Zum Titelbild: Im Rahmen der Bundesgartenschau 2021 wurde mit dem Bastionskronenpfad eine neue Fußgängerbrücke für die Stadt Erfurt geschaffen. 1925 wurden auf der Zitadelle Peterberg durch den Bau der Lauentor-Straße die Bastion Martin von der Bastion Gabriel getrennt. An dieser Stelle verbindet jetzt der Bastionskronenpfad die seitdem getrennten Bastionen durch eine neue Brückenkonstruktion, die mit einer zeitgemäßen und behutsamen Gestaltung in den historischen Bestand integriert wurde. Weitere Informationen im Beitrag von Hoffmann-Berling et al. (Quelle: Steven Neukirch)
{"title":"Titelbild: Bautechnik 11/2025","authors":"","doi":"10.1002/bate.70045","DOIUrl":"https://doi.org/10.1002/bate.70045","url":null,"abstract":"<p><b>Zum Titelbild</b>: Im Rahmen der Bundesgartenschau 2021 wurde mit dem Bastionskronenpfad eine neue Fußgängerbrücke für die Stadt Erfurt geschaffen. 1925 wurden auf der Zitadelle Peterberg durch den Bau der Lauentor-Straße die Bastion Martin von der Bastion Gabriel getrennt. An dieser Stelle verbindet jetzt der Bastionskronenpfad die seitdem getrennten Bastionen durch eine neue Brückenkonstruktion, die mit einer zeitgemäßen und behutsamen Gestaltung in den historischen Bestand integriert wurde. Weitere Informationen im Beitrag von Hoffmann-Berling et al. (Quelle: Steven Neukirch)</p>","PeriodicalId":55396,"journal":{"name":"Bautechnik","volume":"102 11","pages":""},"PeriodicalIF":0.5,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bate.70045","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145500905","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Zum Titelbild: Das neue Bürogebäude der HASSLACHER Gruppe am Standort in Preding (HASSLACHER PREDING Holzindustrie GmbH) zeigt sich als moderner, mehrgeschossiger Holzbau mit klar gegliederten Baukörpern, großzügigen Glasflächen und auskragenden Geschossen. Die Fassade wird durch vertikale Holzschalung, Loggien und Laubengänge strukturiert, die zugleich konstruktiven Holzschutz bieten. Im Inneren dominieren sichtbare Brettschichtholz- und Brettsperrholzelemente sowie helle, offene Räume mit hoher Aufenthaltsqualität. Eine begrünte Dachfläche, Photovoltaikmodule und E-Ladestationen unterstreichen den nachhaltigen Anspruch des Projekts. Das Gebäude dient als Leuchtturm für modernes, ökologisches Bauen mit Holz und wurde mit dem PEFC-Award ausgezeichnet (Foto: Trecolore Architects). Siehe auch Beitrag A4–A6.
{"title":"Titelbild: Bautechnik S2/2025","authors":"","doi":"10.1002/bate.70040","DOIUrl":"https://doi.org/10.1002/bate.70040","url":null,"abstract":"<p><b>Zum Titelbild</b>: Das neue Bürogebäude der HASSLACHER Gruppe am Standort in Preding (HASSLACHER PREDING Holzindustrie GmbH) zeigt sich als moderner, mehrgeschossiger Holzbau mit klar gegliederten Baukörpern, großzügigen Glasflächen und auskragenden Geschossen. Die Fassade wird durch vertikale Holzschalung, Loggien und Laubengänge strukturiert, die zugleich konstruktiven Holzschutz bieten. Im Inneren dominieren sichtbare Brettschichtholz- und Brettsperrholzelemente sowie helle, offene Räume mit hoher Aufenthaltsqualität. Eine begrünte Dachfläche, Photovoltaikmodule und E-Ladestationen unterstreichen den nachhaltigen Anspruch des Projekts. Das Gebäude dient als Leuchtturm für modernes, ökologisches Bauen mit Holz und wurde mit dem PEFC-Award ausgezeichnet (Foto: Trecolore Architects). Siehe auch Beitrag A4–A6.</p>","PeriodicalId":55396,"journal":{"name":"Bautechnik","volume":"102 S2","pages":""},"PeriodicalIF":0.5,"publicationDate":"2025-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bate.70040","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145500911","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Mag. Dr. Hans Jörg Laimer, Dipl.-Ing. Dr. Michael Brauner
Safety structures against landslides in the ÖBB Infrastruktur AG rail network – Current status and perspectives
Despite technical advances, securing railway lines against landslides remains a key challenge, especially in the case of shallow, fast-moving mass movements, which are increasing due to climate change. Over the past 20 years, 804 events have been recorded and analysed for the approximately 5000 km long rail network of the Austrian Federal Railways (ÖBB). In 88.6 % of cases, structural construction measures had to be implemented to restore operational safety. Active safety structures, which are usually erected in the course of event response, account for 75 % of the measures. Since shallow slope processes dominate, standardized construction types are very often used in accordance with ÖBB standard planning. These are predominantly durable structures adapted to the respective slope process, resulting in hardly any consequential damage. However, these slope stabilization measures are only effective in the immediate vicinity of a landslide, so the use of passive protective structures should be promoted in order to provide comprehensive protection. Net barriers that protect against multiple slope processes are a promising alternative or supplement to selective active slope stabilization. In this context, assessing the protective effectiveness of existing rockfall protection barriers under various impact combinations currently poses a challenge. Since full protection of many track sections is not economically viable, supplementary measures are also presented.
{"title":"Sicherungsbauwerke gegen Rutschungen im Streckennetz der ÖBB Infrastruktur AG – aktueller Stand und Perspektiven","authors":"Mag. Dr. Hans Jörg Laimer, Dipl.-Ing. Dr. Michael Brauner","doi":"10.1002/bate.70039","DOIUrl":"https://doi.org/10.1002/bate.70039","url":null,"abstract":"<p><b>Safety structures against landslides in the ÖBB Infrastruktur AG rail network – Current status and perspectives</b></p><p>Despite technical advances, securing railway lines against landslides remains a key challenge, especially in the case of shallow, fast-moving mass movements, which are increasing due to climate change. Over the past 20 years, 804 events have been recorded and analysed for the approximately 5000 km long rail network of the Austrian Federal Railways (ÖBB). In 88.6 % of cases, structural construction measures had to be implemented to restore operational safety. Active safety structures, which are usually erected in the course of event response, account for 75 % of the measures. Since shallow slope processes dominate, standardized construction types are very often used in accordance with ÖBB standard planning. These are predominantly durable structures adapted to the respective slope process, resulting in hardly any consequential damage. However, these slope stabilization measures are only effective in the immediate vicinity of a landslide, so the use of passive protective structures should be promoted in order to provide comprehensive protection. Net barriers that protect against multiple slope processes are a promising alternative or supplement to selective active slope stabilization. In this context, assessing the protective effectiveness of existing rockfall protection barriers under various impact combinations currently poses a challenge. Since full protection of many track sections is not economically viable, supplementary measures are also presented.</p>","PeriodicalId":55396,"journal":{"name":"Bautechnik","volume":"102 12","pages":"719-728"},"PeriodicalIF":0.5,"publicationDate":"2025-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145695287","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
DDI. Dr. techn. Thomas Moosbrugger, DI (FH) Dr. techn. Harald Krenn, DI Dr. techn. Ulrich Hübner, Susan Seppi, DI. Eugen Spitaler, DI Dr. techn. Andreas Neumüller
Timber-concrete composite: Part 1 – Contribution of the uplift protection to the load-bearing behaviour
Timber-concrete composite components are becoming increasingly important in timber construction and have reached a mature standard. The combination of the specific advantages of timber and concrete is at the heart of this development. Due to the brittle failure mechanisms of both materials, careful design of timber-concrete composite components is required. As part of the revision of Eurocode 5, the technical specification CEN/TS 19103 was introduced in 2022, which requires the use of uplift restraints to prevent the concrete compression zone from lifting off the timber component under load. This requirement is the subject of controversial scientific debate, as the mechanical requirements cannot be adequately verified with the simple models available. Reducing uplift restraints could provide economic benefits in terms of competitiveness but raises concerns about the durability of the composite joint. The verification of the uplift forces occurring is analysed in this study.
{"title":"Holzbetonverbund: Teil 1 – Beitrag der Abhebesicherung zum Tragverhalten","authors":"DDI. Dr. techn. Thomas Moosbrugger, DI (FH) Dr. techn. Harald Krenn, DI Dr. techn. Ulrich Hübner, Susan Seppi, DI. Eugen Spitaler, DI Dr. techn. Andreas Neumüller","doi":"10.1002/bate.70038","DOIUrl":"https://doi.org/10.1002/bate.70038","url":null,"abstract":"<p><b>Timber-concrete composite: Part 1 – Contribution of the uplift protection to the load-bearing behaviour</b></p><p>Timber-concrete composite components are becoming increasingly important in timber construction and have reached a mature standard. The combination of the specific advantages of timber and concrete is at the heart of this development. Due to the brittle failure mechanisms of both materials, careful design of timber-concrete composite components is required. As part of the revision of Eurocode 5, the technical specification CEN/TS 19103 was introduced in 2022, which requires the use of uplift restraints to prevent the concrete compression zone from lifting off the timber component under load. This requirement is the subject of controversial scientific debate, as the mechanical requirements cannot be adequately verified with the simple models available. Reducing uplift restraints could provide economic benefits in terms of competitiveness but raises concerns about the durability of the composite joint. The verification of the uplift forces occurring is analysed in this study.</p>","PeriodicalId":55396,"journal":{"name":"Bautechnik","volume":"102 S2","pages":"118-133"},"PeriodicalIF":0.5,"publicationDate":"2025-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145501078","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Die Niederrheinbrücke Wesel, mit 335 m Hauptspannweite die zweitgrößte Schrägseilbrücke Deutschlands, zeigte 2023 auffällige Seilschwingungen, was zu einer temporären Sperrung führte. Die Untersuchungen ergaben, dass aufgrund der engen Seilanordnung spezielle, wartungsfreundliche Dämpfer entwickelt und eingebaut wurden. Messungen bestätigten, dass die Dämpfung den Anforderungen entspricht und Inspektionen mit Robotern nicht behindert werden. Weitere Informationen im Beitrag von Werner Brand et al. Quelle: Werner Brand et al.
{"title":"Titelbild: Bautechnik 10/2025","authors":"","doi":"10.1002/bate.70033","DOIUrl":"https://doi.org/10.1002/bate.70033","url":null,"abstract":"<p><b>Zum Titelbild</b>:</p><p>Die Niederrheinbrücke Wesel, mit 335 m Hauptspannweite die zweitgrößte Schrägseilbrücke Deutschlands, zeigte 2023 auffällige Seilschwingungen, was zu einer temporären Sperrung führte. Die Untersuchungen ergaben, dass aufgrund der engen Seilanordnung spezielle, wartungsfreundliche Dämpfer entwickelt und eingebaut wurden. Messungen bestätigten, dass die Dämpfung den Anforderungen entspricht und Inspektionen mit Robotern nicht behindert werden. Weitere Informationen im Beitrag von Werner Brand et al. Quelle: Werner Brand et al.</p>","PeriodicalId":55396,"journal":{"name":"Bautechnik","volume":"102 10","pages":""},"PeriodicalIF":0.5,"publicationDate":"2025-10-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bate.70033","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145335650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}