Pub Date : 2023-07-20DOI: 10.24425/ams.2019.129376
Zhenqi Liu, Xiaoxing Zhong, H. Ren, Ang Gao
Mining the lower seams in a sequence of shallow, closely spaced coal seams causes serious air leakage in the upper goaf; this can easily aggravate spontaneous combustion in abandoned coal. Understanding the redevelopment of fractures and the changes in permeability is of great significance for controlling coal spontaneous combustion in the upper goaf. Based on actual conditions at the 22307 working face in the Bulianta coal mine, Particle Flow Code (PFC) and a corresponding physical experiment were used to study the redevelopment of fractures and changes in permeability during lower coal seam mining. The results show that after mining the lower coal seam, the upper and lower goafs become connected and form a new compos ite goaf. The permeability and the number of fractures in each area of the overlying strata show a pattern of „stability-rapid increase-stability“ as the lower coal seam is mined and the working face advances. Above the central area of goaf, the permeability has changed slightly, while in the open-cut and stop line areas are significant, which formed the main air leakage passage in the composite goaf.
{"title":"Redevelopment of Fractures and Permeability Changes after Multi-Seam Mining of Shallow Closely Spaced Coal Seams","authors":"Zhenqi Liu, Xiaoxing Zhong, H. Ren, Ang Gao","doi":"10.24425/ams.2019.129376","DOIUrl":"https://doi.org/10.24425/ams.2019.129376","url":null,"abstract":"Mining the lower seams in a sequence of shallow, closely spaced coal seams causes serious air leakage in the upper goaf; this can easily aggravate spontaneous combustion in abandoned coal. Understanding the redevelopment of fractures and the changes in permeability is of great significance for controlling coal spontaneous combustion in the upper goaf. Based on actual conditions at the 22307 working face in the Bulianta coal mine, Particle Flow Code (PFC) and a corresponding physical experiment were used to study the redevelopment of fractures and changes in permeability during lower coal seam mining. The results show that after mining the lower coal seam, the upper and lower goafs become connected and form a new compos ite goaf. The permeability and the number of fractures in each area of the overlying strata show a pattern of „stability-rapid increase-stability“ as the lower coal seam is mined and the working face advances. Above the central area of goaf, the permeability has changed slightly, while in the open-cut and stop line areas are significant, which formed the main air leakage passage in the composite goaf.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47301793","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/ams.2020.134131
T. Janoszek
The use of computer techniques at the design stage of industrial facilities is essential in modern times. The ability to shorten the time required to develop a project and assess the safety of the use of assumptions, often enables the reduction of the costs incurred in the future. The possibility to skip expensive prototype tests by using 3D prototyping is why it is currently the prevailing model in the design of industrial facilities, including in the mining industry. In the case of a longwall working, its stability requires the maintenance of the geometric continuity of floor rocks in cooperation with a powered roof support. The paper investigates the problem of longwall working stability under the influence of roof properties, coal properties, shield loading and the roof-floor interaction. The longwall working stability is represented by an index, factor of safety (FOS), and is correlated with a previously proposed roof capacity index ‘g‘. The topic of the paper does address an issue of potential interest. The assessment of the stability of the roof in longwalls was based on the numerical analysis of the factor of safety (FOS), using the Mohr-Coulomb stress criterion. The Mohr-Coulomb stress criterion enables the prediction of the occurrence of failures when the connection of the maximum tensile principal stress σ1 and the minimum compressive principal stress σ3 exceed relevant stress limits. The criterion is used for materials which indicates distinct tensile and compressive characteristics. The numerical method presented in the paper can be utilized in evaluating the mining natural hazards through predicting the parameters, which determine the roof maintenance in the longwall working. One of the purposes of the numerical analysis was to draw attention to the possibilities that are currently created by specialized software as an important element accompanying the modern design process, which forms part of intelligent underground mining 4.0.
{"title":"The Assessment of Longwall Working Stability Based on the Mohr-Coulomb Stress Criterion – Numerical Analysis","authors":"T. Janoszek","doi":"10.24425/ams.2020.134131","DOIUrl":"https://doi.org/10.24425/ams.2020.134131","url":null,"abstract":"The use of computer techniques at the design stage of industrial facilities is essential in modern times. The ability to shorten the time required to develop a project and assess the safety of the use of assumptions, often enables the reduction of the costs incurred in the future. The possibility to skip expensive prototype tests by using 3D prototyping is why it is currently the prevailing model in the design of industrial facilities, including in the mining industry. In the case of a longwall working, its stability requires the maintenance of the geometric continuity of floor rocks in cooperation with a powered roof support. The paper investigates the problem of longwall working stability under the influence of roof properties, coal properties, shield loading and the roof-floor interaction. The longwall working stability is represented by an index, factor of safety (FOS), and is correlated with a previously proposed roof capacity index ‘g‘. The topic of the paper does address an issue of potential interest. The assessment of the stability of the roof in longwalls was based on the numerical analysis of the factor of safety (FOS), using the Mohr-Coulomb stress criterion. The Mohr-Coulomb stress criterion enables the prediction of the occurrence of failures when the connection of the maximum tensile principal stress σ1 and the minimum compressive principal stress σ3 exceed relevant stress limits. The criterion is used for materials which indicates distinct tensile and compressive characteristics. The numerical method presented in the paper can be utilized in evaluating the mining natural hazards through predicting the parameters, which determine the roof maintenance in the longwall working. One of the purposes of the numerical analysis was to draw attention to the possibilities that are currently created by specialized software as an important element accompanying the modern design process, which forms part of intelligent underground mining 4.0.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47967281","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/ams.2022.142409
Shafi Muhammad Pathan, A. Pathan, F. I. Siddiqui, M. Memon, Mairaj Hyder Alias Aamir Soomro
Slope Stability Analysis is one of the main aspects of open-pit mine planning because the calculations regarding the stability of slopes are necessary to assess the stability of the open pit slopes together with the financial feasibility of the mining operations. this study was conducted to analyse the effect of groundwater on the shear strength properties of soft rock formations and determine the optimum overall slope angle for an open pit coal mine at thar Coalfield, Pakistan. Computer modelling and analysis of the slope models were performed using Slide (v. 5.0) and Phase2 (v. 6.0) software. integrated use of limit Equilibrium based Probabilistic (lE-P) analysis and finite Element Method (fEM) based shear strength reduction analysis was performed to determine the safe overall slope angle against circular failure. Several pit slope models were developed at different overall slope angles and pore-water pressure ratio (ru) coefficients. Each model was initially analysed under dry conditions and then by incorporating the effect of pore-water pressure coefficients of ru = 0.1, 0.2, and 0.3 (partially saturated); finally, the strata were considered to be fully saturated. it was concluded that at an overall slope angle of 29 degrees, the overall slope will remain stable under dry and saturated conditions for a critical safety factor of 1.3.
{"title":"Open Pit Slope Stability Analysis in Soft Rock Formations at Thar Coalfield Pakistan","authors":"Shafi Muhammad Pathan, A. Pathan, F. I. Siddiqui, M. Memon, Mairaj Hyder Alias Aamir Soomro","doi":"10.24425/ams.2022.142409","DOIUrl":"https://doi.org/10.24425/ams.2022.142409","url":null,"abstract":"Slope Stability Analysis is one of the main aspects of open-pit mine planning because the calculations regarding the stability of slopes are necessary to assess the stability of the open pit slopes together with the financial feasibility of the mining operations. this study was conducted to analyse the effect of groundwater on the shear strength properties of soft rock formations and determine the optimum overall slope angle for an open pit coal mine at thar Coalfield, Pakistan. Computer modelling and analysis of the slope models were performed using Slide (v. 5.0) and Phase2 (v. 6.0) software. integrated use of limit Equilibrium based Probabilistic (lE-P) analysis and finite Element Method (fEM) based shear strength reduction analysis was performed to determine the safe overall slope angle against circular failure. Several pit slope models were developed at different overall slope angles and pore-water pressure ratio (ru) coefficients. Each model was initially analysed under dry conditions and then by incorporating the effect of pore-water pressure coefficients of ru = 0.1, 0.2, and 0.3 (partially saturated); finally, the strata were considered to be fully saturated. it was concluded that at an overall slope angle of 29 degrees, the overall slope will remain stable under dry and saturated conditions for a critical safety factor of 1.3.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49337303","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/ams.2019.129368
A. Tajduś, M. Turek
Hard coal and lignite mining sectors, supplying the largest amounts of raw materials for the power industry, play a special role in our country – they are the basis for energy security. This concept is defined as ‘current and future satisfaction of the needs of customers for fuels and energy in a technically and economically justified manner, while maintaining the requirements of environmental protection’ (Polityka, 2018). Particularly important in this respect is hard coal, which has by far the largest share among primary energy carriers, which are used in Poland for
{"title":"The State and Conditions of the Future Functioning of Hard Coal Mining in Poland","authors":"A. Tajduś, M. Turek","doi":"10.24425/ams.2019.129368","DOIUrl":"https://doi.org/10.24425/ams.2019.129368","url":null,"abstract":"Hard coal and lignite mining sectors, supplying the largest amounts of raw materials for the power industry, play a special role in our country – they are the basis for energy security. This concept is defined as ‘current and future satisfaction of the needs of customers for fuels and energy in a technically and economically justified manner, while maintaining the requirements of environmental protection’ (Polityka, 2018). Particularly important in this respect is hard coal, which has by far the largest share among primary energy carriers, which are used in Poland for","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48872819","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/AMS.2019.129364
Robert Czarnota, E. Knapik, P. Wojnarowski, Damian Janiga, J. Stopa
{"title":"Carbon Dioxide Separation Technologies","authors":"Robert Czarnota, E. Knapik, P. Wojnarowski, Damian Janiga, J. Stopa","doi":"10.24425/AMS.2019.129364","DOIUrl":"https://doi.org/10.24425/AMS.2019.129364","url":null,"abstract":"","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49307204","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/AMS.2019.129377
R. Hou, Kai Zhang, Jing Tao
Time-dependent behavior of rock mass is important for long-t erm stability analysis in rock engineering. Extensive studies have been carried out on the creep properties and rheological models for variable kinds of rocks, however, the effects of initial damage state on the time-dependent behavior of rock has not yet been taken into consideration. In the present study, the authors proposed a cree p test scheme with controlled initial damage to investigate the influence of initial damage on the time-dependent behavior of sandstone. In the test scheme, the initial states of damage were first determined via unloading the specimen from various stresses. Then, the creep test was conducted under different stress levels with specific initial damage. The experimental results show that there is a stress threshold for the initial damage to influence the behavior of the rock in the uniaxial compressive creep tests, which is the stress threshold of dilatancy of rock. When the creep stress is less than the stress threshold, the effect of the initial damage seems to be insignificant. However, if the creep stress is higher than the stress threshold, the initial damage has an important influence on the time-dependent deformation, especially the lateral and volumetric deformation. Moreover, the initial damage also has great influence on the creep failure stress and long-term strength, i.e., higher initial damage leading to lower creep failure stress and long-term strength. The experimental results can provide valuable data for the construction of a creep damage model and long-term stability analysis for rock engineering.
{"title":"Effects of Initial Damage on Time-Dependent Behavior of Sandstone in Uniaxial Compressive Creep Test","authors":"R. Hou, Kai Zhang, Jing Tao","doi":"10.24425/AMS.2019.129377","DOIUrl":"https://doi.org/10.24425/AMS.2019.129377","url":null,"abstract":"Time-dependent behavior of rock mass is important for long-t erm stability analysis in rock engineering. Extensive studies have been carried out on the creep properties and rheological models for variable kinds of rocks, however, the effects of initial damage state on the time-dependent behavior of rock has not yet been taken into consideration. In the present study, the authors proposed a cree p test scheme with controlled initial damage to investigate the influence of initial damage on the time-dependent behavior of sandstone. In the test scheme, the initial states of damage were first determined via unloading the specimen from various stresses. Then, the creep test was conducted under different stress levels with specific initial damage. The experimental results show that there is a stress threshold for the initial damage to influence the behavior of the rock in the uniaxial compressive creep tests, which is the stress threshold of dilatancy of rock. When the creep stress is less than the stress threshold, the effect of the initial damage seems to be insignificant. However, if the creep stress is higher than the stress threshold, the initial damage has an important influence on the time-dependent deformation, especially the lateral and volumetric deformation. Moreover, the initial damage also has great influence on the creep failure stress and long-term strength, i.e., higher initial damage leading to lower creep failure stress and long-term strength. The experimental results can provide valuable data for the construction of a creep damage model and long-term stability analysis for rock engineering.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44440646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/ams.2020.134141
P. Krawczyk, A. Śliwińska
This work is a continuation and extension of previous socio-economic analyses of hard coal mines, which were conducted at the Central Mining Institute in the years 2013-2015. The paper presents the results of the economic evaluation of the hard coal mining sector in the years 2016-2018 using the Cost-Benefit Analysis (CBA) methodology. Used for the socio-economic assessment of hard coal mining, the CBA methodology enables the comprehensive evaluation of the functioning of this sector of the economy in Poland. In addition to financial aspects, which are important from the point of view of coal companies, it also included the social and environmental influence resulting from the impact of mines on the environment. Direct data of operating costs and payments (including pub lic-law payments), incurred by the hard coal mining industry in Poland, was used. This data is obtained by Industrial Development Agency JSC, Branch Office Katowice as part of the “Program of statistical surveys of official statistics” – statistical survey “Hard coal and lignite mining industry”. They were supplemented with data coming from commonly available public statistics. For the analysed period the presented results indicate that the financial and social benefits resulting from the hard coal mining activity in Poland outweighed the financial, social and environmental costs generated by this industry. This confirms the desirability of further functioning of the hard coal mining industry in Poland, however, assuming effective restructuring activities that will result in lower costs of coal production.
{"title":"An Economic Evaluation of the Functioning of Hard Coal Mining in Poland in the Years 2016-2018","authors":"P. Krawczyk, A. Śliwińska","doi":"10.24425/ams.2020.134141","DOIUrl":"https://doi.org/10.24425/ams.2020.134141","url":null,"abstract":"This work is a continuation and extension of previous socio-economic analyses of hard coal mines, which were conducted at the Central Mining Institute in the years 2013-2015. The paper presents the results of the economic evaluation of the hard coal mining sector in the years 2016-2018 using the Cost-Benefit Analysis (CBA) methodology. Used for the socio-economic assessment of hard coal mining, the CBA methodology enables the comprehensive evaluation of the functioning of this sector of the economy in Poland. In addition to financial aspects, which are important from the point of view of coal companies, it also included the social and environmental influence resulting from the impact of mines on the environment. Direct data of operating costs and payments (including pub lic-law payments), incurred by the hard coal mining industry in Poland, was used. This data is obtained by Industrial Development Agency JSC, Branch Office Katowice as part of the “Program of statistical surveys of official statistics” – statistical survey “Hard coal and lignite mining industry”. They were supplemented with data coming from commonly available public statistics. For the analysed period the presented results indicate that the financial and social benefits resulting from the hard coal mining activity in Poland outweighed the financial, social and environmental costs generated by this industry. This confirms the desirability of further functioning of the hard coal mining industry in Poland, however, assuming effective restructuring activities that will result in lower costs of coal production.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44592680","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/ams.2019.131069
Bing-xiang Huang, Xinglong Zhao, T. Sun
Influenced by the dynamic pressure of the front abutment pressure and the lateral abutment pressure, large deformation of surrounding rock occurs advancing working face in the entry heading adjacent to the active longwall mining face. Based on the cause analysis of entry large deformation, a new technology was put forward to solve the problem, and the designing method of drilling hole parameters for directional hydraulic fracturing was formed. Holes are drilled in the entry or in the high drainage entry to a certain rock layer over the adjacent working face, hydraulic cutting or slotting at the bottom of a borehole were also applied in advance to guide the hydraulic fractures extend in expected direction, through which the hard roof above the coal pillar can be cut off directionally. As a result, the stress concentration around the entry was transferred, and the entry was located in a destressing area. The field test at Majialiang coal mine indicates that the propagation length of cracks in single borehole is more than 15 m. After hydraulic fracturing, the large deformation range of the entry is reduced by 45 m, the average floor heave is reduced by 70%, and the average convergence of the entry’s two sides is reduced by 65%. Directional hydraulic fracturing has a better performance to control the large deformation of the dynamic pressure of the entry heading adjacent to the advancing coal face. Besides, it can improve the performance of the safety production.
{"title":"Field Experiment of Destress Hydraulic Fracturing for Controlling the Large Deformation of the Dynamic Pressure Entry Heading Adjacent to the Advancing Longwall Face","authors":"Bing-xiang Huang, Xinglong Zhao, T. Sun","doi":"10.24425/ams.2019.131069","DOIUrl":"https://doi.org/10.24425/ams.2019.131069","url":null,"abstract":"Influenced by the dynamic pressure of the front abutment pressure and the lateral abutment pressure, large deformation of surrounding rock occurs advancing working face in the entry heading adjacent to the active longwall mining face. Based on the cause analysis of entry large deformation, a new technology was put forward to solve the problem, and the designing method of drilling hole parameters for directional hydraulic fracturing was formed. Holes are drilled in the entry or in the high drainage entry to a certain rock layer over the adjacent working face, hydraulic cutting or slotting at the bottom of a borehole were also applied in advance to guide the hydraulic fractures extend in expected direction, through which the hard roof above the coal pillar can be cut off directionally. As a result, the stress concentration around the entry was transferred, and the entry was located in a destressing area. The field test at Majialiang coal mine indicates that the propagation length of cracks in single borehole is more than 15 m. After hydraulic fracturing, the large deformation range of the entry is reduced by 45 m, the average floor heave is reduced by 70%, and the average convergence of the entry’s two sides is reduced by 65%. Directional hydraulic fracturing has a better performance to control the large deformation of the dynamic pressure of the entry heading adjacent to the advancing coal face. Besides, it can improve the performance of the safety production.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44067953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/ams.2021.136689
{"title":"Simulation of the Evacuation of People in a Road Tunnel in the Event of Fire – Case Study","authors":"","doi":"10.24425/ams.2021.136689","DOIUrl":"https://doi.org/10.24425/ams.2021.136689","url":null,"abstract":"","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43663978","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2023-07-20DOI: 10.24425/ams.2020.135184
Coal waste stockpiles – as artificial formations being a result of the exploitation of underground coal deposits – are constantly influenced by external factors, such as rock mass movements affecting the stability of the stockpile body and changing weather conditions, leading to a cycle of aerological phenomena which intensify the self-heating of the deposited material. Together with the occurrence of external factors, the stored material is also characterised by a set of internal features (also called genetic) that have a direct impact on the kinetics of the self-heating reaction. The paper focuses mainly on the issue of external factors such as the inclination angle of the stockpile, erosion of the slopes and thermal insulation of the layers of the stored material, which affect the phenomenon of self-heating of the material. Studies of impact of these factors on the thermal stability of coal waste stockpiles are important in the aspect of secondary exploitation of the stockpiles as well as during their reclamation or revitalisation. The numerical solutions presented in the paper should be treated as guidelines that define the directions of analysis for specific cases.
{"title":"Aerological Factors Favouring the Occurrence of Endogenous Fires on Coal Waste Stockpiles","authors":"","doi":"10.24425/ams.2020.135184","DOIUrl":"https://doi.org/10.24425/ams.2020.135184","url":null,"abstract":"Coal waste stockpiles – as artificial formations being a result of the exploitation of underground coal deposits – are constantly influenced by external factors, such as rock mass movements affecting the stability of the stockpile body and changing weather conditions, leading to a cycle of aerological phenomena which intensify the self-heating of the deposited material. Together with the occurrence of external factors, the stored material is also characterised by a set of internal features (also called genetic) that have a direct impact on the kinetics of the self-heating reaction. The paper focuses mainly on the issue of external factors such as the inclination angle of the stockpile, erosion of the slopes and thermal insulation of the layers of the stored material, which affect the phenomenon of self-heating of the material. Studies of impact of these factors on the thermal stability of coal waste stockpiles are important in the aspect of secondary exploitation of the stockpiles as well as during their reclamation or revitalisation. The numerical solutions presented in the paper should be treated as guidelines that define the directions of analysis for specific cases.","PeriodicalId":55468,"journal":{"name":"Archives of Mining Sciences","volume":" ","pages":""},"PeriodicalIF":1.2,"publicationDate":"2023-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44083168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}