首页 > 最新文献

Bacteriological Reviews最新文献

英文 中文
Microbial water stress. 微生物水分胁迫。
Pub Date : 1976-12-01 DOI: 10.1128/br.40.4.803-846.1976
A D Brown
INTRODUCTION.............................................................. 803 PHYSICOCHEMICAL PARAMETERS .............. ........................... 804 SOME ECOLOGICAL ASPECTS OF MICROBIAL WATER RELATIONS ..... ... 807 Microbial Water Relations and Food .............. ............................ 807 The Saline Environment ..................................................... 807 The Nonionic Environment ......... .......... 809 HYPOTHETICAL EXPLANATIONS OF THE TOLERANCE OF LOW WATER ACTIVITY ..................... 809 HALOPHILIC BACTERIA..................... 811 Cell Envelope and Lipid Biochemistry ........................................ 811 Nutrition..................................................................... 813 Miscellaneous Characteristics .......................................... 813 Gas vacuoles .......................................... 813 "Satellite" DNA .......... ................................ 813 Halophil bacteriophages .................. ........................ 813 Light Reactions of the Red Halophils ......................................... 814 Halophilic Characteristics .................. ........................ 815 Intracellular Physiology ................ .......................... 818 XEROTOLERANT YEASTS .................. ........................ 821 General Biology .......................................... 821 Physiology.................................................................. 822 HALOPHILIC ALGAE ............ .............................. 825 Intracellular Composition .................. ........................ 826 Physiological Role of Glycerol........................................... 827 Regulation of Glycerol Production .......................................... 828 Physiological Basis of Algal Halophilism...................................... 828 Algae Other than D nalie .......................................... 829 COMPATIBLE SOLUTES .............. ........................... 829 Electrolytes................................................................. 829 Nonelectrolytes.............................................................. 833 Physicochemical Mechanism of Nonelectrolyte Action ......... ................ 835 Regulation of Compatible Solute Accumulation ................................ 837 LOOSE ENDS 838 Survival..................................................................... 840 SUMMARY ............... 841 LITERATURE CITED................ 841
{"title":"Microbial water stress.","authors":"A D Brown","doi":"10.1128/br.40.4.803-846.1976","DOIUrl":"https://doi.org/10.1128/br.40.4.803-846.1976","url":null,"abstract":"INTRODUCTION.............................................................. 803 PHYSICOCHEMICAL PARAMETERS .............. ........................... 804 SOME ECOLOGICAL ASPECTS OF MICROBIAL WATER RELATIONS ..... ... 807 Microbial Water Relations and Food .............. ............................ 807 The Saline Environment ..................................................... 807 The Nonionic Environment ......... .......... 809 HYPOTHETICAL EXPLANATIONS OF THE TOLERANCE OF LOW WATER ACTIVITY ..................... 809 HALOPHILIC BACTERIA..................... 811 Cell Envelope and Lipid Biochemistry ........................................ 811 Nutrition..................................................................... 813 Miscellaneous Characteristics .......................................... 813 Gas vacuoles .......................................... 813 \"Satellite\" DNA .......... ................................ 813 Halophil bacteriophages .................. ........................ 813 Light Reactions of the Red Halophils ......................................... 814 Halophilic Characteristics .................. ........................ 815 Intracellular Physiology ................ .......................... 818 XEROTOLERANT YEASTS .................. ........................ 821 General Biology .......................................... 821 Physiology.................................................................. 822 HALOPHILIC ALGAE ............ .............................. 825 Intracellular Composition .................. ........................ 826 Physiological Role of Glycerol........................................... 827 Regulation of Glycerol Production .......................................... 828 Physiological Basis of Algal Halophilism...................................... 828 Algae Other than D nalie .......................................... 829 COMPATIBLE SOLUTES .............. ........................... 829 Electrolytes................................................................. 829 Nonelectrolytes.............................................................. 833 Physicochemical Mechanism of Nonelectrolyte Action ......... ................ 835 Regulation of Compatible Solute Accumulation ................................ 837 LOOSE ENDS 838 Survival..................................................................... 840 SUMMARY ............... 841 LITERATURE CITED................ 841","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1976-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC413986/pdf/bactrev00054-0017.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"12188481","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 47
Genetic aspects of bacterial endospore formation. 细菌内孢子形成的遗传方面。
Pub Date : 1976-12-01 DOI: 10.1128/br.40.4.908-962.1976
P J Piggot, J G Coote
Sporulation Loci in B. subtilis 168 ............................................ 914 Frequency of Mutation in Different Loci of B. subtUi 168 .... ................. 919 Fine Structure Mapping of wpe Loci .......................................... 919 Sporulation Loci in Other Species of Endospore Formers ..... ................. 919 INITIATION OF SPORE FORMATION .......... .............................. 919 Possible Effectors ......... ........................................... 920 Metabolites that repress sporulation ....................................... 920 Compounds that appear at the initiation of sporulation ..... ................. 921 Glutamine synthetase ..................................................... 922 Relationship to DNA Replication and the Cell Division Cycle .... ............... 922
{"title":"Genetic aspects of bacterial endospore formation.","authors":"P J Piggot, J G Coote","doi":"10.1128/br.40.4.908-962.1976","DOIUrl":"https://doi.org/10.1128/br.40.4.908-962.1976","url":null,"abstract":"Sporulation Loci in B. subtilis 168 ............................................ 914 Frequency of Mutation in Different Loci of B. subtUi 168 .... ................. 919 Fine Structure Mapping of wpe Loci .......................................... 919 Sporulation Loci in Other Species of Endospore Formers ..... ................. 919 INITIATION OF SPORE FORMATION .......... .............................. 919 Possible Effectors ......... ........................................... 920 Metabolites that repress sporulation ....................................... 920 Compounds that appear at the initiation of sporulation ..... ................. 921 Glutamine synthetase ..................................................... 922 Relationship to DNA Replication and the Cell Division Cycle .... ............... 922","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1976-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC413989/pdf/bactrev00054-0122.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"11236567","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 18
Degradation of purines and pyrimidines by microorganisms. 微生物对嘌呤和嘧啶的降解
Pub Date : 1976-12-01 DOI: 10.1128/br.40.4.963-963.1976

[This corrects the article on p. 403 in vol. 40.].

[这是对第40卷第403页的文章的更正]。
{"title":"Degradation of purines and pyrimidines by microorganisms.","authors":"","doi":"10.1128/br.40.4.963-963.1976","DOIUrl":"https://doi.org/10.1128/br.40.4.963-963.1976","url":null,"abstract":"<p><p>[This corrects the article on p. 403 in vol. 40.].</p>","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1976-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC413990/pdf/bactrev00054-0177.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"25747162","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Genetic aspects of bacterial endospore formation. 细菌内孢子形成的遗传方面。
Pub Date : 1976-12-01 DOI: 10.1128/MMBR.40.4.908-962.1976
P. Piggot, J. Coote
Sporulation Loci in B. subtilis 168 ............................................ 914 Frequency of Mutation in Different Loci of B. subtUi 168 .... ................. 919 Fine Structure Mapping of wpe Loci .......................................... 919 Sporulation Loci in Other Species of Endospore Formers ..... ................. 919 INITIATION OF SPORE FORMATION .......... .............................. 919 Possible Effectors ......... ........................................... 920 Metabolites that repress sporulation ....................................... 920 Compounds that appear at the initiation of sporulation ..... ................. 921 Glutamine synthetase ..................................................... 922 Relationship to DNA Replication and the Cell Division Cycle .... ............... 922
在168年枯草芽孢杆菌孢子形成位点 ............................................914 B. subtUi不同位点的突变频率[168].... .................919年热电制冷位点的精细结构的映射 ..........................................919其他内孢子形成菌的孢子形成位点..... .................919年启动的孢子的形成 .......... ..............................919种可能的效果器 ......... ...........................................920种代谢物抑制孢子形成 .......................................920在孢子形成初期出现的化合物..... .................921年谷氨酰胺合成酶 .....................................................922 DNA复制与细胞分裂周期的关系.... ...............922
{"title":"Genetic aspects of bacterial endospore formation.","authors":"P. Piggot, J. Coote","doi":"10.1128/MMBR.40.4.908-962.1976","DOIUrl":"https://doi.org/10.1128/MMBR.40.4.908-962.1976","url":null,"abstract":"Sporulation Loci in B. subtilis 168 ............................................ 914 Frequency of Mutation in Different Loci of B. subtUi 168 .... ................. 919 Fine Structure Mapping of wpe Loci .......................................... 919 Sporulation Loci in Other Species of Endospore Formers ..... ................. 919 INITIATION OF SPORE FORMATION .......... .............................. 919 Possible Effectors ......... ........................................... 920 Metabolites that repress sporulation ....................................... 920 Compounds that appear at the initiation of sporulation ..... ................. 921 Glutamine synthetase ..................................................... 922 Relationship to DNA Replication and the Cell Division Cycle .... ............... 922","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1976-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63728692","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 633
Degradation of Purines and Pyrimidines by Microorganisms 微生物对嘌呤和嘧啶的降解
Pub Date : 1976-12-01 DOI: 10.1128/mmbr.40.4.963-963.1976
G. Vogels, C. van der Drift
INTRODUCTION ............................................................ 404 Purine Degradation in Animals .............................................. 404 Purine Metabolism in Plants ............................................... 405 Degradation of Purines and Pyrimidines by Microorganisms ........ ........... 405 AEROBIC DEGRADATION OF PURINES: ENZYMATIC STEPS .............. 406 Methylpurines ............................................................. 406 Adenine .............................................................. 406 Xanthine Dehydrogenase .................................................... 407 Cofactors ............................................................. 408 Specificity .............................................................. 408 Other enzymes oxidizing purines ................... ........................ 409 Uricase ............................................................. 409 Properties .............................................................. 409 Specificity ............................................................. 411 Mechanism of action ...................................................... 411 Uricase-like processes ...................................................... 412 Allantoin ............................................................. 413 Allantoin racemase ........................................................ 413 Allantoinase ............................................................. 413 Allantoate Amidohydrolase and Allantoicase .................................. 414 Ureidoglycolase ............................................................. 415 Urea Degradation ........................................................... 416 Glyoxylate Degradation ..................................................... 416 AEROBIC DEGRADATION OF PURINES BY VARIOUS MICROORGANISMS . 416 Protozoa ............................................................ 416 Algae....................................................................... 417 Fungi ............................ ................................ 417 Basidiomycetes ........................................................... 417 Phycomycetes ............................................................ 417 Ascomycetes ............................................................ 417 Fungi imperfecti .......................................................... 419 Yeasts.................................................................... 419 Bacteria ............................................................ 425 Cyanobacteria .......................................................... 420 Pseudomonas ............................................................. 420 Alcaligenes ............................................................ 421 Arthrobacter and Brevibacterium ............. ............................. 421 Bacius ............................................................. 421 Mycobacteria ..................................
INTRODUCTION ............................................................404请Purine Degradation打印Animals ..............................................404请Purine Metabolism打印Plants ...............................................微生物对嘌呤和嘧啶的降解嘌呤的好氧降解:酶促步骤线索线索线索…406 Methylpurines .............................................................406嘌呤 ..............................................................406 Xanthine Dehydrogenase ....................................................是个新Cofactors .............................................................408 Specificity ..............................................................408怎么enzymes oxidizing purines ................... ........................409 Uricase .............................................................409 Properties ..............................................................409 Specificity .............................................................411 Mechanism治疗行动译本史》(英语) ......................................................411 Uricase-like processes ......................................................412 Allantoin .............................................................资金4130 Allantoin racemase ........................................................资金4130 Allantoinase .............................................................资金4130 Allantoate Amidohydrolase, and Allantoicase ..................................夜莺Ureidoglycolase .............................................................415 Urea Degradation ...........................................................416 Glyoxylate Degradation .....................................................416各种微生物对嘌呤的好氧降解。416 Protozoa ............................................................416 Algae .......................................................................拜托Fungi ............................ ................................拜托Basidiomycetes ...........................................................拜托Phycomycetes ............................................................拜托Ascomycetes ............................................................拜托Fungi imperfecti ..........................................................提供嫌疑犯Yeasts ....................................................................提供嫌疑犯Bacteria ............................................................425 Cyanobacteria ..........................................................420 Pseudomonas .............................................................420 Alcaligenes ............................................................421 Arthrobacter, and Brevibacterium ............. .............................421 Bacius .............................................................421 Mycobacteria ............................................................422 Actinomycetales ..........................................................422 Various bacteria .................................................
{"title":"Degradation of Purines and Pyrimidines by Microorganisms","authors":"G. Vogels, C. van der Drift","doi":"10.1128/mmbr.40.4.963-963.1976","DOIUrl":"https://doi.org/10.1128/mmbr.40.4.963-963.1976","url":null,"abstract":"INTRODUCTION ............................................................ 404 Purine Degradation in Animals .............................................. 404 Purine Metabolism in Plants ............................................... 405 Degradation of Purines and Pyrimidines by Microorganisms ........ ........... 405 AEROBIC DEGRADATION OF PURINES: ENZYMATIC STEPS .............. 406 Methylpurines ............................................................. 406 Adenine .............................................................. 406 Xanthine Dehydrogenase .................................................... 407 Cofactors ............................................................. 408 Specificity .............................................................. 408 Other enzymes oxidizing purines ................... ........................ 409 Uricase ............................................................. 409 Properties .............................................................. 409 Specificity ............................................................. 411 Mechanism of action ...................................................... 411 Uricase-like processes ...................................................... 412 Allantoin ............................................................. 413 Allantoin racemase ........................................................ 413 Allantoinase ............................................................. 413 Allantoate Amidohydrolase and Allantoicase .................................. 414 Ureidoglycolase ............................................................. 415 Urea Degradation ........................................................... 416 Glyoxylate Degradation ..................................................... 416 AEROBIC DEGRADATION OF PURINES BY VARIOUS MICROORGANISMS . 416 Protozoa ............................................................ 416 Algae....................................................................... 417 Fungi ............................ ................................ 417 Basidiomycetes ........................................................... 417 Phycomycetes ............................................................ 417 Ascomycetes ............................................................ 417 Fungi imperfecti .......................................................... 419 Yeasts.................................................................... 419 Bacteria ............................................................ 425 Cyanobacteria .......................................................... 420 Pseudomonas ............................................................. 420 Alcaligenes ............................................................ 421 Arthrobacter and Brevibacterium ............. ............................. 421 Bacius ............................................................. 421 Mycobacteria ..................................","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1976-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63728699","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 74
Microbial water stress. 微生物水分胁迫。
Pub Date : 1976-12-01 DOI: 10.1128/MMBR.40.4.803-846.1976
Research Online, A. D. Brown
A fellow of my acquaintance, on seeing a colleague drink undiluted water (55.5 molal), has been known to comment in disapproval that water at such a concentration should not be used for that purpose and that its main function is for putting around the outside of boats. He conceded that dilution with a little salt is acceptable for boats but for no other purpose. The proponent of this philosophy is not a biologist and it is unlikely that many biologists would accept his generalization without some qualification. Nevertheless, it is a point of view. Another point of view with which all biologists might not agree, at least initially, is one which I wish to advance in this review. It is that, notwithstanding the indispensability of water in living systems and the unique properties of solvent water, quantitative variations in the amount of water available are of less direct microbiological significance than is generally conceded.
我认识的一个人,看到一个同事喝了未稀释的水(55.5摩尔),就不赞成地评论说,这种浓度的水不应该用于这种目的,它的主要功能是涂在船的外面。他承认,用少许盐稀释是可以接受的,但不能用于其他目的。这种哲学的支持者并不是生物学家,而且许多生物学家不加限制地接受他的概括是不太可能的。然而,这是一种观点。另一个所有生物学家可能不同意的观点,至少在最初,是我希望在这篇评论中提出的观点。那就是,尽管水在生命系统中是不可缺少的,而且溶剂水具有独特的性质,但可用水量的数量变化在微生物学上的直接意义并不像人们普遍认为的那样大。
{"title":"Microbial water stress.","authors":"Research Online, A. D. Brown","doi":"10.1128/MMBR.40.4.803-846.1976","DOIUrl":"https://doi.org/10.1128/MMBR.40.4.803-846.1976","url":null,"abstract":"A fellow of my acquaintance, on seeing a colleague drink undiluted water (55.5 molal), has been known to comment in disapproval that water at such a concentration should not be used for that purpose and that its main function is for putting around the outside of boats. He conceded that dilution with a little salt is acceptable for boats but for no other purpose. The proponent of this philosophy is not a biologist and it is unlikely that many biologists would accept his generalization without some qualification. Nevertheless, it is a point of view. Another point of view with which all biologists might not agree, at least initially, is one which I wish to advance in this review. It is that, notwithstanding the indispensability of water in living systems and the unique properties of solvent water, quantitative variations in the amount of water available are of less direct microbiological significance than is generally conceded.","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1976-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63728614","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 749
The genome of bacteriophage T4. 噬菌体T4的基因组。
Pub Date : 1976-12-01 DOI: 10.1128/br.40.4.847-868.1976
W B Wood, H R Revel
Over the past three decades, bacteriophage T4 has been genetically, biochemically, and structurally characterized to the point where it is now one of the best understood biological systems. T4 is a complex deoxyribonucleic acid (DNA) virus with a genome large enough to accommodate between 160 and 170 "averagesize" genes of 1,000 nucleotide pairs. About 140 T4 genes now have been identified genetically and, to some extent, characterized functionally. The resulting information provides a fairly complete picture of how such a genome is organized and how it programs the process of viral multiplication in a host bacterial cell. This article provides an overview of the organization and function of the T4 genome, as well as a current reference source of information on the individual genes of T4. The number of essential genes defined by amber (am) and temperature-sensitive (ts) mutations has not changed appreciably from the 65 identified in the early studies of Epstein, Edgar, and their collaborators (67), although the functions of these genes continue to become more completely understood (34, 58, 214). However, a considerable number ofnew so-called nonessential genes has been identified and characterized in the past few years. A review prepared in 1973 (214) included 30 of these genes, and the total now has increased to over 70. We have summarized current knowledge on the locations, sizes, and functions ofT4 genes in the form of a detailed linkage map, tables of gene functions, and a chart showing classes of gene functions. To keep the bibliography to a reasonable length, we have not attempted to reference all of the papers from which information has been taken. Instead, wherever possible, we have cited recent research publications or review articles that in our judgment provide the most convenient access to earlier literature. Additional references to original work may be found in several other recent compilations of information on the T4 genome (34, 58, 62, 140, 155a, 214). GENE CLASSES AND GENE NAMES
{"title":"The genome of bacteriophage T4.","authors":"W B Wood,&nbsp;H R Revel","doi":"10.1128/br.40.4.847-868.1976","DOIUrl":"https://doi.org/10.1128/br.40.4.847-868.1976","url":null,"abstract":"Over the past three decades, bacteriophage T4 has been genetically, biochemically, and structurally characterized to the point where it is now one of the best understood biological systems. T4 is a complex deoxyribonucleic acid (DNA) virus with a genome large enough to accommodate between 160 and 170 \"averagesize\" genes of 1,000 nucleotide pairs. About 140 T4 genes now have been identified genetically and, to some extent, characterized functionally. The resulting information provides a fairly complete picture of how such a genome is organized and how it programs the process of viral multiplication in a host bacterial cell. This article provides an overview of the organization and function of the T4 genome, as well as a current reference source of information on the individual genes of T4. The number of essential genes defined by amber (am) and temperature-sensitive (ts) mutations has not changed appreciably from the 65 identified in the early studies of Epstein, Edgar, and their collaborators (67), although the functions of these genes continue to become more completely understood (34, 58, 214). However, a considerable number ofnew so-called nonessential genes has been identified and characterized in the past few years. A review prepared in 1973 (214) included 30 of these genes, and the total now has increased to over 70. We have summarized current knowledge on the locations, sizes, and functions ofT4 genes in the form of a detailed linkage map, tables of gene functions, and a chart showing classes of gene functions. To keep the bibliography to a reasonable length, we have not attempted to reference all of the papers from which information has been taken. Instead, wherever possible, we have cited recent research publications or review articles that in our judgment provide the most convenient access to earlier literature. Additional references to original work may be found in several other recent compilations of information on the T4 genome (34, 58, 62, 140, 155a, 214). GENE CLASSES AND GENE NAMES","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1976-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC413987/pdf/bactrev00054-0061.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"11984547","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 113
The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis. 作为脂肪酸合成抑制剂的一种新的生物化学工具,抗生素蓝绿蛋白。
Pub Date : 1976-09-01 DOI: 10.1128/br.40.3.681-697.1976
S Omura
One ofthe most versatile uses of antibiotics is as potent drugs for clinical application. In recent years, attention has also been paid to agricultural uses of antibiotics, such as for feed additives for protecting plants and livestock against infectious diseases and for accelerating their growth. They are also used as food additives to retain freshness for an extended period. The usefulness of antibiotics is not limited only to our daily needs, but also encompasses our research interests: they offer us remarkable experimental devices for biochemistry novel biochemical tools, which have made a significant contribution to progress in this field (18). Cerulenin, an antibiotic discovered by Hata et al. in 1960, was originally found as an antifungal antibiotic (30). Studies of its mode of action have revealed that it specifically inhibits the biosynthesis of fatty acids and sterols involving yeasts (55, 56). It should be particularly noted that such specificity of cerulenin has been used by investigators in various fields of biochemistry. In this connection, the present review deals with studies, which have hitherto been reported, on the production, isolation, structure, and mode of action of cerulenin and its application as a biochemical tool. Unfortunately, the instability of the antibiotic in the animal body prevents its use in therapy as an antimicrobial agent or as an antilipogenic agent.
{"title":"The antibiotic cerulenin, a novel tool for biochemistry as an inhibitor of fatty acid synthesis.","authors":"S Omura","doi":"10.1128/br.40.3.681-697.1976","DOIUrl":"https://doi.org/10.1128/br.40.3.681-697.1976","url":null,"abstract":"One ofthe most versatile uses of antibiotics is as potent drugs for clinical application. In recent years, attention has also been paid to agricultural uses of antibiotics, such as for feed additives for protecting plants and livestock against infectious diseases and for accelerating their growth. They are also used as food additives to retain freshness for an extended period. The usefulness of antibiotics is not limited only to our daily needs, but also encompasses our research interests: they offer us remarkable experimental devices for biochemistry novel biochemical tools, which have made a significant contribution to progress in this field (18). Cerulenin, an antibiotic discovered by Hata et al. in 1960, was originally found as an antifungal antibiotic (30). Studies of its mode of action have revealed that it specifically inhibits the biosynthesis of fatty acids and sterols involving yeasts (55, 56). It should be particularly noted that such specificity of cerulenin has been used by investigators in various fields of biochemistry. In this connection, the present review deals with studies, which have hitherto been reported, on the production, isolation, structure, and mode of action of cerulenin and its application as a biochemical tool. Unfortunately, the instability of the antibiotic in the animal body prevents its use in therapy as an antimicrobial agent or as an antilipogenic agent.","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1976-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC413976/pdf/bactrev00053-0163.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"11981128","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 24
Killer of Saccharomyces cerevisiae: a double-stranded ribonucleic acid plasmid. 酿酒酵母的杀手:一种双链核糖核酸质粒。
Pub Date : 1976-09-01 DOI: 10.1128/br.40.3.757-773.1976
R B Wickner
Yeast Genetics ........................................................... 759 Inheritance of the Killer Character in Wild-Type Strains ..... ................. 759 KILLER PLASMID MUTANTS................................................ 760 Neutral Plasmid Mutants.................................................... 760 Suppressive Plasmid Mutants ............................................... 762 Diploid-Dependent Plasmid Mutants ......... ................................ 762 CHROMOSOMAL GENES INVOLVED IN KILLER PLASMID EXPRESSION AND REPLICATION ........................................................... 762 Chromosomal Killer Expression (kex) and Resistance Expression (rex) Genes . . 762 Mating and Sporulation Defects of kex2 Mutants ...... ....................... 764 Chromosomal Genes Essential for Plasmid Maintenance or Replication ... ..... 764 EVIDENCE THAT THE KILLER PLASMID IS A dsRNA SPECIES IN VIRUS-
{"title":"Killer of Saccharomyces cerevisiae: a double-stranded ribonucleic acid plasmid.","authors":"R B Wickner","doi":"10.1128/br.40.3.757-773.1976","DOIUrl":"https://doi.org/10.1128/br.40.3.757-773.1976","url":null,"abstract":"Yeast Genetics ........................................................... 759 Inheritance of the Killer Character in Wild-Type Strains ..... ................. 759 KILLER PLASMID MUTANTS................................................ 760 Neutral Plasmid Mutants.................................................... 760 Suppressive Plasmid Mutants ............................................... 762 Diploid-Dependent Plasmid Mutants ......... ................................ 762 CHROMOSOMAL GENES INVOLVED IN KILLER PLASMID EXPRESSION AND REPLICATION ........................................................... 762 Chromosomal Killer Expression (kex) and Resistance Expression (rex) Genes . . 762 Mating and Sporulation Defects of kex2 Mutants ...... ....................... 764 Chromosomal Genes Essential for Plasmid Maintenance or Replication ... ..... 764 EVIDENCE THAT THE KILLER PLASMID IS A dsRNA SPECIES IN VIRUS-","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1976-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC413979/pdf/bactrev00053-0239.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"11981130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Killer of Saccharomyces cerevisiae: a double-stranded ribonucleic acid plasmid. 酿酒酵母的杀手:一种双链核糖核酸质粒。
Pub Date : 1976-09-01 DOI: 10.1128/MMBR.40.3.757-773.1976
R. Wickner
Yeast Genetics ........................................................... 759 Inheritance of the Killer Character in Wild-Type Strains ..... ................. 759 KILLER PLASMID MUTANTS................................................ 760 Neutral Plasmid Mutants.................................................... 760 Suppressive Plasmid Mutants ............................................... 762 Diploid-Dependent Plasmid Mutants ......... ................................ 762 CHROMOSOMAL GENES INVOLVED IN KILLER PLASMID EXPRESSION AND REPLICATION ........................................................... 762 Chromosomal Killer Expression (kex) and Resistance Expression (rex) Genes . . 762 Mating and Sporulation Defects of kex2 Mutants ...... ....................... 764 Chromosomal Genes Essential for Plasmid Maintenance or Replication ... ..... 764 EVIDENCE THAT THE KILLER PLASMID IS A dsRNA SPECIES IN VIRUS-
酵母遗传学 ...........................................................759野生型菌株杀手性状的遗传研究..... .................759年杀手质粒突变体 ................................................760中性粒突变体 ....................................................760年镇压的质粒突变体 ...............................................762年Diploid-Dependent质粒突变体 ......... ................................762年杀手染色体基因质粒表达和复制 ...........................................................762染色体杀伤表达(kex)和抗性表达(rex)基因。762 kex2交配和孢子形成缺陷的突变体 ...... .......................764染色体基因对质粒维持或复制至关重要... .....证据表明,杀伤质粒是病毒中的一种dsRNA
{"title":"Killer of Saccharomyces cerevisiae: a double-stranded ribonucleic acid plasmid.","authors":"R. Wickner","doi":"10.1128/MMBR.40.3.757-773.1976","DOIUrl":"https://doi.org/10.1128/MMBR.40.3.757-773.1976","url":null,"abstract":"Yeast Genetics ........................................................... 759 Inheritance of the Killer Character in Wild-Type Strains ..... ................. 759 KILLER PLASMID MUTANTS................................................ 760 Neutral Plasmid Mutants.................................................... 760 Suppressive Plasmid Mutants ............................................... 762 Diploid-Dependent Plasmid Mutants ......... ................................ 762 CHROMOSOMAL GENES INVOLVED IN KILLER PLASMID EXPRESSION AND REPLICATION ........................................................... 762 Chromosomal Killer Expression (kex) and Resistance Expression (rex) Genes . . 762 Mating and Sporulation Defects of kex2 Mutants ...... ....................... 764 Chromosomal Genes Essential for Plasmid Maintenance or Replication ... ..... 764 EVIDENCE THAT THE KILLER PLASMID IS A dsRNA SPECIES IN VIRUS-","PeriodicalId":55406,"journal":{"name":"Bacteriological Reviews","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"1976-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"63728561","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 54
期刊
Bacteriological Reviews
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1