupenská, Leona Rašková Kafková, Yaroslava Groza, Jozef Škarda, Petr Kosztyu, Marie Hlavničková, Joanna M Mierzwicka, Radim Osička, Hana Petroková, Stephen I Walimbwa, Shiv Bharadwaj, Jiří Černý, Milan Raška, Petr Malý
Background: Human interleukin-22 (IL-22) is known as a "dual function" cytokine that acts as a master regulator to maintain homeostasis, structural integrity of the intestinal epithelial barrier, and shielding against bacterial pathogens. On the other hand, the overexpression of IL-22 is associated with hyper-proliferation and recruitment of pathologic effector cells, leading to tissue damage and chronic inflammation in specific diseases including inflammatory bowel disease (IBD). To study a role of IL-22-mediated signaling axis during intestinal inflammation, we generated a set of small protein blockers of IL-22R1 and verified their inhibitory potential on murine model of colitis.
Methods: We used directed evolution of proteins to identify binders of human IL-22 receptor alpha (IL-22R1), designated as ABR ligands. This approach combines the assembly of a highly complex combinatorial protein library derived from small albumin-binding domain scaffold and selection of promising protein variants using ribosome display followed by large-scale ELISA screening. The binding affinity and specificity of ABR variants were analyzed on transfected HEK293T cells by flow cytometry and LigandTracer. Inhibitory function was further verified by competition ELISA, HEK-Blue IL-22 reporter cells, and murine dextran sulfate sodium (DSS)-induced colitis.
Results: We demonstrate that ABR specifically recognizes transgenic IL-22R1 expressed on HEK293T cells and IL-22R1 on TNFα/IFNγ-activated HaCaT cells. Moreover, some ABR binders compete with the IL-22 cytokine and function as IL-22R1 antagonists in HEK-Blue IL22 reporter cells. In a murine model of DSS-induced acute intestinal inflammation, daily intraperitoneal administration of the best IL-22R1 antagonist, ABR167, suppressed the development of clinical and histological markers of colitis including prevention of mucosal inflammation and architecture deterioration. In addition, ABR167 reduces the DSS-induced increase in mRNA transcript levels of inflammatory cytokines such as IL-1β, IL-6, IL-10, and IL-17A.
Conclusions: We developed small anti-human IL-22R1 blockers with antagonistic properties that ascertain a substantial role of IL-22-mediated signaling in the development of intestinal inflammation. The developed ABR blockers can be useful as a molecular clue for further IBD drug development.
{"title":"Human IL-22 receptor-targeted small protein antagonist suppress murine DSS-induced colitis.","authors":"Milan Kuchař, Kristýna Sloupenská, Leona Rašková Kafková, Yaroslava Groza, Jozef Škarda, Petr Kosztyu, Marie Hlavničková, Joanna M Mierzwicka, Radim Osička, Hana Petroková, Stephen I Walimbwa, Shiv Bharadwaj, Jiří Černý, Milan Raška, Petr Malý","doi":"10.1186/s12964-024-01846-w","DOIUrl":"10.1186/s12964-024-01846-w","url":null,"abstract":"<p><strong>Background: </strong>Human interleukin-22 (IL-22) is known as a \"dual function\" cytokine that acts as a master regulator to maintain homeostasis, structural integrity of the intestinal epithelial barrier, and shielding against bacterial pathogens. On the other hand, the overexpression of IL-22 is associated with hyper-proliferation and recruitment of pathologic effector cells, leading to tissue damage and chronic inflammation in specific diseases including inflammatory bowel disease (IBD). To study a role of IL-22-mediated signaling axis during intestinal inflammation, we generated a set of small protein blockers of IL-22R1 and verified their inhibitory potential on murine model of colitis.</p><p><strong>Methods: </strong>We used directed evolution of proteins to identify binders of human IL-22 receptor alpha (IL-22R1), designated as ABR ligands. This approach combines the assembly of a highly complex combinatorial protein library derived from small albumin-binding domain scaffold and selection of promising protein variants using ribosome display followed by large-scale ELISA screening. The binding affinity and specificity of ABR variants were analyzed on transfected HEK293T cells by flow cytometry and LigandTracer. Inhibitory function was further verified by competition ELISA, HEK-Blue IL-22 reporter cells, and murine dextran sulfate sodium (DSS)-induced colitis.</p><p><strong>Results: </strong>We demonstrate that ABR specifically recognizes transgenic IL-22R1 expressed on HEK293T cells and IL-22R1 on TNFα/IFNγ-activated HaCaT cells. Moreover, some ABR binders compete with the IL-22 cytokine and function as IL-22R1 antagonists in HEK-Blue IL22 reporter cells. In a murine model of DSS-induced acute intestinal inflammation, daily intraperitoneal administration of the best IL-22R1 antagonist, ABR167, suppressed the development of clinical and histological markers of colitis including prevention of mucosal inflammation and architecture deterioration. In addition, ABR167 reduces the DSS-induced increase in mRNA transcript levels of inflammatory cytokines such as IL-1β, IL-6, IL-10, and IL-17A.</p><p><strong>Conclusions: </strong>We developed small anti-human IL-22R1 blockers with antagonistic properties that ascertain a substantial role of IL-22-mediated signaling in the development of intestinal inflammation. The developed ABR blockers can be useful as a molecular clue for further IBD drug development.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"469"},"PeriodicalIF":8.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446014/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362524","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1186/s12964-024-01738-z
Max Petersen, Pat Dubielecka
Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.
{"title":"Adaptor protein Abelson interactor 1 in homeostasis and disease.","authors":"Max Petersen, Pat Dubielecka","doi":"10.1186/s12964-024-01738-z","DOIUrl":"10.1186/s12964-024-01738-z","url":null,"abstract":"<p><p>Dysregulation of Abelson interactor 1 (ABI1) is associated with various states of disease including developmental defects, pathogen infections, and cancer. ABI1 is an adaptor protein predominantly known to regulate actin cytoskeleton organization processes such as those involved in cell adhesion, migration, and shape determination. Linked to cytoskeleton via vasodilator-stimulated phosphoprotein (VASP), Wiskott-Aldrich syndrome protein family (WAVE), and neural-Wiskott-Aldrich syndrome protein (N-WASP)-associated protein complexes, ABI1 coordinates regulation of various cytoplasmic protein signaling complexes dysregulated in disease states. The roles of ABI1 beyond actin cytoskeleton regulation are much less understood. This comprehensive, protein-centric review describes molecular roles of ABI1 as an adaptor molecule in the context of its dysregulation and associated disease outcomes to better understand disease state-specific protein signaling and affected interconnected biological processes.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"468"},"PeriodicalIF":8.2,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11446139/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142362506","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1186/s12964-024-01839-9
Yubin Li, Avital Baniel, DeAnna Diaz, Mariko Ogawa-Momohara, Cristina Ricco, Ahmed Eldaboush, Muhammad Bashir, Meena Sharma, Ming-Lin Liu, Victoria P Werth
Background and rationale: Ultraviolet-B (UVB) light induces dermal inflammation, although it is mostly absorbed in the epidermis. Recent reports suggest extracellular vesicles (EVs) act as a mediator of photodamage signaling. Melatonin is reported to be a protective factor against UV-induced damage. We hypothesized that EVs derived from UVB-irradiated keratinocytes might trigger proinflammatory responses in dermal cells and tested whether melatonin can ameliorate UVB-induced inflammation.
Methods: We used UVB-irradiated HaCaT cells, primary keratinocytes and STING knock-out mice to model production of EVs under photodamaging conditions and performed immunoblotting and ELISA to measure their effect on dermal macrophages.
Results: UVB-irradiated keratinocytes produce an increased number of EVs that contain higher concentrations of DNA and protein compared with controls. KC-derived EVs (KEVs) induced a STING- and inflammasome-mediated proinflammatory response in macrophages in vitro, and a pronounced inflammatory infiltrate in mouse dermis in vivo. Melatonin ameliorated KEVs inflammatory effect both in vitro and in vivo.
Conclusions: This data suggests EVs are mediators in a crosstalk that takes place between keratinocytes and their neighboring cells as a result of photodamage. Further studies exploring EVs induced by damaging doses of UVB, and their impact on other cells will provide insight into photodamage and may help develop targeted therapeutic approaches.
{"title":"Keratinocyte derived extracellular vesicles mediated crosstalk between epidermis and dermis in UVB-induced skin inflammation.","authors":"Yubin Li, Avital Baniel, DeAnna Diaz, Mariko Ogawa-Momohara, Cristina Ricco, Ahmed Eldaboush, Muhammad Bashir, Meena Sharma, Ming-Lin Liu, Victoria P Werth","doi":"10.1186/s12964-024-01839-9","DOIUrl":"10.1186/s12964-024-01839-9","url":null,"abstract":"<p><strong>Background and rationale: </strong>Ultraviolet-B (UVB) light induces dermal inflammation, although it is mostly absorbed in the epidermis. Recent reports suggest extracellular vesicles (EVs) act as a mediator of photodamage signaling. Melatonin is reported to be a protective factor against UV-induced damage. We hypothesized that EVs derived from UVB-irradiated keratinocytes might trigger proinflammatory responses in dermal cells and tested whether melatonin can ameliorate UVB-induced inflammation.</p><p><strong>Methods: </strong>We used UVB-irradiated HaCaT cells, primary keratinocytes and STING knock-out mice to model production of EVs under photodamaging conditions and performed immunoblotting and ELISA to measure their effect on dermal macrophages.</p><p><strong>Results: </strong>UVB-irradiated keratinocytes produce an increased number of EVs that contain higher concentrations of DNA and protein compared with controls. KC-derived EVs (KEVs) induced a STING- and inflammasome-mediated proinflammatory response in macrophages in vitro, and a pronounced inflammatory infiltrate in mouse dermis in vivo. Melatonin ameliorated KEVs inflammatory effect both in vitro and in vivo.</p><p><strong>Conclusions: </strong>This data suggests EVs are mediators in a crosstalk that takes place between keratinocytes and their neighboring cells as a result of photodamage. Further studies exploring EVs induced by damaging doses of UVB, and their impact on other cells will provide insight into photodamage and may help develop targeted therapeutic approaches.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"461"},"PeriodicalIF":8.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11441254/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332800","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-09-30DOI: 10.1186/s12964-024-01851-z
Chao Fang, Pan Ren, Yejun He, Yitian Wang, Shuting Yao, Congying Zhao, Xueyong Li, Xi Zhang, Jinqing Li, Mingkai Li
Background: Mitochondria play a crucial role in shaping the macrophage inflammatory response during bacterial infections. Spinster homolog 2 (Spns2), responsible for sphingosine-1-phosphate (S1P) secretion, acts as a key regulator of mitochondrial dynamics in macrophages. However, the link between Spns2/S1P signaling and mitochondrial functions remains unclear.
Methods: Peritoneal macrophages were isolated from both wild-type and Spns2 knockout rats, followed by non-targeted metabolomics and RNA sequencing analysis to identify the potential mediators through which Spns2/S1P signaling influences the mitochondrial functions in macrophages. Various agonists and antagonists were used to modulate the activation of Spns2/S1P signaling and its downstream pathways, with the underlying mechanisms elucidated through western blotting. Mitochondrial functions were assessed using flow cytometry and oxygen consumption assays, as well as morphological analysis. The impact on inflammatory response was validated through both in vitro and in vivo sepsis models, with the specific role of macrophage-expressed Spns2 in sepsis evaluated using Spns2flox/floxLyz2-Cre mice. Additionally, the regulation of mitochondrial functions by Spns2/S1P signaling was confirmed using THP-1 cells, a human monocyte-derived macrophage model.
Results: In this study, we unveil prostaglandin E2 (PGE2) as a pivotal mediator involved in Spns2/S1P-mitochondrial communication. Spns2/S1P signaling suppresses PGE2 production to support malate-aspartate shuttle activity. Conversely, excessive PGE2 resulting from Spns2 deficiency impairs mitochondrial respiration, leading to intracellular lactate accumulation and increased reactive oxygen species (ROS) generation through E-type prostanoid receptor 4 activation. The overactive lactate-ROS axis contributes to the early-phase hyperinflammation during infections. Prolonged exposure to elevated PGE2 due to Spns2 deficiency culminates in subsequent immunosuppression, underscoring the dual roles of PGE2 in inflammation throughout infections. The regulation of PGE2 production by Spns2/S1P signaling appears to depend on the coordinated activation of multiple S1P receptors rather than any single one.
Conclusions: These findings emphasize PGE2 as a key effector of Spns2/S1P signaling on mitochondrial dynamics in macrophages, elucidating the mechanisms through which Spns2/S1P signaling balances both early hyperinflammation and subsequent immunosuppression during bacterial infections.
{"title":"Spinster homolog 2/S1P signaling ameliorates macrophage inflammatory response to bacterial infections by balancing PGE<sub>2</sub> production.","authors":"Chao Fang, Pan Ren, Yejun He, Yitian Wang, Shuting Yao, Congying Zhao, Xueyong Li, Xi Zhang, Jinqing Li, Mingkai Li","doi":"10.1186/s12964-024-01851-z","DOIUrl":"10.1186/s12964-024-01851-z","url":null,"abstract":"<p><strong>Background: </strong>Mitochondria play a crucial role in shaping the macrophage inflammatory response during bacterial infections. Spinster homolog 2 (Spns2), responsible for sphingosine-1-phosphate (S1P) secretion, acts as a key regulator of mitochondrial dynamics in macrophages. However, the link between Spns2/S1P signaling and mitochondrial functions remains unclear.</p><p><strong>Methods: </strong>Peritoneal macrophages were isolated from both wild-type and Spns2 knockout rats, followed by non-targeted metabolomics and RNA sequencing analysis to identify the potential mediators through which Spns2/S1P signaling influences the mitochondrial functions in macrophages. Various agonists and antagonists were used to modulate the activation of Spns2/S1P signaling and its downstream pathways, with the underlying mechanisms elucidated through western blotting. Mitochondrial functions were assessed using flow cytometry and oxygen consumption assays, as well as morphological analysis. The impact on inflammatory response was validated through both in vitro and in vivo sepsis models, with the specific role of macrophage-expressed Spns2 in sepsis evaluated using Spns2<sup>flox/flox</sup>Lyz2-Cre mice. Additionally, the regulation of mitochondrial functions by Spns2/S1P signaling was confirmed using THP-1 cells, a human monocyte-derived macrophage model.</p><p><strong>Results: </strong>In this study, we unveil prostaglandin E<sub>2</sub> (PGE<sub>2</sub>) as a pivotal mediator involved in Spns2/S1P-mitochondrial communication. Spns2/S1P signaling suppresses PGE<sub>2</sub> production to support malate-aspartate shuttle activity. Conversely, excessive PGE<sub>2</sub> resulting from Spns2 deficiency impairs mitochondrial respiration, leading to intracellular lactate accumulation and increased reactive oxygen species (ROS) generation through E-type prostanoid receptor 4 activation. The overactive lactate-ROS axis contributes to the early-phase hyperinflammation during infections. Prolonged exposure to elevated PGE<sub>2</sub> due to Spns2 deficiency culminates in subsequent immunosuppression, underscoring the dual roles of PGE<sub>2</sub> in inflammation throughout infections. The regulation of PGE<sub>2</sub> production by Spns2/S1P signaling appears to depend on the coordinated activation of multiple S1P receptors rather than any single one.</p><p><strong>Conclusions: </strong>These findings emphasize PGE<sub>2</sub> as a key effector of Spns2/S1P signaling on mitochondrial dynamics in macrophages, elucidating the mechanisms through which Spns2/S1P signaling balances both early hyperinflammation and subsequent immunosuppression during bacterial infections.</p>","PeriodicalId":55268,"journal":{"name":"Cell Communication and Signaling","volume":"22 1","pages":"463"},"PeriodicalIF":8.2,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11440679/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142332806","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}