Pub Date : 2024-11-28DOI: 10.1007/s10514-024-10183-3
Sotirios N. Aspragkathos, Panagiotis Rousseas, George C. Karras, Kostas J. Kyriakopoulos
This article presents a Visual Servoing Nonlinear Model Predictive Control (NMPC) scheme for autonomously tracking a moving target using multirotor Unmanned Aerial Vehicles (UAVs). The scheme is developed for surveillance and tracking of contour-based areas with evolving features. NMPC is used to manage input and state constraints, while additional barrier functions are incorporated in order to ensure system safety and optimal performance. The proposed control scheme is designed based on the extraction and implementation of the full dynamic model of the features describing the target and the state variables. Real-time simulations and experiments using a quadrotor UAV equipped with a camera demonstrate the effectiveness of the proposed strategy.
{"title":"Multirotor nonlinear model predictive control based on visual servoing of evolving features","authors":"Sotirios N. Aspragkathos, Panagiotis Rousseas, George C. Karras, Kostas J. Kyriakopoulos","doi":"10.1007/s10514-024-10183-3","DOIUrl":"10.1007/s10514-024-10183-3","url":null,"abstract":"<div><p>This article presents a Visual Servoing Nonlinear Model Predictive Control (NMPC) scheme for autonomously tracking a moving target using multirotor Unmanned Aerial Vehicles (UAVs). The scheme is developed for surveillance and tracking of contour-based areas with evolving features. NMPC is used to manage input and state constraints, while additional barrier functions are incorporated in order to ensure system safety and optimal performance. The proposed control scheme is designed based on the extraction and implementation of the full dynamic model of the features describing the target and the state variables. Real-time simulations and experiments using a quadrotor UAV equipped with a camera demonstrate the effectiveness of the proposed strategy.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142737228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-19DOI: 10.1007/s10514-024-10176-2
Anas Alhashimi, Daniel Adolfsson, Henrik Andreasson, Achim Lilienthal, Martin Magnusson
This work introduces a novel detector, bounded false-alarm rate (BFAR), for distinguishing true detections from noise in radar data, leading to improved accuracy in radar odometry estimation. Scanning frequency-modulated continuous wave (FMCW) radars can serve as valuable tools for localization and mapping under low visibility conditions. However, they tend to yield a higher level of noise in comparison to the more commonly employed lidars, thereby introducing additional challenges to the detection process. We propose a new radar target detector called BFAR which uses an affine transformation of the estimated noise level compared to the classical constant false-alarm rate (CFAR) detector. This transformation employs learned parameters that minimize the error in odometry estimation. Conceptually, BFAR can be viewed as an optimized blend of CFAR and fixed-level thresholding designed to minimize odometry estimation error. The strength of this approach lies in its simplicity. Only a single parameter needs to be learned from a training dataset when the affine transformation scale parameter is maintained. Compared to ad-hoc detectors, BFAR has the advantage of a specified upper-bound for the false-alarm probability, and better noise handling than CFAR. Repeatability tests show that BFAR yields highly repeatable detections with minimal redundancy. We have conducted simulations to compare the detection and false-alarm probabilities of BFAR with those of three baselines in non-homogeneous noise and varying target sizes. The results show that BFAR outperforms the other detectors. Moreover, We apply BFAR to the use case of radar odometry, and adapt a recent odometry pipeline, replacing its original conservative filtering with BFAR. In this way, we reduce the translation/rotation odometry errors/100 m from 1.3%/0.4(^circ ) to 1.12%/0.38(^circ ), and from 1.62%/0.57(^circ ) to 1.21%/0.32(^circ ), improving translation error by 14.2% and 25% on Oxford and Mulran public data sets, respectively.
{"title":"BFAR: improving radar odometry estimation using a bounded false alarm rate detector","authors":"Anas Alhashimi, Daniel Adolfsson, Henrik Andreasson, Achim Lilienthal, Martin Magnusson","doi":"10.1007/s10514-024-10176-2","DOIUrl":"10.1007/s10514-024-10176-2","url":null,"abstract":"<div><p>This work introduces a novel detector, bounded false-alarm rate (BFAR), for distinguishing true detections from noise in radar data, leading to improved accuracy in radar odometry estimation. Scanning frequency-modulated continuous wave (FMCW) radars can serve as valuable tools for localization and mapping under low visibility conditions. However, they tend to yield a higher level of noise in comparison to the more commonly employed lidars, thereby introducing additional challenges to the detection process. We propose a new radar target detector called BFAR which uses an affine transformation of the estimated noise level compared to the classical constant false-alarm rate (CFAR) detector. This transformation employs learned parameters that minimize the error in odometry estimation. Conceptually, BFAR can be viewed as an optimized blend of CFAR and fixed-level thresholding designed to minimize odometry estimation error. The strength of this approach lies in its simplicity. Only a single parameter needs to be learned from a training dataset when the affine transformation scale parameter is maintained. Compared to ad-hoc detectors, BFAR has the advantage of a specified upper-bound for the false-alarm probability, and better noise handling than CFAR. Repeatability tests show that BFAR yields highly repeatable detections with minimal redundancy. We have conducted simulations to compare the detection and false-alarm probabilities of BFAR with those of three baselines in non-homogeneous noise and varying target sizes. The results show that BFAR outperforms the other detectors. Moreover, We apply BFAR to the use case of radar odometry, and adapt a recent odometry pipeline, replacing its original conservative filtering with BFAR. In this way, we reduce the translation/rotation odometry errors/100 m from 1.3%/0.4<span>(^circ )</span> to 1.12%/0.38<span>(^circ )</span>, and from 1.62%/0.57<span>(^circ )</span> to 1.21%/0.32<span>(^circ )</span>, improving translation error by 14.2% and 25% on Oxford and Mulran public data sets, respectively.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10176-2.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142672386","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-11-14DOI: 10.1007/s10514-024-10182-4
Cameron Berg, Vittorio Caggiano, Vikash Kumar
Learning effective continuous control policies in high-dimensional systems, including musculoskeletal agents, remains a significant challenge. Over the course of biological evolution, organisms have developed robust mechanisms for overcoming this complexity to learn highly sophisticated strategies for motor control. What accounts for this robust behavioral flexibility? Modular control via muscle synergies, i.e. coordinated muscle co-contractions, is considered to be one putative mechanism that enables organisms to learn muscle control in a simplified and generalizable action space. Drawing inspiration from this evolved motor control strategy, we use physiologically accurate human hand and leg models as a testbed for determining the extent to which a Synergistic Action Representation (SAR) acquired from simpler tasks facilitates learning and generalization on more complex tasks. We find in both cases that SAR-exploiting policies significantly outperform end-to-end reinforcement learning. Policies trained with SAR were able to achieve robust locomotion on a diverse set of terrains (e.g., stairs, hills) with state-of-the-art sample efficiency (4 M total steps), while baseline approaches failed to learn any meaningful behaviors under the same training regime. Additionally, policies trained with SAR on in-hand 100-object manipulation task significantly outperformed (>70% success) baseline approaches (<20% success). Both SAR-exploiting policies were also found to generalize zero-shot to out-of-domain environmental conditions, while policies that did not adopt SAR failed to generalize. Finally, using a simulated robotic hand and humanoid agent, we establish the generality of SAR on broader high-dimensional control problems, solving tasks with greatly improved sample efficiency. To the best of our knowledge, this investigation is the first of its kind to present an end-to-end pipeline for discovering synergies and using this representation to learn high-dimensional continuous control across a wide diversity of tasks. Project website:https://sites.google.com/view/sar-rl
在高维系统(包括肌肉骨骼系统)中学习有效的连续控制策略仍然是一项重大挑战。在生物进化的过程中,生物已经发展出克服这种复杂性的强大机制,从而学会了高度复杂的运动控制策略。是什么造就了这种强大的行为灵活性?通过肌肉协同作用(即协调的肌肉共同收缩)进行的模块化控制被认为是一种推定机制,它使生物能够在简化和可泛化的动作空间中学习肌肉控制。从这种进化的运动控制策略中汲取灵感,我们使用生理上精确的人类手部和腿部模型作为试验平台,以确定从较简单任务中获得的协同动作表征(SAR)在多大程度上促进了对较复杂任务的学习和泛化。我们发现,在这两种情况下,利用 SAR 的策略都明显优于端到端强化学习。利用 SAR 训练的策略能够在各种地形(如楼梯、山丘)上实现稳健的运动,并具有最先进的采样效率(总步数为 400 万步),而基线方法在相同的训练机制下无法学习到任何有意义的行为。此外,在手持 100 个物体的操作任务中,使用 SAR 训练的策略明显优于基线方法(成功率为 70%)(成功率为 20%)。研究还发现,这两种利用合成孔径雷达的策略都能在域外环境条件下实现零误差泛化,而未采用合成孔径雷达的策略则无法实现泛化。最后,我们利用模拟机器人手和仿人代理,在更广泛的高维控制问题上确立了 SAR 的通用性,大大提高了解决任务的采样效率。据我们所知,这项研究首次提出了一个端到端的管道,用于发现协同效应,并利用这种表示学习各种任务的高维连续控制。项目网站:https://sites.google.com/view/sar-rl
{"title":"SAR: generalization of physiological agility and dexterity via synergistic action representation","authors":"Cameron Berg, Vittorio Caggiano, Vikash Kumar","doi":"10.1007/s10514-024-10182-4","DOIUrl":"10.1007/s10514-024-10182-4","url":null,"abstract":"<div><p>Learning effective continuous control policies in high-dimensional systems, including musculoskeletal agents, remains a significant challenge. Over the course of biological evolution, organisms have developed robust mechanisms for overcoming this complexity to learn highly sophisticated strategies for motor control. What accounts for this robust behavioral flexibility? Modular control via muscle synergies, i.e. coordinated muscle co-contractions, is considered to be one putative mechanism that enables organisms to learn muscle control in a simplified and generalizable action space. Drawing inspiration from this evolved motor control strategy, we use physiologically accurate human hand and leg models as a testbed for determining the extent to which a <i>Synergistic Action Representation</i> (<i>SAR</i>) acquired from simpler tasks facilitates learning and generalization on more complex tasks. We find in both cases that <i>SAR</i>-exploiting policies significantly outperform end-to-end reinforcement learning. Policies trained with <i>SAR</i> were able to achieve robust locomotion on a diverse set of terrains (e.g., stairs, hills) with state-of-the-art sample efficiency (4 M total steps), while baseline approaches failed to learn any meaningful behaviors under the same training regime. Additionally, policies trained with <i>SAR</i> on in-hand 100-object manipulation task significantly outperformed (>70% success) baseline approaches (<20% success). Both <i>SAR</i>-exploiting policies were also found to generalize zero-shot to out-of-domain environmental conditions, while policies that did not adopt <i>SAR</i> failed to generalize. Finally, using a simulated robotic hand and humanoid agent, we establish the generality of SAR on broader high-dimensional control problems, solving tasks with greatly improved sample efficiency. To the best of our knowledge, this investigation is the first of its kind to present an end-to-end pipeline for discovering synergies and using this representation to learn high-dimensional continuous control across a wide diversity of tasks. <b>Project website:</b>https://sites.google.com/view/sar-rl</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142636655","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-22DOI: 10.1007/s10514-024-10179-z
Bernardo Martinez Rocamora Jr., Guilherme A. S. Pereira
Several applications require that unmanned vehicles, such as UAVs and AUVs, navigate environmental flows. While the flow can improve the vehicle’s efficiency when directed towards the goal, it may also cause feasibility problems when it is against the desired motion and is too strong to be counteracted by the vehicle. This paper proposes the flow-aware fast marching tree algorithm (FlowFMT*) to solve the optimal motion planning problem in generic three-dimensional flows. Our method creates either an optimal path from start to goal or, with a few modifications, a vector field-based policy that guides the vehicle from anywhere in its workspace to the goal. The basic idea of the proposed method is to replace the original neighborhood set used by FMT* with two sets that consider the reachability from/to each sampled position in the space. The new neighborhood sets are computed considering the flow and the maximum speed of the vehicle. Numerical results that compare our methods with the state-of-the-art optimal control solver illustrate the simplicity and correctness of the method.
{"title":"Optimal policies for autonomous navigation in strong currents using fast marching trees","authors":"Bernardo Martinez Rocamora Jr., Guilherme A. S. Pereira","doi":"10.1007/s10514-024-10179-z","DOIUrl":"10.1007/s10514-024-10179-z","url":null,"abstract":"<div><p>Several applications require that unmanned vehicles, such as UAVs and AUVs, navigate environmental flows. While the flow can improve the vehicle’s efficiency when directed towards the goal, it may also cause feasibility problems when it is against the desired motion and is too strong to be counteracted by the vehicle. This paper proposes the flow-aware fast marching tree algorithm (FlowFMT*) to solve the optimal motion planning problem in generic three-dimensional flows. Our method creates either an optimal path from start to goal or, with a few modifications, a vector field-based policy that guides the vehicle from anywhere in its workspace to the goal. The basic idea of the proposed method is to replace the original neighborhood set used by FMT* with two sets that consider the reachability from/to each sampled position in the space. The new neighborhood sets are computed considering the flow and the maximum speed of the vehicle. Numerical results that compare our methods with the state-of-the-art optimal control solver illustrate the simplicity and correctness of the method.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142453025","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-17DOI: 10.1007/s10514-024-10178-0
Luisa Fairfax, Patricio Vela
This paper explores range and bearing angle regulation of a leader–follower using monocular vision. The main challenge is that monocular vision does not directly provide a range measurement. The contribution is a novel concurrent learning (CL) approach, called CL Subtended Angle and Bearing Estimator for Relative pose (CL-SABER), which achieves range regulation without communication, persistency of excitation or known geometry and is demonstrated on a physical, robot platform. A history stack estimates target size which augments the Kalman filter (KF) with a range pseudomeasurement. The target is followed to scale without drift, persistency of excitation requirements, prior knowledge, or additional measurements. Finite excitation is required to achieve parameter convergence and perform steady-state regulation using CL-SABER. Evaluation using simulation and mobile robot experiments in special Euclidean planar space (SE(2)) show that the new method provides stable and consistent range regulation, as demonstrated by the inter-rater reliability, including in noisy and high leader acceleration environments.
本文探讨了利用单目视觉对领航员-追随者进行测距和方位角调节的问题。主要挑战在于单目视觉无法直接提供距离测量。本文的贡献在于采用了一种新颖的并发学习(CL)方法,称为 "CL-SABER"(CL Subtended Angle and Bearing Estimator for Relative pose)。历史堆栈可估算目标大小,并通过范围伪测量来增强卡尔曼滤波器(KF)。跟踪目标时,无需漂移、持续激励要求、先验知识或额外测量。利用 CL-SABER 实现参数收敛和稳态调节需要有限的激励。在特殊欧几里得平面空间(SE(2))中使用模拟和移动机器人实验进行的评估表明,新方法可提供稳定一致的测距调节,这一点已通过评分者之间的可靠性得到证明,包括在嘈杂和高领导加速度环境中。
{"title":"A concurrent learning approach to monocular vision range regulation of leader/follower systems","authors":"Luisa Fairfax, Patricio Vela","doi":"10.1007/s10514-024-10178-0","DOIUrl":"10.1007/s10514-024-10178-0","url":null,"abstract":"<div><p>This paper explores range and bearing angle regulation of a leader–follower using monocular vision. The main challenge is that monocular vision does not directly provide a range measurement. The contribution is a novel concurrent learning (CL) approach, called CL Subtended Angle and Bearing Estimator for Relative pose (CL-SABER), which achieves range regulation without communication, persistency of excitation or known geometry and is demonstrated on a physical, robot platform. A history stack estimates target size which augments the Kalman filter (KF) with a range pseudomeasurement. The target is followed <i>to scale without drift, persistency of excitation requirements, prior knowledge, or additional measurements</i>. <i>Finite</i> excitation is required to achieve parameter convergence and perform steady-state regulation using CL-SABER. Evaluation using simulation and mobile robot experiments in special Euclidean planar space (<i>SE</i>(2)) show that the new method provides stable and consistent range regulation, as demonstrated by the inter-rater reliability, including in noisy and high leader acceleration environments.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10178-0.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142447364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1007/s10514-024-10180-6
Mitchell Usayiwevu, Fouad Sukkar, Chanyeol Yoo, Robert Fitch, Teresa Vidal-Calleja
Inertial-aided systems require continuous motion excitation among other reasons to characterize the measurement biases that will enable accurate integration required for localization frameworks. This paper proposes the use of informative path planning to find the best trajectory for minimizing the uncertainty of IMU biases and an adaptive traces method to guide the planner towards trajectories that aid convergence. The key contribution is a novel regression method based on Gaussian Process (GP) to enforce continuity and differentiability between waypoints from a variant of the (hbox {RRT}^*) planning algorithm. We employ linear operators applied to the GP kernel function to infer not only continuous position trajectories, but also velocities and accelerations. The use of linear functionals enable velocity and acceleration constraints given by the IMU measurements to be imposed on the position GP model. The results from both simulation and real-world experiments show that planning for IMU bias convergence helps minimize localization errors in state estimation frameworks.
惯性辅助系统需要持续的运动激励,以确定测量偏差的特征,从而实现定位框架所需的精确整合。本文提出使用信息路径规划来寻找最佳轨迹,以最大限度地减少 IMU 偏差的不确定性,并提出一种自适应轨迹方法,以引导规划者找到有助于收敛的轨迹。该方法的主要贡献是基于高斯过程(GP)的新型回归方法,以强制执行 (hbox {RRT}^*)规划算法变体的航点之间的连续性和可区分性。我们采用应用于 GP 核函数的线性算子,不仅能推断连续的位置轨迹,还能推断速度和加速度。通过使用线性函数,可以将 IMU 测量给出的速度和加速度约束施加到位置 GP 模型上。模拟和实际实验的结果表明,对 IMU 偏差收敛进行规划有助于最大限度地减少状态估计框架中的定位误差。
{"title":"Continuous planning for inertial-aided systems","authors":"Mitchell Usayiwevu, Fouad Sukkar, Chanyeol Yoo, Robert Fitch, Teresa Vidal-Calleja","doi":"10.1007/s10514-024-10180-6","DOIUrl":"10.1007/s10514-024-10180-6","url":null,"abstract":"<div><p>Inertial-aided systems require continuous motion excitation among other reasons to characterize the measurement biases that will enable accurate integration required for localization frameworks. This paper proposes the use of informative path planning to find the best trajectory for minimizing the uncertainty of IMU biases and an adaptive traces method to guide the planner towards trajectories that aid convergence. The key contribution is a novel regression method based on Gaussian Process (GP) to enforce continuity and differentiability between waypoints from a variant of the <span>(hbox {RRT}^*)</span> planning algorithm. We employ linear operators applied to the GP kernel function to infer not only continuous position trajectories, but also velocities and accelerations. The use of linear functionals enable velocity and acceleration constraints given by the IMU measurements to be imposed on the position GP model. The results from both simulation and real-world experiments show that planning for IMU bias convergence helps minimize localization errors in state estimation frameworks.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10180-6.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411505","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-12DOI: 10.1007/s10514-024-10177-1
Yingke Li, Mengxue Hou, Enlu Zhou, Fumin Zhang
The process-aware source seeking (PASS) problem in flow fields aims to find an informative trajectory to reach an unknown source location while taking the energy consumption in the flow fields into consideration. Taking advantage of the dynamic flow field partition technique, this paper formulates this problem as a task and motion planning (TAMP) problem and proposes a bi-level hierarchical planning framework to decouple the planning of inter-region transition and inner-region trajectory by introducing inter-region junctions. An integrated strategy is developed to enable efficient upper-level planning by investigating the optimal solution of the lower-level planner. In order to leverage the information acquisition and computational burden, a dynamic event-triggered mechanism is introduced to enable asynchronized estimation, region partitioning and re-plans. The proposed algorithm provides guaranteed convergence of the trajectory, and achieves automatic trade-offs of both exploration-exploitation and accuracy-efficiency. Simulations in a highly complicated and realistic ocean surface flow field validate the merits of the proposed algorithm, which demonstrates a significant reduction in computational burden without compromising planning optimality.
{"title":"Dynamic event-triggered integrated task and motion planning for process-aware source seeking","authors":"Yingke Li, Mengxue Hou, Enlu Zhou, Fumin Zhang","doi":"10.1007/s10514-024-10177-1","DOIUrl":"10.1007/s10514-024-10177-1","url":null,"abstract":"<div><p>The process-aware source seeking (PASS) problem in flow fields aims to find an informative trajectory to reach an unknown source location while taking the energy consumption in the flow fields into consideration. Taking advantage of the dynamic flow field partition technique, this paper formulates this problem as a task and motion planning (TAMP) problem and proposes a bi-level hierarchical planning framework to decouple the planning of inter-region transition and inner-region trajectory by introducing inter-region junctions. An integrated strategy is developed to enable efficient upper-level planning by investigating the optimal solution of the lower-level planner. In order to leverage the information acquisition and computational burden, a dynamic event-triggered mechanism is introduced to enable asynchronized estimation, region partitioning and re-plans. The proposed algorithm provides guaranteed convergence of the trajectory, and achieves automatic trade-offs of both exploration-exploitation and accuracy-efficiency. Simulations in a highly complicated and realistic ocean surface flow field validate the merits of the proposed algorithm, which demonstrates a significant reduction in computational burden without compromising planning optimality.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s10514-024-10177-1.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411504","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-06DOI: 10.1007/s10514-024-10174-4
Hann Woei Ho, Ye Zhou, Yiting Feng, Guido C. H. E. de Croon
This paper proposes an innovative approach for optical flow-based control of micro air vehicles (MAVs), addressing challenges inherent in the nonlinearity of optical flow observables. The proposed incremental nonlinear dynamic inversion (INDI) control scheme employs an efficient data-driven approach to directly estimate the inverse of the time-varying INDI control effectiveness in real-time. This method eliminates the constant effectiveness assumption typically made by traditional INDI methods and reduces the computational burden associated with inverting this variable at each time step. It effectively handles rapidly changing system dynamics, often encountered in optical flow-based control, particularly height-dependent control variables. Stability analysis of the proposed control scheme is conducted, and its robustness and efficiency are demonstrated through both numerical simulations and real-world flight tests. These tests include multiple landings of an MAV on a static, flat surface with several different tracking setpoints, as well as hovering and landings on moving and undulating surfaces. Despite the challenges posed by noisy optical flow estimates and lateral or vertical movements of the landing surfaces, the MAV successfully tracks or lands on the surface with an exponential decay of both height and vertical velocity almost simultaneously, aligning with the desired performance.
本文针对微型飞行器(MAVs)基于光流的控制提出了一种创新方法,以解决光流观测值的非线性所固有的挑战。所提出的增量非线性动态反演(INDI)控制方案采用了一种高效的数据驱动方法,可直接实时估算时变 INDI 控制效果的逆值。这种方法消除了传统 INDI 方法通常采用的恒定有效性假设,并减轻了在每个时间步长反演该变量的计算负担。它能有效处理基于光流的控制中经常遇到的快速变化的系统动态,尤其是与高度相关的控制变量。对提出的控制方案进行了稳定性分析,并通过数值模拟和实际飞行测试证明了其稳健性和效率。这些测试包括飞行器在静态、平坦的表面上以多个不同的跟踪设定点进行多次着陆,以及在移动和起伏的表面上悬停和着陆。尽管存在噪声光流估计和着陆表面横向或纵向移动带来的挑战,但飞行器成功地在表面跟踪或着陆,高度和垂直速度几乎同时呈指数衰减,符合预期性能。
{"title":"Optical flow-based control for micro air vehicles: an efficient data-driven incremental nonlinear dynamic inversion approach","authors":"Hann Woei Ho, Ye Zhou, Yiting Feng, Guido C. H. E. de Croon","doi":"10.1007/s10514-024-10174-4","DOIUrl":"10.1007/s10514-024-10174-4","url":null,"abstract":"<div><p>This paper proposes an innovative approach for optical flow-based control of micro air vehicles (MAVs), addressing challenges inherent in the nonlinearity of optical flow observables. The proposed incremental nonlinear dynamic inversion (INDI) control scheme employs an efficient data-driven approach to directly estimate the inverse of the time-varying INDI control effectiveness in real-time. This method eliminates the constant effectiveness assumption typically made by traditional INDI methods and reduces the computational burden associated with inverting this variable at each time step. It effectively handles rapidly changing system dynamics, often encountered in optical flow-based control, particularly height-dependent control variables. Stability analysis of the proposed control scheme is conducted, and its robustness and efficiency are demonstrated through both numerical simulations and real-world flight tests. These tests include multiple landings of an MAV on a static, flat surface with several different tracking setpoints, as well as hovering and landings on moving and undulating surfaces. Despite the challenges posed by noisy optical flow estimates and lateral or vertical movements of the landing surfaces, the MAV successfully tracks or lands on the surface with an exponential decay of both height and vertical velocity almost simultaneously, aligning with the desired performance.\u0000</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 8","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410300","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-10-01DOI: 10.1007/s10514-024-10173-5
Xili Yi, An Dang, Nima Fazeli
In this paper, we present models and planning algorithms to slide an object on a planar surface via frictional patch contact made with its top surface, whether the surface is horizontal or inclined. The core of our approach is the asymmetric dual limit surfaces model that determines slip boundary conditions for both the top and support patch contacts made with the object. This model enables us to compute a range of twists that can keep the object in sticking contact with the robot end-effector while slipping on the supporting plane. Based on these constraints, we derive a planning algorithm to slide objects with only top contact to arbitrary goal poses without slippage between end effector and the object. We fit the proposed model and demonstrate its predictive accuracy on a variety of object geometries and motions. We also evaluate the planning algorithm over a variety of objects and goals, demonstrating an orientation error improvement of 90% when compared to methods naive to linear path planners. For more results and information, please visit https://www.mmintlab.com/dual-limit-surfaces/.
{"title":"Dual asymmetric limit surfaces and their applications to planar manipulation","authors":"Xili Yi, An Dang, Nima Fazeli","doi":"10.1007/s10514-024-10173-5","DOIUrl":"10.1007/s10514-024-10173-5","url":null,"abstract":"<div><p>In this paper, we present models and planning algorithms to slide an object on a planar surface via frictional patch contact made with its <i>top surface</i>, whether the surface is horizontal or inclined. The core of our approach is the asymmetric dual limit surfaces model that determines slip boundary conditions for both the top and support patch contacts made with the object. This model enables us to compute a range of twists that can keep the object in sticking contact with the robot end-effector while slipping on the supporting plane. Based on these constraints, we derive a planning algorithm to slide objects with only top contact to arbitrary goal poses without slippage between end effector and the object. We fit the proposed model and demonstrate its predictive accuracy on a variety of object geometries and motions. We also evaluate the planning algorithm over a variety of objects and goals, demonstrating an orientation error improvement of 90% when compared to methods naive to linear path planners. For more results and information, please visit https://www.mmintlab.com/dual-limit-surfaces/.</p></div>","PeriodicalId":55409,"journal":{"name":"Autonomous Robots","volume":"48 7","pages":""},"PeriodicalIF":3.7,"publicationDate":"2024-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142409297","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}