Pub Date : 1977-09-01DOI: 10.1128/br.41.3.754-808.1977
R Whittenbury, C S Dow
PREVIEW ...................................... 754 PART A-INTRODUCTION ...................................... 755 Cellular Events ...................................... 755 Cell Cycle Types ...................................... 755 Levels of Organization .......................................................-756 Budding-What It Means in Bacteria ...................................... 756 Intercalation .......................................---------------.--.760 Polar growth...............................760 Budding Bacteria as Models for the Study of Morphogenesis and Differentiation 762 PART B-BIOLOGY OF THE CELL CYCLES OF R. VANNIELII ..... ........ 762 Review of Published Information on R. vannielii .............................. 762 Enrichment, Isolation, and Cultivation .................................... 763 Physiological and Biochemical Properties ..................................... 764 Characterization of DNA ................................................... 764 Photopigments .....................................-------------...764 Cytochromes ......................................------------.-.---.--.764 Growth physiology.764........................... . . 764 Cell Cycle Morphology of R. vannielii ..............-.-.---.-...---.....--..765 Synchronous cultures ......................................................-766 Synchrony by filtration .................................. 766 Synchronous Growth of Rhodomicrobium Swarm Cells 767 Assay of "landmark" events in liquid culture ................................ 767 Vegetative Cell Cycle ........................................................-769 Maturation sequence .................................... 769 Reproductive sequence .....................................................-769 Subsequent development .................................... 770 Other Cell Types Formed ...................-.-.-.-.-.-.-.772 "Double-yolk" cells ......................................--.-.-----772 Exospore formation......................--.-.---.........772 Exospores.................. 772 Occurrence and collection...................----------------772 Morphology and formation ....................--.-..----772 Germination and outgrowth .................. 774 Physiological properties .................................................... 774 Fine Structure of Vegetative Cells .................. 777 Fine structure.................. 777 Fine Structure of Exospores ...................-.-.-.-.-.-.-.-.-.-.782 Synthesis of Chlorophyll, Protein, DNA, and RNA in Synchronized Cells. 788 Chlorophyll synthesis............... 788 Protein synthesis and inhibition ............................------789 RNA synthesis............................................................. 794 DNA synthesis............................................................. 794 Reproduction................................------------------800 CONCLUSION.805................................................. 805 LITERATURE CITED ...............
{"title":"Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria.","authors":"R Whittenbury, C S Dow","doi":"10.1128/br.41.3.754-808.1977","DOIUrl":"https://doi.org/10.1128/br.41.3.754-808.1977","url":null,"abstract":"PREVIEW ...................................... 754 PART A-INTRODUCTION ...................................... 755 Cellular Events ...................................... 755 Cell Cycle Types ...................................... 755 Levels of Organization .......................................................-756 Budding-What It Means in Bacteria ...................................... 756 Intercalation .......................................---------------.--.760 Polar growth...............................760 Budding Bacteria as Models for the Study of Morphogenesis and Differentiation 762 PART B-BIOLOGY OF THE CELL CYCLES OF R. VANNIELII ..... ........ 762 Review of Published Information on R. vannielii .............................. 762 Enrichment, Isolation, and Cultivation .................................... 763 Physiological and Biochemical Properties ..................................... 764 Characterization of DNA ................................................... 764 Photopigments .....................................-------------...764 Cytochromes ......................................------------.-.---.--.764 Growth physiology.764........................... . . 764 Cell Cycle Morphology of R. vannielii ..............-.-.---.-...---.....--..765 Synchronous cultures ......................................................-766 Synchrony by filtration .................................. 766 Synchronous Growth of Rhodomicrobium Swarm Cells 767 Assay of \"landmark\" events in liquid culture ................................ 767 Vegetative Cell Cycle ........................................................-769 Maturation sequence .................................... 769 Reproductive sequence .....................................................-769 Subsequent development .................................... 770 Other Cell Types Formed ...................-.-.-.-.-.-.-.772 \"Double-yolk\" cells ......................................--.-.-----772 Exospore formation......................--.-.---.........772 Exospores.................. 772 Occurrence and collection...................----------------772 Morphology and formation ....................--.-..----772 Germination and outgrowth .................. 774 Physiological properties .................................................... 774 Fine Structure of Vegetative Cells .................. 777 Fine structure.................. 777 Fine Structure of Exospores ...................-.-.-.-.-.-.-.-.-.-.782 Synthesis of Chlorophyll, Protein, DNA, and RNA in Synchronized Cells. 788 Chlorophyll synthesis............... 788 Protein synthesis and inhibition ............................------789 RNA synthesis............................................................. 794 DNA synthesis............................................................. 794 Reproduction................................------------------800 CONCLUSION.805................................................. 805 LITERATURE CITED ...............","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":"41 3","pages":"754-808"},"PeriodicalIF":0.0,"publicationDate":"1977-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC414022/pdf/bactrev00057-0220.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"11546702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1977-09-01DOI: 10.1128/br.41.3.711-753.1977
F G Priest
As the decade progresses this prediction is rapidly being realized, and microbial enzymes are becoming increasingly important in such diverse fields as medicine, brewing, and timber preservation. The genus Bacillus has played a major role in this development as evidenced by the distribution of the papers read at the Fifth International Fermentation Symposium, 1976 (64). Of 23 papers in the session devoted to "Microbial Enzymes of Industrial Interest" no less than ten were concerned with enzymes from bacilli. Reasons for the predominance of these bacteria in this area of study are several. First, they comprise a group of chemoorganotrophs that can be easily maintained and cultivated and yet are markedly heterogeneous in character. Psychrophiles, mesophiles, and thermophiles, in addition to alkalophilic, neutrophilic, and acidophilic species are well represented. Furthermore, virtually all 48 species of the genus listed in Bergey's Manual ofDeterminative Bacteriology (92) secrete a variety of soluble extracellular enzymes, which reflects the diversity of the parental habitats. Amylases that can liquefy starch under pressure at 11000 (194) and proteases that are stable and active at pH 12.0 (6) are extreme examples of enzyme adaption. This article will attempt to review the recent literature concerned with the characterization and properties of the exoenzymes synthesized by the bacilli and the control and mechanisms of their synthesis. It is restricted to this genus because the commercial importance of extracellular enzymes and academic interest in the process of sporulation have prompted a considerable amount of research into this general area. Nevertheless, in the final section I have attempted to equate our present knowledge of exoenzyme synthesis in procaryotes other than
{"title":"Extracellular enzyme synthesis in the genus Bacillus.","authors":"F G Priest","doi":"10.1128/br.41.3.711-753.1977","DOIUrl":"https://doi.org/10.1128/br.41.3.711-753.1977","url":null,"abstract":"As the decade progresses this prediction is rapidly being realized, and microbial enzymes are becoming increasingly important in such diverse fields as medicine, brewing, and timber preservation. The genus Bacillus has played a major role in this development as evidenced by the distribution of the papers read at the Fifth International Fermentation Symposium, 1976 (64). Of 23 papers in the session devoted to \"Microbial Enzymes of Industrial Interest\" no less than ten were concerned with enzymes from bacilli. Reasons for the predominance of these bacteria in this area of study are several. First, they comprise a group of chemoorganotrophs that can be easily maintained and cultivated and yet are markedly heterogeneous in character. Psychrophiles, mesophiles, and thermophiles, in addition to alkalophilic, neutrophilic, and acidophilic species are well represented. Furthermore, virtually all 48 species of the genus listed in Bergey's Manual ofDeterminative Bacteriology (92) secrete a variety of soluble extracellular enzymes, which reflects the diversity of the parental habitats. Amylases that can liquefy starch under pressure at 11000 (194) and proteases that are stable and active at pH 12.0 (6) are extreme examples of enzyme adaption. This article will attempt to review the recent literature concerned with the characterization and properties of the exoenzymes synthesized by the bacilli and the control and mechanisms of their synthesis. It is restricted to this genus because the commercial importance of extracellular enzymes and academic interest in the process of sporulation have prompted a considerable amount of research into this general area. Nevertheless, in the final section I have attempted to equate our present knowledge of exoenzyme synthesis in procaryotes other than","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":"41 3","pages":"711-53"},"PeriodicalIF":0.0,"publicationDate":"1977-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC414021/pdf/bactrev00057-0177.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"11546705","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1977-09-01DOI: 10.1128/br.41.3.543-567.1977
R M Friedman
INTRODUCTION.............................................................. 543 ESTABLISHMENT OF THE ANTIVIRAL STATE ........... .................... 544 Interferon Binding ................... ............................. 544 Development of Antiviral Activity................................. 546 LOCUS OF THE INTERFERON-INDUCED INHIBITION OF VIRUS GROWTH. . 547 Evidence that Interferon Treatment Inhibits Virus Uncoating ....... ........... 547 Evidence that Interferon Treatment Inhibits Transcription of the Viral Genome. 547 Evidence that Interferon Treatment Inhibits Viral Protein Synthesis ..... ...... 550 Observations in virus-infected cells ........................... 551 Observations in cell-free systems ....... .................... 552 Evidence that Interferon Treatment Inhibits Terminal Events in the Replication Cycle of Murine Leukemia Viruses ........ ................. 557 INTERFERON TREATMENT IS INEFFECTIVE IN SYSTEMS IN WHICH THE SV40 GENOME IS INTEGRATED INTO AN INTERFERON-RESISTANT VIRUS OR A HOST GENOME ........................... 559 DISCUSSION ............................. 560 LITERATURE CITED........................... 562
{"title":"Antiviral activity of interferons.","authors":"R M Friedman","doi":"10.1128/br.41.3.543-567.1977","DOIUrl":"https://doi.org/10.1128/br.41.3.543-567.1977","url":null,"abstract":"INTRODUCTION.............................................................. 543 ESTABLISHMENT OF THE ANTIVIRAL STATE ........... .................... 544 Interferon Binding ................... ............................. 544 Development of Antiviral Activity................................. 546 LOCUS OF THE INTERFERON-INDUCED INHIBITION OF VIRUS GROWTH. . 547 Evidence that Interferon Treatment Inhibits Virus Uncoating ....... ........... 547 Evidence that Interferon Treatment Inhibits Transcription of the Viral Genome. 547 Evidence that Interferon Treatment Inhibits Viral Protein Synthesis ..... ...... 550 Observations in virus-infected cells ........................... 551 Observations in cell-free systems ....... .................... 552 Evidence that Interferon Treatment Inhibits Terminal Events in the Replication Cycle of Murine Leukemia Viruses ........ ................. 557 INTERFERON TREATMENT IS INEFFECTIVE IN SYSTEMS IN WHICH THE SV40 GENOME IS INTEGRATED INTO AN INTERFERON-RESISTANT VIRUS OR A HOST GENOME ........................... 559 DISCUSSION ............................. 560 LITERATURE CITED........................... 562","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":"41 3","pages":"543-67"},"PeriodicalIF":0.0,"publicationDate":"1977-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC414016/pdf/bactrev00057-0009.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"11415503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1977-09-01DOI: 10.1128/MMBR.41.3.543-567.1977
R. Friedman
INTRODUCTION.............................................................. 543 ESTABLISHMENT OF THE ANTIVIRAL STATE ........... .................... 544 Interferon Binding ................... ............................. 544 Development of Antiviral Activity................................. 546 LOCUS OF THE INTERFERON-INDUCED INHIBITION OF VIRUS GROWTH. . 547 Evidence that Interferon Treatment Inhibits Virus Uncoating ....... ........... 547 Evidence that Interferon Treatment Inhibits Transcription of the Viral Genome. 547 Evidence that Interferon Treatment Inhibits Viral Protein Synthesis ..... ...... 550 Observations in virus-infected cells ........................... 551 Observations in cell-free systems ....... .................... 552 Evidence that Interferon Treatment Inhibits Terminal Events in the Replication Cycle of Murine Leukemia Viruses ........ ................. 557 INTERFERON TREATMENT IS INEFFECTIVE IN SYSTEMS IN WHICH THE SV40 GENOME IS INTEGRATED INTO AN INTERFERON-RESISTANT VIRUS OR A HOST GENOME ........................... 559 DISCUSSION ............................. 560 LITERATURE CITED........................... 562
{"title":"Antiviral activity of interferons.","authors":"R. Friedman","doi":"10.1128/MMBR.41.3.543-567.1977","DOIUrl":"https://doi.org/10.1128/MMBR.41.3.543-567.1977","url":null,"abstract":"INTRODUCTION.............................................................. 543 ESTABLISHMENT OF THE ANTIVIRAL STATE ........... .................... 544 Interferon Binding ................... ............................. 544 Development of Antiviral Activity................................. 546 LOCUS OF THE INTERFERON-INDUCED INHIBITION OF VIRUS GROWTH. . 547 Evidence that Interferon Treatment Inhibits Virus Uncoating ....... ........... 547 Evidence that Interferon Treatment Inhibits Transcription of the Viral Genome. 547 Evidence that Interferon Treatment Inhibits Viral Protein Synthesis ..... ...... 550 Observations in virus-infected cells ........................... 551 Observations in cell-free systems ....... .................... 552 Evidence that Interferon Treatment Inhibits Terminal Events in the Replication Cycle of Murine Leukemia Viruses ........ ................. 557 INTERFERON TREATMENT IS INEFFECTIVE IN SYSTEMS IN WHICH THE SV40 GENOME IS INTEGRATED INTO AN INTERFERON-RESISTANT VIRUS OR A HOST GENOME ........................... 559 DISCUSSION ............................. 560 LITERATURE CITED........................... 562","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":"41 3 1","pages":"543-67"},"PeriodicalIF":0.0,"publicationDate":"1977-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63729324","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1977-09-01DOI: 10.1128/br.41.3.667-710.1977
I Orskov, F Orskov, B Jann, K Jann
{"title":"Serology, chemistry, and genetics of O and K antigens of Escherichia coli.","authors":"I Orskov, F Orskov, B Jann, K Jann","doi":"10.1128/br.41.3.667-710.1977","DOIUrl":"https://doi.org/10.1128/br.41.3.667-710.1977","url":null,"abstract":"","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":"41 3","pages":"667-710"},"PeriodicalIF":0.0,"publicationDate":"1977-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC414020/pdf/bactrev00057-0133.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"11546701","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1977-09-01DOI: 10.1128/MMBR.41.3.754-808.1977
R. Whittenbury, C. Dow
PREVIEW ...................................... 754 PART A-INTRODUCTION ...................................... 755 Cellular Events ...................................... 755 Cell Cycle Types ...................................... 755 Levels of Organization .......................................................-756 Budding-What It Means in Bacteria ...................................... 756 Intercalation .......................................---------------.--.760 Polar growth...............................760 Budding Bacteria as Models for the Study of Morphogenesis and Differentiation 762 PART B-BIOLOGY OF THE CELL CYCLES OF R. VANNIELII ..... ........ 762 Review of Published Information on R. vannielii .............................. 762 Enrichment, Isolation, and Cultivation .................................... 763 Physiological and Biochemical Properties ..................................... 764 Characterization of DNA ................................................... 764 Photopigments .....................................-------------...764 Cytochromes ......................................------------.-.---.--.764 Growth physiology.764........................... . . 764 Cell Cycle Morphology of R. vannielii ..............-.-.---.-...---.....--..765 Synchronous cultures ......................................................-766 Synchrony by filtration .................................. 766 Synchronous Growth of Rhodomicrobium Swarm Cells 767 Assay of "landmark" events in liquid culture ................................ 767 Vegetative Cell Cycle ........................................................-769 Maturation sequence .................................... 769 Reproductive sequence .....................................................-769 Subsequent development .................................... 770 Other Cell Types Formed ...................-.-.-.-.-.-.-.772 "Double-yolk" cells ......................................--.-.-----772 Exospore formation......................--.-.---.........772 Exospores.................. 772 Occurrence and collection...................----------------772 Morphology and formation ....................--.-..----772 Germination and outgrowth .................. 774 Physiological properties .................................................... 774 Fine Structure of Vegetative Cells .................. 777 Fine structure.................. 777 Fine Structure of Exospores ...................-.-.-.-.-.-.-.-.-.-.782 Synthesis of Chlorophyll, Protein, DNA, and RNA in Synchronized Cells. 788 Chlorophyll synthesis............... 788 Protein synthesis and inhibition ............................------789 RNA synthesis............................................................. 794 DNA synthesis............................................................. 794 Reproduction................................------------------800 CONCLUSION.805................................................. 805 LITERATURE CITED ...............
{"title":"Morphogenesis and differentiation in Rhodomicrobium vannielii and other budding and prosthecate bacteria.","authors":"R. Whittenbury, C. Dow","doi":"10.1128/MMBR.41.3.754-808.1977","DOIUrl":"https://doi.org/10.1128/MMBR.41.3.754-808.1977","url":null,"abstract":"PREVIEW ...................................... 754 PART A-INTRODUCTION ...................................... 755 Cellular Events ...................................... 755 Cell Cycle Types ...................................... 755 Levels of Organization .......................................................-756 Budding-What It Means in Bacteria ...................................... 756 Intercalation .......................................---------------.--.760 Polar growth...............................760 Budding Bacteria as Models for the Study of Morphogenesis and Differentiation 762 PART B-BIOLOGY OF THE CELL CYCLES OF R. VANNIELII ..... ........ 762 Review of Published Information on R. vannielii .............................. 762 Enrichment, Isolation, and Cultivation .................................... 763 Physiological and Biochemical Properties ..................................... 764 Characterization of DNA ................................................... 764 Photopigments .....................................-------------...764 Cytochromes ......................................------------.-.---.--.764 Growth physiology.764........................... . . 764 Cell Cycle Morphology of R. vannielii ..............-.-.---.-...---.....--..765 Synchronous cultures ......................................................-766 Synchrony by filtration .................................. 766 Synchronous Growth of Rhodomicrobium Swarm Cells 767 Assay of \"landmark\" events in liquid culture ................................ 767 Vegetative Cell Cycle ........................................................-769 Maturation sequence .................................... 769 Reproductive sequence .....................................................-769 Subsequent development .................................... 770 Other Cell Types Formed ...................-.-.-.-.-.-.-.772 \"Double-yolk\" cells ......................................--.-.-----772 Exospore formation......................--.-.---.........772 Exospores.................. 772 Occurrence and collection...................----------------772 Morphology and formation ....................--.-..----772 Germination and outgrowth .................. 774 Physiological properties .................................................... 774 Fine Structure of Vegetative Cells .................. 777 Fine structure.................. 777 Fine Structure of Exospores ...................-.-.-.-.-.-.-.-.-.-.782 Synthesis of Chlorophyll, Protein, DNA, and RNA in Synchronized Cells. 788 Chlorophyll synthesis............... 788 Protein synthesis and inhibition ............................------789 RNA synthesis............................................................. 794 DNA synthesis............................................................. 794 Reproduction................................------------------800 CONCLUSION.805................................................. 805 LITERATURE CITED ...............","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":"41 3 1","pages":"754-808"},"PeriodicalIF":0.0,"publicationDate":"1977-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63729744","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1977-09-01DOI: 10.1128/br.41.3.568-594.1977
R H Doi
INTRODUCTION.............................................................. 568 PROPERTIES OF PROCARYOTIC RPase ............ ......................... 569 Subunit Structure ......................................................... 569 Functions of the Subunits .................................................... 570 Genetics of the RPase Subunits ............................................... 570 Accessory Regulatory Factors ........................ ........................ 572 Recognition Sites on DNA for RPase and Accessory Regulatory Factors ..... ... 573 RPase ROLE IN PROCARYOTIC DEVELOPMENTAL SYSTEMS ...... ......... 575 T4 Phage Development ........................................................ 575 T7 Phage Development ....................................................... 581 Lambda Phage Development ................................................ 582 B. subtilis Phage SP01 Development ............... ........................... 583 B. subtiis Sporulation....................................................... 584 CONCLUSIONS ............................................................... 586 LITERATURE CITED......................................................... 587
{"title":"Role of ribonucleic acid polymerase in gene selection in procaryotes.","authors":"R H Doi","doi":"10.1128/br.41.3.568-594.1977","DOIUrl":"https://doi.org/10.1128/br.41.3.568-594.1977","url":null,"abstract":"INTRODUCTION.............................................................. 568 PROPERTIES OF PROCARYOTIC RPase ............ ......................... 569 Subunit Structure ......................................................... 569 Functions of the Subunits .................................................... 570 Genetics of the RPase Subunits ............................................... 570 Accessory Regulatory Factors ........................ ........................ 572 Recognition Sites on DNA for RPase and Accessory Regulatory Factors ..... ... 573 RPase ROLE IN PROCARYOTIC DEVELOPMENTAL SYSTEMS ...... ......... 575 T4 Phage Development ........................................................ 575 T7 Phage Development ....................................................... 581 Lambda Phage Development ................................................ 582 B. subtilis Phage SP01 Development ............... ........................... 583 B. subtiis Sporulation....................................................... 584 CONCLUSIONS ............................................................... 586 LITERATURE CITED......................................................... 587","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":"41 3","pages":"568-94"},"PeriodicalIF":0.0,"publicationDate":"1977-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC414017/pdf/bactrev00057-0034.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"11617516","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1977-09-01DOI: 10.1128/br.41.3.809-809.1977
[This corrects the article on p. 100 in vol. 41.].
[这是对第41卷第100页的文章的更正]。
{"title":"Energy conservation in chemotrophic anaerobic bacteria.","authors":"","doi":"10.1128/br.41.3.809-809.1977","DOIUrl":"https://doi.org/10.1128/br.41.3.809-809.1977","url":null,"abstract":"<p><p>[This corrects the article on p. 100 in vol. 41.].</p>","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":" ","pages":"809"},"PeriodicalIF":0.0,"publicationDate":"1977-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC414023/pdf/bactrev00057-0275.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25747163","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1977-09-01DOI: 10.1128/br.41.3.595-635.1977
D A Hopwood, M J Merrick
INTRODUCTION .............................................................. 596 INCIDENCE OF ANTIBIOTIC PRODUCTION ............ .. ................... 596 General...................................................................... 596 Fungi........................................................................ 597 Actinomycetes ............................................................... 597 Eubacteria .................................................................. 598 GENETIC SYSTEMS AVAILABLE IN ANTIBIOTIC-PRODUCING MICROORGANISMS ............................................................... 598 General..................................................................... 598 Fungi........................................................................ 599 Actinomycetes ............................................................... 601 Transformation in Thermoactinomyces ......... ............................. 601 Conjugation in other genera ................................................ 601 Conjugation and its consequences in Streptomyces ....... .................... 602 Linkage analysis in Streptomyces ........... ................................ 602 Heteroclones in Streptomyces ............ .................................. 604 Heterokaryons in Streptomyces ........... .................................. 604 Plasmids in Streptomyces ............... ................................... 605 Interspecific recombination in Streptomyces ........ ......................... 605 Recombination in N. mediterranei .......... ................................ 605 Recombination in Micromonospora .......... ................................ 605 Recombination by protoplast fusion......................................... 605 Eubacteria.................................................................. 605 SOME REMARKS ON THE PHYSIOLOGY OF ANTIBIOTIC PRODUCTION ... 606 Primary and Secondary Metabolites .......... ................................ 606 Regulation of Secondary Metabolic Pathways .................................. 606 Pleiotropic Effects of Mutations on Antibiotic Production ........ .............. 607 The Adaptive Significance of Antibiotics ................ ...................... 607 "Low Specificity" of Secondary Metabolic Enzymes ........ ................... 607 Chemical Classes of Antibiotics ............................................... 608 Why "Biogenesis"?.................................................. 608 MUTATIONAL STUDIES OF ANTIBIOTIC SYNTHESIS ......... .............. 608 Fungi....................................................................... 608 P. chrysogenum ..................... ............................ 608 A. nidulans ................................................ 610 C. acremonium ................... .............................. 611 P. griseofulvum ..................... ............................ 613 P. patulum ............. .................................... 614 0. mucida ............. ...........
{"title":"Genetics of antibiotic production.","authors":"D A Hopwood, M J Merrick","doi":"10.1128/br.41.3.595-635.1977","DOIUrl":"https://doi.org/10.1128/br.41.3.595-635.1977","url":null,"abstract":"INTRODUCTION .............................................................. 596 INCIDENCE OF ANTIBIOTIC PRODUCTION ............ .. ................... 596 General...................................................................... 596 Fungi........................................................................ 597 Actinomycetes ............................................................... 597 Eubacteria .................................................................. 598 GENETIC SYSTEMS AVAILABLE IN ANTIBIOTIC-PRODUCING MICROORGANISMS ............................................................... 598 General..................................................................... 598 Fungi........................................................................ 599 Actinomycetes ............................................................... 601 Transformation in Thermoactinomyces ......... ............................. 601 Conjugation in other genera ................................................ 601 Conjugation and its consequences in Streptomyces ....... .................... 602 Linkage analysis in Streptomyces ........... ................................ 602 Heteroclones in Streptomyces ............ .................................. 604 Heterokaryons in Streptomyces ........... .................................. 604 Plasmids in Streptomyces ............... ................................... 605 Interspecific recombination in Streptomyces ........ ......................... 605 Recombination in N. mediterranei .......... ................................ 605 Recombination in Micromonospora .......... ................................ 605 Recombination by protoplast fusion......................................... 605 Eubacteria.................................................................. 605 SOME REMARKS ON THE PHYSIOLOGY OF ANTIBIOTIC PRODUCTION ... 606 Primary and Secondary Metabolites .......... ................................ 606 Regulation of Secondary Metabolic Pathways .................................. 606 Pleiotropic Effects of Mutations on Antibiotic Production ........ .............. 607 The Adaptive Significance of Antibiotics ................ ...................... 607 \"Low Specificity\" of Secondary Metabolic Enzymes ........ ................... 607 Chemical Classes of Antibiotics ............................................... 608 Why \"Biogenesis\"?.................................................. 608 MUTATIONAL STUDIES OF ANTIBIOTIC SYNTHESIS ......... .............. 608 Fungi....................................................................... 608 P. chrysogenum ..................... ............................ 608 A. nidulans ................................................ 610 C. acremonium ................... .............................. 611 P. griseofulvum ..................... ............................ 613 P. patulum ............. .................................... 614 0. mucida ............. ...........","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":"41 3","pages":"595-635"},"PeriodicalIF":0.0,"publicationDate":"1977-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC414018/pdf/bactrev00057-0061.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"11546698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 1977-09-01DOI: 10.1128/MMBR.41.3.667-710.1977
I. Orskov, F. Orskov, B. Jann, K. Jann
{"title":"Serology, chemistry, and genetics of O and K antigens of Escherichia coli.","authors":"I. Orskov, F. Orskov, B. Jann, K. Jann","doi":"10.1128/MMBR.41.3.667-710.1977","DOIUrl":"https://doi.org/10.1128/MMBR.41.3.667-710.1977","url":null,"abstract":"","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":"95 1","pages":"667-710"},"PeriodicalIF":0.0,"publicationDate":"1977-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63729083","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}