首页 > 最新文献

Autonomous Robots最新文献

英文 中文
Laplacian regularized motion tomography for underwater vehicle flow mapping with sporadic localization measurements 利用零星定位测量绘制水下航行器流动图的拉普拉斯正则化运动断层成像技术
IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-24 DOI: 10.1007/s10514-024-10165-5
Ouerghi Meriam, Hou Mengxue, Zhang Fumin

Localization measurements for an autonomous underwater vehicle (AUV) are often difficult to obtain. In many cases, localization measurements are only available sporadically after the AUV comes to the sea surface. Since the motion of AUVs is often affected by unknown underwater flow fields, the sporadic localization measurements carry information of the underwater flow field. Motion tomography (MT) algorithms have been developed to compute a underwater flow map based on the sporadic localization measurements. This paper extends MT by introducing Laplacian regularization in to the problem formulation and the MT algorithm. Laplacian regularization enforces smoothness in the spatial distribution of the underwater flow field. The resulted Laplacian regularized motion tomography (RMT) algorithm converges to achieve a finite error bounded. The performance of the RMT and other variants of MT are compared through the method of data resolution analysis. The improved performance of RMT is confirmed by experimental data collected from underwater glider ocean sensing experiments.

自动潜航器(AUV)的定位测量通常很难获得。在许多情况下,只有在 AUV 到达海面后才能获得零星的定位测量数据。由于自动潜航器的运动通常会受到未知水下流场的影响,因此零星的定位测量会携带水下流场的信息。目前已开发出基于零星定位测量值计算水下流场图的运动层析(MT)算法。本文在问题表述和 MT 算法中引入了拉普拉斯正则化,对 MT 进行了扩展。拉普拉斯正则化能使水下流场的空间分布更加平滑。由此产生的拉普拉斯正则化运动断层扫描(RMT)算法收敛后达到有限误差约束。通过数据分辨率分析方法,比较了 RMT 和其他 MT 变体的性能。水下滑翔机海洋传感实验收集的数据证实了 RMT 性能的提高。
{"title":"Laplacian regularized motion tomography for underwater vehicle flow mapping with sporadic localization measurements","authors":"Ouerghi Meriam,&nbsp;Hou Mengxue,&nbsp;Zhang Fumin","doi":"10.1007/s10514-024-10165-5","DOIUrl":"10.1007/s10514-024-10165-5","url":null,"abstract":"<div><p>Localization measurements for an autonomous underwater vehicle (AUV) are often difficult to obtain. In many cases, localization measurements are only available sporadically after the AUV comes to the sea surface. Since the motion of AUVs is often affected by unknown underwater flow fields, the sporadic localization measurements carry information of the underwater flow field. Motion tomography (MT) algorithms have been developed to compute a underwater flow map based on the sporadic localization measurements. This paper extends MT by introducing Laplacian regularization in to the problem formulation and the MT algorithm. Laplacian regularization enforces smoothness in the spatial distribution of the underwater flow field. The resulted Laplacian regularized motion tomography (RMT) algorithm converges to achieve a finite error bounded. The performance of the RMT and other variants of MT are compared through the method of data resolution analysis. The improved performance of RMT is confirmed by experimental data collected from underwater glider ocean sensing experiments.\u0000</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 4-5","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141101854","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Correction: Adaptive hybrid local-global sampling for fast informed sampling-based optimal path planning 更正:自适应局部-全局混合采样,实现基于采样的快速知情最优路径规划
IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-17 DOI: 10.1007/s10514-024-10166-4
Marco Faroni, Nicola Pedrocchi, Manuel Beschi
{"title":"Correction: Adaptive hybrid local-global sampling for fast informed sampling-based optimal path planning","authors":"Marco Faroni,&nbsp;Nicola Pedrocchi,&nbsp;Manuel Beschi","doi":"10.1007/s10514-024-10166-4","DOIUrl":"10.1007/s10514-024-10166-4","url":null,"abstract":"","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 2-3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10166-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141027683","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The human in the loop Perspectives and challenges for RoboCup 2050 人在回路中 2050 年机器人世界杯的前景与挑战
IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-16 DOI: 10.1007/s10514-024-10159-3
Alessandra Rossi, Maike Paetzel-Prüsmann, Merel Keijsers, Michael Anderson, Susan Leigh Anderson, Daniel Barry, Jan Gutsche, Justin Hart, Luca Iocchi, Ainse Kokkelmans, Wouter Kuijpers, Yun Liu, Daniel Polani, Caleb Roscon, Marcus Scheunemann, Peter Stone, Florian Vahl, René van de Molengraft, Oskar von Stryk

Robotics researchers have been focusing on developing autonomous and human-like intelligent robots that are able to plan, navigate, manipulate objects, and interact with humans in both static and dynamic environments. These capabilities, however, are usually developed for direct interactions with people in controlled environments, and evaluated primarily in terms of human safety. Consequently, human-robot interaction (HRI) in scenarios with no intervention of technical personnel is under-explored. However, in the future, robots will be deployed in unstructured and unsupervised environments where they will be expected to work unsupervised on tasks which require direct interaction with humans and may not necessarily be collaborative. Developing such robots requires comparing the effectiveness and efficiency of similar design approaches and techniques. Yet, issues regarding the reproducibility of results, comparing different approaches between research groups, and creating challenging milestones to measure performance and development over time make this difficult. Here we discuss the international robotics competition called RoboCup as a benchmark for the progress and open challenges in AI and robotics development. The long term goal of RoboCup is developing a robot soccer team that can win against the world’s best human soccer team by 2050. We selected RoboCup because it requires robots to be able to play with and against humans in unstructured environments, such as uneven fields and natural lighting conditions, and it challenges the known accepted dynamics in HRI. Considering the current state of robotics technology, RoboCup’s goal opens up several open research questions to be addressed by roboticists. In this paper, we (a) summarise the current challenges in robotics by using RoboCup development as an evaluation metric, (b) discuss the state-of-the-art approaches to these challenges and how they currently apply to RoboCup, and (c) present a path for future development in the given areas to meet RoboCup’s goal of having robots play soccer against and with humans by 2050.

机器人研究人员一直致力于开发能够在静态和动态环境中进行规划、导航、操纵物体以及与人类互动的自主式仿人智能机器人。然而,这些能力通常是为在受控环境中与人直接互动而开发的,并主要从人类安全的角度进行评估。因此,在没有技术人员干预的情况下进行的人机交互(HRI)还没有得到充分探索。然而,在未来,机器人将被部署在非结构化和无人监管的环境中,它们将在无人监管的情况下执行需要与人类直接互动的任务,而且不一定是协作性的。开发这类机器人需要比较类似设计方法和技术的有效性和效率。然而,有关结果的可重复性、不同研究小组间不同方法的比较,以及创建具有挑战性的里程碑来衡量性能和随时间推移的发展等问题,都给这项工作带来了困难。在此,我们将讨论名为 RoboCup 的国际机器人竞赛,将其作为人工智能和机器人发展的进步和公开挑战的基准。RoboCup 的长期目标是在 2050 年前开发出一支能战胜世界上最优秀的人类足球队的机器人足球队。我们之所以选择 RoboCup,是因为它要求机器人能够在非结构化环境(如不平整的场地和自然光条件)中与人类同场竞技或与人类对抗,而且它对已知的公认的人力资源集成动态提出了挑战。考虑到机器人技术的现状,RoboCup 的目标提出了几个有待机器人专家解决的开放性研究问题。在本文中,我们(a) 以 RoboCup 的发展作为评估指标,总结了当前机器人技术面临的挑战;(b) 讨论了应对这些挑战的最新方法,以及这些方法目前如何应用于 RoboCup;(c) 提出了未来在特定领域的发展路径,以实现 RoboCup 的目标,即到 2050 年让机器人与人类踢足球。
{"title":"The human in the loop Perspectives and challenges for RoboCup 2050","authors":"Alessandra Rossi,&nbsp;Maike Paetzel-Prüsmann,&nbsp;Merel Keijsers,&nbsp;Michael Anderson,&nbsp;Susan Leigh Anderson,&nbsp;Daniel Barry,&nbsp;Jan Gutsche,&nbsp;Justin Hart,&nbsp;Luca Iocchi,&nbsp;Ainse Kokkelmans,&nbsp;Wouter Kuijpers,&nbsp;Yun Liu,&nbsp;Daniel Polani,&nbsp;Caleb Roscon,&nbsp;Marcus Scheunemann,&nbsp;Peter Stone,&nbsp;Florian Vahl,&nbsp;René van de Molengraft,&nbsp;Oskar von Stryk","doi":"10.1007/s10514-024-10159-3","DOIUrl":"10.1007/s10514-024-10159-3","url":null,"abstract":"<div><p>Robotics researchers have been focusing on developing autonomous and human-like intelligent robots that are able to plan, navigate, manipulate objects, and interact with humans in both static and dynamic environments. These capabilities, however, are usually developed for direct interactions with people in controlled environments, and evaluated primarily in terms of human safety. Consequently, human-robot interaction (HRI) in scenarios with no intervention of technical personnel is under-explored. However, in the future, robots will be deployed in unstructured and unsupervised environments where they will be expected to work unsupervised on tasks which require direct interaction with humans and may not necessarily be collaborative. Developing such robots requires comparing the effectiveness and efficiency of similar design approaches and techniques. Yet, issues regarding the reproducibility of results, comparing different approaches between research groups, and creating challenging milestones to measure performance and development over time make this difficult. Here we discuss the international robotics competition called RoboCup as a benchmark for the progress and open challenges in AI and robotics development. The long term goal of RoboCup is developing a robot soccer team that can win against the world’s best human soccer team by 2050. We selected RoboCup because it requires robots to be able to play with and against humans in unstructured environments, such as uneven fields and natural lighting conditions, and it challenges the known accepted dynamics in HRI. Considering the current state of robotics technology, RoboCup’s goal opens up several open research questions to be addressed by roboticists. In this paper, we (a) summarise the current challenges in robotics by using RoboCup development as an evaluation metric, (b) discuss the state-of-the-art approaches to these challenges and how they currently apply to RoboCup, and (c) present a path for future development in the given areas to meet RoboCup’s goal of having robots play soccer against and with humans by 2050.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 2-3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10159-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141032933","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Editorial - Robotics: Science and Systems 2022 社论 - 机器人:科学与系统 2022
IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-05-03 DOI: 10.1007/s10514-024-10161-9
{"title":"Editorial - Robotics: Science and Systems 2022","authors":"","doi":"10.1007/s10514-024-10161-9","DOIUrl":"10.1007/s10514-024-10161-9","url":null,"abstract":"","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 2-3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-05-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142408664","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Adaptive hybrid local–global sampling for fast informed sampling-based optimal path planning 通过自适应知情采样加速基于采样的最优路径规划
IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-20 DOI: 10.1007/s10514-024-10157-5
Marco Faroni, Nicola Pedrocchi, Manuel Beschi

This paper improves the performance of RRT(^*)-like sampling-based path planners by combining admissible informed sampling and local sampling (i.e., sampling the neighborhood of the current solution). An adaptive strategy regulates the trade-off between exploration (admissible informed sampling) and exploitation (local sampling) based on online rewards from previous samples. The paper demonstrates that the algorithm is asymptotically optimal and has a better convergence rate than state-of-the-art path planners (e.g., Informed-RRT(^*)) in several simulated and real-world scenarios. An open-source, ROS-compatible implementation of the algorithm is publicly available.

本文通过结合可允许的知情采样和局部采样(即对当前解的邻域进行采样),提高了类似采样的路径规划器的性能。一种自适应策略会根据之前采样的在线回报来调节探索(允许的知情采样)和利用(局部采样)之间的权衡。论文证明,在多个模拟和实际场景中,所产生的算法是渐进最优的,而且收敛速度优于最先进的路径规划器(例如,Informed-RRT/(^*))。该算法的开源、兼容 ROS 的实现已公开发布。
{"title":"Adaptive hybrid local–global sampling for fast informed sampling-based optimal path planning","authors":"Marco Faroni,&nbsp;Nicola Pedrocchi,&nbsp;Manuel Beschi","doi":"10.1007/s10514-024-10157-5","DOIUrl":"10.1007/s10514-024-10157-5","url":null,"abstract":"<div><p>This paper improves the performance of RRT<span>(^*)</span>-like sampling-based path planners by combining admissible informed sampling and local sampling (i.e., sampling the neighborhood of the current solution). An adaptive strategy regulates the trade-off between exploration (admissible informed sampling) and exploitation (local sampling) based on online rewards from previous samples. The paper demonstrates that the algorithm is asymptotically optimal and has a better convergence rate than state-of-the-art path planners (e.g., Informed-RRT<span>(^*)</span>) in several simulated and real-world scenarios. An open-source, ROS-compatible implementation of the algorithm is publicly available.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 2-3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10157-5.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140629716","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Reinforcement learning with imitative behaviors for humanoid robots navigation: synchronous planning and control 仿人机器人导航的模仿行为强化学习:同步规划与控制
IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-04-17 DOI: 10.1007/s10514-024-10160-w
Xiaoying Wang, Tong Zhang

Humanoid robots have strong adaptability to complex environments and possess human-like flexibility, enabling them to perform precise farming and harvesting tasks in varying depths of terrains. They serve as essential tools for agricultural intelligence. In this article, a novel method was proposed to improve the robustness of autonomous navigation for humanoid robots, which intercommunicates the data fusion of the footprint planning and control levels. In particular, a deep reinforcement learning model - Proximal Policy Optimization (PPO) that has been fine-tuned is introduced into this layer, before which heuristic trajectory was generated based on imitation learning. In the RL period, the KL divergence between the agent’s policy and imitative expert policy as a value penalty is added to the advantage function. As a proof of concept, our navigation policy is trained in a robotic simulator and then successfully applied to the physical robot GTX for indoor multi-mode navigation. The experimental results conclude that incorporating imitation learning imparts anthropomorphic attributes to robots and facilitates the generation of seamless footstep patterns. There is a significant improvement in ZMP trajectory in y-direction from the center by 21.56% is noticed. Additionally, this method improves dynamic locomotion stability, the body attitude angle falling between less than ± 5.5(^circ ) compared to ± 48.4(^circ ) with traditional algorithm. In general, navigation error is below 5 cm, which we verified in the experiments. It is thought that the outcome of the proposed framework presented in this article can provide a reference for researchers studying autonomous navigation applications of humanoid robots on uneven ground.

仿人机器人对复杂环境有很强的适应能力,具有类似人类的灵活性,能够在不同深度的地形中执行精确的耕作和收割任务。它们是农业智能的重要工具。本文提出了一种提高仿人机器人自主导航鲁棒性的新方法,该方法将足迹规划和控制层面的数据融合起来。特别是,在这一层中引入了经过微调的深度强化学习模型--近端策略优化(PPO),在此之前,基于模仿学习生成启发式轨迹。在 RL 阶段,代理策略与模仿专家策略之间的 KL 发散作为一种价值惩罚被添加到优势函数中。作为概念验证,我们在机器人模拟器中训练了导航策略,并将其成功应用于物理机器人 GTX 的室内多模式导航。实验结果表明,模仿学习赋予了机器人拟人属性,并有助于生成无缝脚步模式。ZMP轨迹在从中心开始的Y方向上有明显改善,改善幅度达21.56%。此外,该方法还提高了动态运动的稳定性,与传统算法的± 48.4(^circ )相比,该方法的身体姿态角小于± 5.5(^circ )。一般来说,导航误差低于 5 厘米,这一点我们在实验中得到了验证。本文提出的框架成果可以为研究仿人机器人在不平整地面上的自主导航应用提供参考。
{"title":"Reinforcement learning with imitative behaviors for humanoid robots navigation: synchronous planning and control","authors":"Xiaoying Wang,&nbsp;Tong Zhang","doi":"10.1007/s10514-024-10160-w","DOIUrl":"10.1007/s10514-024-10160-w","url":null,"abstract":"<div><p>Humanoid robots have strong adaptability to complex environments and possess human-like flexibility, enabling them to perform precise farming and harvesting tasks in varying depths of terrains. They serve as essential tools for agricultural intelligence. In this article, a novel method was proposed to improve the robustness of autonomous navigation for humanoid robots, which intercommunicates the data fusion of the footprint planning and control levels. In particular, a deep reinforcement learning model - Proximal Policy Optimization (PPO) that has been fine-tuned is introduced into this layer, before which heuristic trajectory was generated based on imitation learning. In the RL period, the KL divergence between the agent’s policy and imitative expert policy as a value penalty is added to the advantage function. As a proof of concept, our navigation policy is trained in a robotic simulator and then successfully applied to the physical robot <i>GTX</i> for indoor multi-mode navigation. The experimental results conclude that incorporating imitation learning imparts anthropomorphic attributes to robots and facilitates the generation of seamless footstep patterns. There is a significant improvement in ZMP trajectory in y-direction from the center by 21.56% is noticed. Additionally, this method improves dynamic locomotion stability, the body attitude angle falling between less than ± 5.5<span>(^circ )</span> compared to ± 48.4<span>(^circ )</span> with traditional algorithm. In general, navigation error is below 5 cm, which we verified in the experiments. It is thought that the outcome of the proposed framework presented in this article can provide a reference for researchers studying autonomous navigation applications of humanoid robots on uneven ground.\u0000</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 2-3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140608698","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Terrain traversability prediction through self-supervised learning and unsupervised domain adaptation on synthetic data 通过合成数据上的自监督学习和无监督域适应进行地形可穿越性预测
IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-03-30 DOI: 10.1007/s10514-024-10158-4
Giuseppe Vecchio, Simone Palazzo, Dario C. Guastella, Daniela Giordano, Giovanni Muscato, Concetto Spampinato

Terrain traversability estimation is a fundamental task for supporting robot navigation on uneven surfaces. Recent learning-based approaches for predicting traversability from RGB images have shown promising results, but require manual annotation of a large number of images for training. To address this limitation, we present a method for traversability estimation on unlabeled videos that combines dataset synthesis, self-supervision and unsupervised domain adaptation. We pose the traversability estimation as a vector regression task over vertical bands of the observed frame. The model is pre-trained through self-supervision to reduce the distribution shift between synthetic and real data and encourage shared feature learning. Then, supervised training on synthetic videos is carried out, while employing an unsupervised domain adaptation loss to improve its generalization capabilities on real scenes. Experimental results show that our approach is on par with standard supervised training, and effectively supports robot navigation without the need of manual annotations. Training code and synthetic dataset will be publicly released at: https://github.com/perceivelab/traversability-synth.

地形可穿越性估算是支持机器人在不平路面上导航的一项基本任务。最近基于学习的 RGB 图像可穿越性预测方法取得了可喜的成果,但需要对大量图像进行人工标注训练。为了解决这一局限性,我们提出了一种在无标注视频上进行可穿越性估算的方法,该方法结合了数据集合成、自监督和无监督领域适应。我们将可穿越性估算看作是对观察到的帧的垂直带进行向量回归的任务。通过自我监督对模型进行预训练,以减少合成数据和真实数据之间的分布偏移,并鼓励共享特征学习。然后,在合成视频上进行监督训练,同时采用无监督域适应损失来提高其在真实场景上的泛化能力。实验结果表明,我们的方法与标准的监督训练不相上下,无需人工标注即可有效支持机器人导航。训练代码和合成数据集将在以下网站公开发布:https://github.com/perceivelab/traversability-synth。
{"title":"Terrain traversability prediction through self-supervised learning and unsupervised domain adaptation on synthetic data","authors":"Giuseppe Vecchio,&nbsp;Simone Palazzo,&nbsp;Dario C. Guastella,&nbsp;Daniela Giordano,&nbsp;Giovanni Muscato,&nbsp;Concetto Spampinato","doi":"10.1007/s10514-024-10158-4","DOIUrl":"10.1007/s10514-024-10158-4","url":null,"abstract":"<div><p>Terrain traversability estimation is a fundamental task for supporting robot navigation on uneven surfaces. Recent learning-based approaches for predicting traversability from RGB images have shown promising results, but require manual annotation of a large number of images for training. To address this limitation, we present a method for traversability estimation on unlabeled videos that combines dataset synthesis, self-supervision and unsupervised domain adaptation. We pose the traversability estimation as a vector regression task over vertical bands of the observed frame. The model is pre-trained through self-supervision to reduce the distribution shift between synthetic and real data and encourage shared feature learning. Then, supervised training on synthetic videos is carried out, while employing an unsupervised domain adaptation loss to improve its generalization capabilities on real scenes. Experimental results show that our approach is on par with standard supervised training, and effectively supports robot navigation without the need of manual annotations. Training code and synthetic dataset will be publicly released at: https://github.com/perceivelab/traversability-synth.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 2-3","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-03-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10158-4.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140364755","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Maximal coverage problems with routing constraints using cross-entropy Monte Carlo tree search 利用交叉熵蒙特卡洛树搜索解决具有路由限制的最大覆盖问题
IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-01-30 DOI: 10.1007/s10514-024-10156-6
Pao-Te Lin, Kuo-Shih Tseng

Spatial search, and environmental monitoring are key technologies in robotics. These problems can be reformulated as maximal coverage problems with routing constraints, which are NP-hard problems. The generalized cost-benefit algorithm (GCB) can solve these problems with theoretical guarantees. To achieve better performance, evolutionary algorithms (EA) boost its performance via more samples. However, it is hard to know the terminal conditions of EA to outperform GCB. To solve these problems with theoretical guarantees and terminal conditions, in this research, the cross-entropy based Monte Carlo Tree Search algorithm (CE-MCTS) is proposed. It consists of three parts: the EA for sampling the branches, the upper confidence bound policy for selections, and the estimation of distribution algorithm for simulations. The experiments demonstrate that the CE-MCTS outperforms benchmark approaches (e.g., GCB, EAMC) in spatial search problems.

空间搜索和环境监测是机器人技术中的关键技术。这些问题可以被重新表述为带有路由约束的最大覆盖问题,是 NP 难问题。广义成本收益算法(GCB)可以在理论上保证解决这些问题。为了获得更好的性能,进化算法(EA)通过增加样本来提高性能。然而,我们很难知道 EA 优于 GCB 的最终条件。为了解决这些具有理论保证和终端条件的问题,本研究提出了基于交叉熵的蒙特卡洛树搜索算法(CE-MCTS)。该算法由三部分组成:用于分支采样的 EA、用于选择的置信上限策略和用于模拟的分布估计算法。实验证明,在空间搜索问题上,CE-MCTS 优于基准方法(如 GCB、EAMC)。
{"title":"Maximal coverage problems with routing constraints using cross-entropy Monte Carlo tree search","authors":"Pao-Te Lin,&nbsp;Kuo-Shih Tseng","doi":"10.1007/s10514-024-10156-6","DOIUrl":"10.1007/s10514-024-10156-6","url":null,"abstract":"<div><p>Spatial search, and environmental monitoring are key technologies in robotics. These problems can be reformulated as maximal coverage problems with routing constraints, which are NP-hard problems. The generalized cost-benefit algorithm (GCB) can solve these problems with theoretical guarantees. To achieve better performance, evolutionary algorithms (EA) boost its performance via more samples. However, it is hard to know the terminal conditions of EA to outperform GCB. To solve these problems with theoretical guarantees and terminal conditions, in this research, the cross-entropy based Monte Carlo Tree Search algorithm (CE-MCTS) is proposed. It consists of three parts: the EA for sampling the branches, the upper confidence bound policy for selections, and the estimation of distribution algorithm for simulations. The experiments demonstrate that the CE-MCTS outperforms benchmark approaches (e.g., GCB, EAMC) in spatial search problems.\u0000</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139646697","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Collocation methods for second and higher order systems 二阶和高阶系统的搭配方法
IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-01-28 DOI: 10.1007/s10514-023-10155-z
Siro Moreno-Martín, Lluís Ros, Enric Celaya

It is often unnoticed that the predominant way to use collocation methods is fundamentally flawed when applied to optimal control in robotics. Such methods assume that the system dynamics is given by a first order ODE, whereas robots are often governed by a second or higher order ODE involving configuration variables and their time derivatives. To apply a collocation method, therefore, the usual practice is to resort to the well known procedure of casting an Mth order ODE into M first order ones. This manipulation, which in the continuous domain is perfectly valid, leads to inconsistencies when the problem is discretized. Since the configuration variables and their time derivatives are approximated with polynomials of the same degree, their differential dependencies cannot be fulfilled, and the actual dynamics is not satisfied, not even at the collocation points. This paper draws attention to this problem, and develops improved versions of the trapezoidal and Hermite–Simpson collocation methods that do not present these inconsistencies. In many cases, the new methods reduce the dynamics transcription error in one order of magnitude, or even more, without noticeably increasing the cost of computing the solutions.

人们往往没有注意到,在应用于机器人优化控制时,主要的搭配方法存在根本性缺陷。这种方法假定系统动力学由一阶 ODE 给出,而机器人通常受二阶或更高阶的 ODE 控制,其中涉及配置变量及其时间导数。因此,要应用配位法,通常的做法是采用众所周知的将 M 阶 ODE 转化为 M 阶一阶 ODE 的程序。这种操作方法在连续域中完全有效,但在问题离散化时却会导致不一致。由于配置变量及其时间导数是用同阶多项式逼近的,因此无法满足它们的微分依赖关系,也就无法满足实际的动力学要求,甚至在配置点上也是如此。本文提请注意这一问题,并开发了梯形和赫米特-辛普森配准方法的改进版本,这些方法不会出现这些不一致问题。在许多情况下,新方法将动力学转录误差减少了一个数量级,甚至更多,而计算求解的成本却没有明显增加。
{"title":"Collocation methods for second and higher order systems","authors":"Siro Moreno-Martín,&nbsp;Lluís Ros,&nbsp;Enric Celaya","doi":"10.1007/s10514-023-10155-z","DOIUrl":"10.1007/s10514-023-10155-z","url":null,"abstract":"<div><p>It is often unnoticed that the predominant way to use collocation methods is fundamentally flawed when applied to optimal control in robotics. Such methods assume that the system dynamics is given by a first order ODE, whereas robots are often governed by a second or higher order ODE involving configuration variables and their time derivatives. To apply a collocation method, therefore, the usual practice is to resort to the well known procedure of casting an <i>M</i>th order ODE into <i>M</i> first order ones. This manipulation, which in the continuous domain is perfectly valid, leads to inconsistencies when the problem is discretized. Since the configuration variables and their time derivatives are approximated with polynomials of the same degree, their differential dependencies cannot be fulfilled, and the actual dynamics is not satisfied, not even at the collocation points. This paper draws attention to this problem, and develops improved versions of the trapezoidal and Hermite–Simpson collocation methods that do not present these inconsistencies. In many cases, the new methods reduce the dynamics transcription error in one order of magnitude, or even more, without noticeably increasing the cost of computing the solutions.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10155-z.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139579306","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Boosting the hospital by integrating mobile robotic assistance systems: a comprehensive classification of the risks to be addressed 通过整合移动机器人辅助系统促进医院发展:应对风险的全面分类
IF 3.7 3区 计算机科学 Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Pub Date : 2024-01-24 DOI: 10.1007/s10514-023-10154-0
Lukas Bernhard, Patrik Schwingenschlögl, Jörg Hofmann, Dirk Wilhelm, Alois Knoll

Mobile service robots are a promising technology for supporting workflows throughout the hospital. Combined with an understanding of the environment and the current situation, such systems have the potential to become invaluable tools for overcoming personal shortages and streamlining healthcare workflows. However, few robotic systems have actually been translated to practical application so far, which is due to many challenges centered around the strict and unique requirements imposed by the different hospital environments, which have not yet been collected and analyzed in a structured manner. To address this need, we now present a comprehensive classification of different dimensions of risk to be considered when designing mobile service robots for the hospital. Our classification consists of six risk categories – environmental complexity, hygienic requirements, interaction with persons and objects, workflow flexibility and autonomy – for each of which a scale with distinct risk levels is provided. This concept, for the first time allows for a precise classification of mobile service robots for the hospital, which can prove useful for certification and admission procedures as well as for defining architectural and safety requirements throughout the design process of such robots.

移动服务机器人是一项前景广阔的技术,可为整个医院的工作流程提供支持。结合对环境和现状的了解,这类系统有可能成为克服人员短缺和简化医疗保健工作流程的宝贵工具。然而,迄今为止,很少有机器人系统真正投入实际应用,这是由于不同医院环境所提出的严格而独特的要求带来了许多挑战,而这些挑战尚未以结构化的方式加以收集和分析。为了满足这一需求,我们现在对设计医院移动服务机器人时需要考虑的不同风险维度进行全面分类。我们的分类包括六个风险类别--环境复杂性、卫生要求、与人和物体的互动、工作流程灵活性和自主性--并为每个类别提供了具有不同风险等级的量表。这一概念首次对医院用移动服务机器人进行了精确分类,可用于认证和入院程序,以及在此类机器人的整个设计过程中确定建筑和安全要求。
{"title":"Boosting the hospital by integrating mobile robotic assistance systems: a comprehensive classification of the risks to be addressed","authors":"Lukas Bernhard,&nbsp;Patrik Schwingenschlögl,&nbsp;Jörg Hofmann,&nbsp;Dirk Wilhelm,&nbsp;Alois Knoll","doi":"10.1007/s10514-023-10154-0","DOIUrl":"10.1007/s10514-023-10154-0","url":null,"abstract":"<div><p>Mobile service robots are a promising technology for supporting workflows throughout the hospital. Combined with an understanding of the environment and the current situation, such systems have the potential to become invaluable tools for overcoming personal shortages and streamlining healthcare workflows. However, few robotic systems have actually been translated to practical application so far, which is due to many challenges centered around the strict and unique requirements imposed by the different hospital environments, which have not yet been collected and analyzed in a structured manner. To address this need, we now present a comprehensive classification of different dimensions of risk to be considered when designing mobile service robots for the hospital. Our classification consists of six risk categories – environmental complexity, hygienic requirements, interaction with persons and objects, workflow flexibility and autonomy – for each of which a scale with distinct risk levels is provided. This concept, for the first time allows for a precise classification of mobile service robots for the hospital, which can prove useful for certification and admission procedures as well as for defining architectural and safety requirements throughout the design process of such robots.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 1","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-023-10154-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139558975","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Autonomous Robots
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1