Dipl.-Ing. David Gierlinger, Dipl.-Ing. Dr. techn. Georg Hansemann, Dipl.-Ing. Dr. techn. Robert Schmid, Assoc. Prof. Dipl.-Ing. Dr. nat. techn. Andreas Trummer, Univ.-Prof. Dr.-Ing. Stefan Peters
Design and construction with 3D concrete printing
Digital processes, such as thin-walled concrete 3D printing, have enabled the production of geometrically complex concrete components for some time now. Through the formwork-free production of load- and material-optimised components, the technology can play a decisive role in the development and manufacture of efficient concrete components. However, there is no standardised procedure for dealing with material properties and structural design. Research on printing geometry and construction, as well as reinforcement technology, should lay the groundwork for initial steps towards structural design, ultimately ensuring the production of optimised components. Based on the design of prototype projects, the basic research on construction details and structural mechanics is carried out up to the stage of realisation. The theoretical work is always accompanied by experimental validation. A significant amount of concrete and reinforcing steel can be saved in reinforced concrete ceilings by using innovative, thin-walled formwork elements. Reinforcement and prestressing technology, along with innovations in printing technology, enable the production of filigree façade panels. The research results clearly show, based on practical construction applications, that concrete 3D printing can contribute to reducing material consumption and the environmental impact of components in an economical way.
{"title":"Entwerfen und Konstruieren mit Beton-3D-Druck","authors":"Dipl.-Ing. David Gierlinger, Dipl.-Ing. Dr. techn. Georg Hansemann, Dipl.-Ing. Dr. techn. Robert Schmid, Assoc. Prof. Dipl.-Ing. Dr. nat. techn. Andreas Trummer, Univ.-Prof. Dr.-Ing. Stefan Peters","doi":"10.1002/bate.70063","DOIUrl":"https://doi.org/10.1002/bate.70063","url":null,"abstract":"<p><b>Design and construction with 3D concrete printing</b></p><p>Digital processes, such as thin-walled concrete 3D printing, have enabled the production of geometrically complex concrete components for some time now. Through the formwork-free production of load- and material-optimised components, the technology can play a decisive role in the development and manufacture of efficient concrete components. However, there is no standardised procedure for dealing with material properties and structural design. Research on printing geometry and construction, as well as reinforcement technology, should lay the groundwork for initial steps towards structural design, ultimately ensuring the production of optimised components. Based on the design of prototype projects, the basic research on construction details and structural mechanics is carried out up to the stage of realisation. The theoretical work is always accompanied by experimental validation. A significant amount of concrete and reinforcing steel can be saved in reinforced concrete ceilings by using innovative, thin-walled formwork elements. Reinforcement and prestressing technology, along with innovations in printing technology, enable the production of filigree façade panels. The research results clearly show, based on practical construction applications, that concrete 3D printing can contribute to reducing material consumption and the environmental impact of components in an economical way.</p>","PeriodicalId":55396,"journal":{"name":"Bautechnik","volume":"103 1","pages":"12-26"},"PeriodicalIF":0.5,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146136184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dr.-Ing. Daria Kovaleva, Carl Niklas Haufe M.Sc., Olga Miller M.Sc., Dipl.-Ing. Oliver Gericke, Benedikt Strahm M.Sc., Prof. Dr.-Ing. M. Arch. Lucio Blandini
Lightweight and sustainable construction with concrete – The role of digital design and manufacturing methods at ILEK
This article provides an overview of technologies developed at the Institute for Lightweight Structures and Conceptual Design (ILEK) in the field of lightweight concrete construction. It focuses on two research approaches: mesogradation of concrete components by means of mineral hollow bodies and zero-waste fabrication of geometrically complex concrete structures using recyclable sand formworks. Both processes allow for targeted optimisation of components, thereby reducing weight and enabling the implementation of circular production methods. The integration of digital design and manufacturing processes is crucial to this. Solutions to the challenges of technology transfer into practice are demonstrated using three full-scale (1:1) prototypes. Hereby, the entire process chain, from design and structural analysis to manufacturing and implementation, is considered. The demonstrators show how technology transfer can be successfully implemented and illustrate the potential of digital tools in promoting lightweight and sustainable concrete construction.
{"title":"Leicht und nachhaltig bauen mit Beton","authors":"Dr.-Ing. Daria Kovaleva, Carl Niklas Haufe M.Sc., Olga Miller M.Sc., Dipl.-Ing. Oliver Gericke, Benedikt Strahm M.Sc., Prof. Dr.-Ing. M. Arch. Lucio Blandini","doi":"10.1002/bate.70065","DOIUrl":"10.1002/bate.70065","url":null,"abstract":"<p><b>Lightweight and sustainable construction with concrete – The role of digital design and manufacturing methods at ILEK</b></p><p>This article provides an overview of technologies developed at the Institute for Lightweight Structures and Conceptual Design (ILEK) in the field of lightweight concrete construction. It focuses on two research approaches: mesogradation of concrete components by means of mineral hollow bodies and zero-waste fabrication of geometrically complex concrete structures using recyclable sand formworks. Both processes allow for targeted optimisation of components, thereby reducing weight and enabling the implementation of circular production methods. The integration of digital design and manufacturing processes is crucial to this. Solutions to the challenges of technology transfer into practice are demonstrated using three full-scale (1:1) prototypes. Hereby, the entire process chain, from design and structural analysis to manufacturing and implementation, is considered. The demonstrators show how technology transfer can be successfully implemented and illustrate the potential of digital tools in promoting lightweight and sustainable concrete construction.</p>","PeriodicalId":55396,"journal":{"name":"Bautechnik","volume":"103 1","pages":"36-48"},"PeriodicalIF":0.5,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146136183","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dipl.-Ing. David Gierlinger, Dipl.-Ing. Dr. techn. Georg Hansemann, Dipl.-Ing. Dr. techn. Robert Schmid, Assoc. Prof. Dipl.-Ing. Dr. nat. techn. Andreas Trummer, Univ.-Prof. Dr.-Ing. Stefan Peters
Design and construction with 3D concrete printing
Digital processes, such as thin-walled concrete 3D printing, have enabled the production of geometrically complex concrete components for some time now. Through the formwork-free production of load- and material-optimised components, the technology can play a decisive role in the development and manufacture of efficient concrete components. However, there is no standardised procedure for dealing with material properties and structural design. Research on printing geometry and construction, as well as reinforcement technology, should lay the groundwork for initial steps towards structural design, ultimately ensuring the production of optimised components. Based on the design of prototype projects, the basic research on construction details and structural mechanics is carried out up to the stage of realisation. The theoretical work is always accompanied by experimental validation. A significant amount of concrete and reinforcing steel can be saved in reinforced concrete ceilings by using innovative, thin-walled formwork elements. Reinforcement and prestressing technology, along with innovations in printing technology, enable the production of filigree façade panels. The research results clearly show, based on practical construction applications, that concrete 3D printing can contribute to reducing material consumption and the environmental impact of components in an economical way.
{"title":"Entwerfen und Konstruieren mit Beton-3D-Druck","authors":"Dipl.-Ing. David Gierlinger, Dipl.-Ing. Dr. techn. Georg Hansemann, Dipl.-Ing. Dr. techn. Robert Schmid, Assoc. Prof. Dipl.-Ing. Dr. nat. techn. Andreas Trummer, Univ.-Prof. Dr.-Ing. Stefan Peters","doi":"10.1002/bate.70063","DOIUrl":"https://doi.org/10.1002/bate.70063","url":null,"abstract":"<p><b>Design and construction with 3D concrete printing</b></p><p>Digital processes, such as thin-walled concrete 3D printing, have enabled the production of geometrically complex concrete components for some time now. Through the formwork-free production of load- and material-optimised components, the technology can play a decisive role in the development and manufacture of efficient concrete components. However, there is no standardised procedure for dealing with material properties and structural design. Research on printing geometry and construction, as well as reinforcement technology, should lay the groundwork for initial steps towards structural design, ultimately ensuring the production of optimised components. Based on the design of prototype projects, the basic research on construction details and structural mechanics is carried out up to the stage of realisation. The theoretical work is always accompanied by experimental validation. A significant amount of concrete and reinforcing steel can be saved in reinforced concrete ceilings by using innovative, thin-walled formwork elements. Reinforcement and prestressing technology, along with innovations in printing technology, enable the production of filigree façade panels. The research results clearly show, based on practical construction applications, that concrete 3D printing can contribute to reducing material consumption and the environmental impact of components in an economical way.</p>","PeriodicalId":55396,"journal":{"name":"Bautechnik","volume":"103 1","pages":"12-26"},"PeriodicalIF":0.5,"publicationDate":"2025-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146136185","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Digital building fabrication – The path towards the unity of material, process and form – A personal reflection from research and practice
This paper reflects, from a personal perspective, on the technological development of digital building fabrication, focusing on the interaction of material, process, and form. Their unity has always been the foundation of building and must be continuously redefined by technological progress. While in earlier eras the unity of material, process and form was characterised by handicraft techniques, digital building fabrication defines the next crucial technological step: digitally controlled and continuously networked – from planning to fabrication. The free-form architectures of the 2000s mark the beginning of digital building fabrication. They were driven by architectural form, and for the first time, integrated digital workflows were developed for their realisation. However, it is only the further research and developments of recent years, particularly in additive manufacturing, which demonstrate the transformative potential of digital building fabrication for the construction industry. And it is the key to bringing the cultural principle in building of the unity of material, process and form into the digital age. At the same time, digital building fabrication opens the door to Construction Industry 5.0, in which people, machines and materials are digitally networked. Finally, only through the unity of material, process and form can economic, ecological and social requirements be reconciled in the future.
{"title":"Digitale Baufabrikation – der Weg zur Einheit von Material, Prozess und Form","authors":"Univ.-Prof. Dr.-Ing. Harald Kloft","doi":"10.1002/bate.70060","DOIUrl":"10.1002/bate.70060","url":null,"abstract":"<p><b>Digital building fabrication – The path towards the unity of material, process and form – A personal reflection from research and practice</b></p><p>This paper reflects, from a personal perspective, on the technological development of digital building fabrication, focusing on the interaction of material, process, and form. Their unity has always been the foundation of building and must be continuously redefined by technological progress. While in earlier eras the unity of material, process and form was characterised by handicraft techniques, digital building fabrication defines the next crucial technological step: digitally controlled and continuously networked – from planning to fabrication. The free-form architectures of the 2000s mark the beginning of digital building fabrication. They were driven by architectural form, and for the first time, integrated digital workflows were developed for their realisation. However, it is only the further research and developments of recent years, particularly in additive manufacturing, which demonstrate the transformative potential of digital building fabrication for the construction industry. And it is the key to bringing the cultural principle in building of the unity of material, process and form into the digital age. At the same time, digital building fabrication opens the door to Construction Industry 5.0, in which people, machines and materials are digitally networked. Finally, only through the unity of material, process and form can economic, ecological and social requirements be reconciled in the future.</p>","PeriodicalId":55396,"journal":{"name":"Bautechnik","volume":"103 1","pages":"60-73"},"PeriodicalIF":0.5,"publicationDate":"2025-12-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"146129860","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Univ. Prof. Dipl.-Ing. Dr. techn. habil. Robert Hofmann
<p>Der Klimawandel und die Herausforderungen der dadurch zu bewältigenden Naturgefahren stellen eine zunehmende Aufgabe für die nächsten Jahre dar. Dafür sind vor allem geotechnische und geologische Aspekte von entscheidender Bedeutung. Die Beiträge in diesem Heft zum Themenschwerpunkt Naturgefahren verdeutlichen diesen Umstand. Die Abgrenzung und Unterschiede bei der Planung, Ausführung, Wartung und Kontrolle von Schutzbauwerken gegen Naturgefahren zum Konstruktiven Ingenieurbau stellt dabei einen bedeutenden Aspekt dar. In Österreich wurde vor vielen Jahren mit der Standardisierung in den ÖNORM-Regelwerken begonnen, um die speziellen Anforderungen für Schutzbauwerke in Wildbächen, Lawinenschutz sowie Schutzbauwerke gegen Steinschlag darzustellen. Ein wesentlicher Punkt bei Schutzbauwerken gegen Naturgefahren ist die schwer einschätzbare Größe des Bemessungsereignisses in Verbindung mit einer wirtschaftlichen und dauerhaften Bauweise. Daher ist grundsätzlich bei derartigen Schutzbauten mit Schäden zufolge des abgeschätzten Bemessungsereignisses zu rechnen. Die neue ÖNORM B 4800, erschienen am 01. April 2025, bildet die entscheidende Grundlage für Querbauwerke in Wildbächen.</p><p>Sicherungsbauwerke gegen Rutschungen bei Infrastrukturbauwerken nehmen, bedingt durch den Klimawandel – rasche Temperaturwechsel in Kombination mit Starkniederschlägen sowie langen Trockenzeiten –, exorbitant zu. Infrastrukturträger müssen in Zukunft bedacht auf Konstruktionen nehmen, die bei solchen Wetterextremen, eine längere Nutzungsdauer ermöglichen. Hangmuren im Einflussbereich von Schienen oder Straßen führen zwangsläufig zu enormen Beeinträchtigungen. Dabei wird es auch eine Herausforderung sein, die finanziellen Mittel für die Errichtung sowie Erhaltung von Schutzbauwerken, Sicherungen von Böschungen sowie das Monitoring bereitzustellen. Um wirtschaftliche und neue innovative Bauweisen erproben zu können, sind letztlich Sanierungen in Kauf zu nehmen. Einen effizienten Beitrag in diesem Zusammenhang können Hang- und Ufersicherungen aus Holzwolle-Faschinen sowie Niedrigenergiezäune (Ösenankerzäune) liefern. Gerade Straßendämme sind in den vergangenen Jahren zunehmend von oberflächennahen Rutschungen, in Zusammenhang mit den Auswirkungen des Klimawandels, betroffen. Die Sanierungen der oft nur örtlichen Abschnitte sind in der Regel extrem kostenintensiv und stellen keine Dauerlösung für die Zukunft dar. Der an die jeweilige Region angepasste Bewuchs und die Konstruktionsweise kann dabei zu einer wesentlichen Verbesserung führen.</p><p>Geogitter-bewehrte Erdbauwerke ermöglichen in der Regel eine effizientere CO<sub>2</sub>e-Bilanz. Durch gezielten Einsatz der Baustoffe in der Nähe des Baufelds werden die Transportwege reduziert. Gerade bei Schutzdämmen gegen Steinschlag und Lawinen haben sich mit Geogittern bewehrte Bauwerke durch ihre hohe Duktilität und Dauerhaftigkeit sehr bewährt. In der Praxis wird diesem Umstand durch die neue „ÖNORM B 4801 – Technischer Lawi
{"title":"Naturgefahren im Zusammenhang mit Klimawandel","authors":"Univ. Prof. Dipl.-Ing. Dr. techn. habil. Robert Hofmann","doi":"10.1002/bate.70059","DOIUrl":"https://doi.org/10.1002/bate.70059","url":null,"abstract":"<p>Der Klimawandel und die Herausforderungen der dadurch zu bewältigenden Naturgefahren stellen eine zunehmende Aufgabe für die nächsten Jahre dar. Dafür sind vor allem geotechnische und geologische Aspekte von entscheidender Bedeutung. Die Beiträge in diesem Heft zum Themenschwerpunkt Naturgefahren verdeutlichen diesen Umstand. Die Abgrenzung und Unterschiede bei der Planung, Ausführung, Wartung und Kontrolle von Schutzbauwerken gegen Naturgefahren zum Konstruktiven Ingenieurbau stellt dabei einen bedeutenden Aspekt dar. In Österreich wurde vor vielen Jahren mit der Standardisierung in den ÖNORM-Regelwerken begonnen, um die speziellen Anforderungen für Schutzbauwerke in Wildbächen, Lawinenschutz sowie Schutzbauwerke gegen Steinschlag darzustellen. Ein wesentlicher Punkt bei Schutzbauwerken gegen Naturgefahren ist die schwer einschätzbare Größe des Bemessungsereignisses in Verbindung mit einer wirtschaftlichen und dauerhaften Bauweise. Daher ist grundsätzlich bei derartigen Schutzbauten mit Schäden zufolge des abgeschätzten Bemessungsereignisses zu rechnen. Die neue ÖNORM B 4800, erschienen am 01. April 2025, bildet die entscheidende Grundlage für Querbauwerke in Wildbächen.</p><p>Sicherungsbauwerke gegen Rutschungen bei Infrastrukturbauwerken nehmen, bedingt durch den Klimawandel – rasche Temperaturwechsel in Kombination mit Starkniederschlägen sowie langen Trockenzeiten –, exorbitant zu.\u0000Infrastrukturträger müssen in Zukunft bedacht auf Konstruktionen nehmen, die bei solchen Wetterextremen, eine längere Nutzungsdauer ermöglichen. Hangmuren im Einflussbereich von Schienen oder Straßen führen zwangsläufig zu enormen Beeinträchtigungen. Dabei wird es auch eine Herausforderung sein, die finanziellen Mittel für die Errichtung sowie Erhaltung von Schutzbauwerken, Sicherungen von Böschungen sowie das Monitoring bereitzustellen. Um wirtschaftliche und neue innovative Bauweisen erproben zu können, sind letztlich Sanierungen in Kauf zu nehmen. Einen effizienten Beitrag in diesem Zusammenhang können Hang- und Ufersicherungen aus Holzwolle-Faschinen sowie Niedrigenergiezäune (Ösenankerzäune) liefern. Gerade Straßendämme sind in den vergangenen Jahren zunehmend von oberflächennahen Rutschungen, in Zusammenhang mit den Auswirkungen des Klimawandels, betroffen. Die Sanierungen der oft nur örtlichen Abschnitte sind in der Regel extrem kostenintensiv und stellen keine Dauerlösung für die Zukunft dar. Der an die jeweilige Region angepasste Bewuchs und die Konstruktionsweise kann dabei zu einer wesentlichen Verbesserung führen.</p><p>Geogitter-bewehrte Erdbauwerke ermöglichen in der Regel eine effizientere CO<sub>2</sub>e-Bilanz. Durch gezielten Einsatz der Baustoffe in der Nähe des Baufelds werden die Transportwege reduziert. Gerade bei Schutzdämmen gegen Steinschlag und Lawinen haben sich mit Geogittern bewehrte Bauwerke durch ihre hohe Duktilität und Dauerhaftigkeit sehr bewährt. In der Praxis wird diesem Umstand durch die neue „ÖNORM B 4801 – Technischer Lawi","PeriodicalId":55396,"journal":{"name":"Bautechnik","volume":"102 12","pages":"717-718"},"PeriodicalIF":0.5,"publicationDate":"2025-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/bate.70059","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"145695573","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}