首页 > 最新文献

Brodogradnja最新文献

英文 中文
Evaluation of ballast water treatment systems from the perspective of expert seafarers' ship experiences 从专业海员船舶经验的角度评价压载水处理系统
4区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-09-01 DOI: 10.21278/brod74407
Mevlüt Yilmaz, Ceren Bilgin Güney
Until recently, the selection of ballast water treatment (BWT) systems was based on a predetermined set of criteria that did not include evaluations for system utilization due to lack of experience. The experience-building phase for the systems began, especially with the entry of the Ballast Water Management Convention into force. For effective assessment and decision-making, the evaluations of expert seafarers responsible for using ballast water treatment systems on-board ships are of paramount importance. This study was completed by evaluating the experience and evaluations of 50 expert seafarers (24 deck personnel and 26 engine personnel) working in a Turkish maritime company in three phases to contribute to the decision-making and system evaluation processes: 1- The failure reports written by the ship personnel of the maritime company were examined, and bilateral interviews with expert seafarers working on these tankers were held; 2- an online questionnaire was prepared and presented to seafarers; 3Analytic hierarchy process (AHP) was used to obtain a common perspective of the seafarers. In this study's first phase, 'ideal system characteristics' were determined. Based on these characteristics, an online questionnaire was prepared in the second phase of this study and presented to seafarers. In the third phase, a set of six criteria was developed, and the Analytic Hierarchy Process (AHP) was used to obtain the common perspective of 50 participants. Pairwise comparisons revealed that ‘Rare alarms and malfunctions’ was the most important criterion from the perspective of all seafarers and UV-type BWTSs were 1.76 times more preferable than the electrochemical (El-Chem) type BWTSs as a common approach.
直到最近,压载水处理(BWT)系统的选择都是基于一套预先确定的标准,由于缺乏经验,不包括对系统利用率的评估。随着压载水管理公约的生效,这些系统的经验积累阶段开始了。为了有效的评估和决策,负责使用船上压载水处理系统的专业海员的评估是至关重要的。本研究是通过评估在土耳其一家海事公司工作的50名专家海员(24名甲板人员和26名发动机人员)的经验和评估来完成的,分三个阶段为决策和系统评估过程做出贡献:1-检查海事公司船舶人员撰写的故障报告,并与在这些油轮上工作的专家海员进行双边访谈;2-编制了一份在线调查问卷并向海员提交;3采用层次分析法(AHP)获得海员的共同视角。在本研究的第一阶段,确定了“理想系统特性”。基于这些特征,在本研究的第二阶段准备了一份在线问卷,并提交给海员。在第三阶段,制定了一套六个标准,并使用层次分析法(AHP)获得了50名参与者的共同观点。双比较显示,从所有海员的角度来看,“罕见报警和故障”是最重要的标准,紫外线型bwts比电化学(El-Chem)型bwts作为一种常用方法要好1.76倍。
{"title":"Evaluation of ballast water treatment systems from the perspective of expert seafarers' ship experiences","authors":"Mevlüt Yilmaz, Ceren Bilgin Güney","doi":"10.21278/brod74407","DOIUrl":"https://doi.org/10.21278/brod74407","url":null,"abstract":"Until recently, the selection of ballast water treatment (BWT) systems was based on a predetermined set of criteria that did not include evaluations for system utilization due to lack of experience. The experience-building phase for the systems began, especially with the entry of the Ballast Water Management Convention into force. For effective assessment and decision-making, the evaluations of expert seafarers responsible for using ballast water treatment systems on-board ships are of paramount importance. This study was completed by evaluating the experience and evaluations of 50 expert seafarers (24 deck personnel and 26 engine personnel) working in a Turkish maritime company in three phases to contribute to the decision-making and system evaluation processes: 1- The failure reports written by the ship personnel of the maritime company were examined, and bilateral interviews with expert seafarers working on these tankers were held; 2- an online questionnaire was prepared and presented to seafarers; 3Analytic hierarchy process (AHP) was used to obtain a common perspective of the seafarers. In this study's first phase, 'ideal system characteristics' were determined. Based on these characteristics, an online questionnaire was prepared in the second phase of this study and presented to seafarers. In the third phase, a set of six criteria was developed, and the Analytic Hierarchy Process (AHP) was used to obtain the common perspective of 50 participants. Pairwise comparisons revealed that ‘Rare alarms and malfunctions’ was the most important criterion from the perspective of all seafarers and UV-type BWTSs were 1.76 times more preferable than the electrochemical (El-Chem) type BWTSs as a common approach.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":"51 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135427544","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Numerical investigation of multi-nozzle ejector device with inclined nozzles for marine gas turbine 船用燃气轮机倾斜喷嘴多喷嘴喷射器的数值研究
IF 1.8 4区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-09-01 DOI: 10.21278/brod74401
Hong Shi, Rentong Zheng, Qianwei Zhang, Jie Yuan, Rui Wang, Mengmeng Cheng, Yitao Zou
The high-temperature exhaust gases and the hot surfaces of the ejector device in marine gas turbines generate significant levels of infrared radiation. An appropriate nozzle structure can effectively lower the exhaust gas temperature and reduce the high-temperature radiation surface area, thereby minimizing external infrared radiation. In this study, a numerical simulation of the nozzle structure in the ejector device was conducted using computational fluid dynamics (CFD) methods. By investigating the orthogonal combinations of nozzle inclination angles and the number of nozzles, the temperature distribution and flow characteristics under different operating conditions were analysed. The results showed that as the nozzle inclination angle increased, the entrainment coefficient (Ce) and the temperature ratio at the inlet and outlet (Rt) initially improved but then worsened. Simultaneously, the pressure loss coefficient (Cpl) increased with the inclination angle. The CRITIC weight method was employed to objectively allocate weights to Rt, Ce, and Cpl, determining the optimal solution. The results indicated that Rt and Cpl had significant and similar weights. The optimal solution was found in Case 10 (α = 5°, x = 4), with corresponding evaluation indices of Ce=2.38, Cpl=11.45, and =0.68. This study's findings are of great importance for enhancing the performance of marine gas turbines and reducing external infrared radiation.
在船用燃气轮机中,高温废气和喷射器的热表面会产生大量的红外辐射。适当的喷嘴结构可以有效降低排气温度,减少高温辐射表面积,从而最大限度地减少外部红外辐射。本文采用计算流体力学(CFD)方法对喷射器的喷嘴结构进行了数值模拟。通过研究喷嘴倾角与喷嘴数量的正交组合,分析了不同工况下的温度分布和流动特性。结果表明:随着喷管倾角的增大,喷管的夹带系数(Ce)和进出口温度比(Rt)先增大后减小;同时,压力损失系数(Cpl)随倾角增大而增大。采用CRITIC权重法客观分配Rt、Ce和Cpl的权重,确定最优解。结果表明,Rt和Cpl具有显著且相似的权重。案例10 (α = 5°,x = 4)的最优解为Ce=2.38, Cpl=11.45, =0.68。研究结果对提高船用燃气轮机的性能,减少外部红外辐射具有重要意义。
{"title":"Numerical investigation of multi-nozzle ejector device with inclined nozzles for marine gas turbine","authors":"Hong Shi, Rentong Zheng, Qianwei Zhang, Jie Yuan, Rui Wang, Mengmeng Cheng, Yitao Zou","doi":"10.21278/brod74401","DOIUrl":"https://doi.org/10.21278/brod74401","url":null,"abstract":"The high-temperature exhaust gases and the hot surfaces of the ejector device in marine gas turbines generate significant levels of infrared radiation. An appropriate nozzle structure can effectively lower the exhaust gas temperature and reduce the high-temperature radiation surface area, thereby minimizing external infrared radiation. In this study, a numerical simulation of the nozzle structure in the ejector device was conducted using computational fluid dynamics (CFD) methods. By investigating the orthogonal combinations of nozzle inclination angles and the number of nozzles, the temperature distribution and flow characteristics under different operating conditions were analysed. The results showed that as the nozzle inclination angle increased, the entrainment coefficient (Ce) and the temperature ratio at the inlet and outlet (Rt) initially improved but then worsened. Simultaneously, the pressure loss coefficient (Cpl) increased with the inclination angle. The CRITIC weight method was employed to objectively allocate weights to Rt, Ce, and Cpl, determining the optimal solution. The results indicated that Rt and Cpl had significant and similar weights. The optimal solution was found in Case 10 (α = 5°, x = 4), with corresponding evaluation indices of Ce=2.38, Cpl=11.45, and =0.68. This study's findings are of great importance for enhancing the performance of marine gas turbines and reducing external infrared radiation.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42531356","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A novel approach for planning of shipbuilding processes 造船工艺规划的新方法
IF 1.8 4区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-09-01 DOI: 10.21278/brod74402
Aytek Gungor, Y. Unsan, B. Barlas
Shipbuilding is acknowledged as an uncertain, complex, and unique industrial effort that yields massive products consisting of numerous parts and is vulnerable to unexpected events. The industry is also dominated by customer requirements through designs tailor-made for a specific ship. Planning in shipbuilding is therefore considered a formidable process. Consequently, many studies have been conducted to develop a planning framework for the industry to efficiently handle planning process. Yet none of these studies are deemed substantial enough to be regarded as holistic, straightforward, well-accepted, and compatible with the nature of shipbuilding. This study is therefore an important contribution by presenting a novel, hybrid, and integrated general-purpose planning framework applicable to all shipbuilding processes. The novel method exploits historical ship construction scheduling data, synthesizing hierarchical planning, dynamic scheduling, and discrete-event simulation, which is validated through an empirical study in this paper.
造船业被认为是一项不确定、复杂和独特的工业努力,它生产出由许多零件组成的大量产品,并且容易受到意外事件的影响。该行业还通过为特定船舶量身定制的设计来满足客户的需求。因此,造船规划被认为是一个艰巨的过程。因此,已经进行了许多研究,以制定行业的规划框架,从而有效地处理规划过程。然而,这些研究都不足以被认为是全面的、直接的、被广泛接受的,并且与造船的本质相兼容。因此,这项研究是一项重要贡献,它提出了一个适用于所有造船过程的新颖、混合和集成的通用规划框架。该新方法利用了历史船舶建造调度数据,综合了分层规划、动态调度和离散事件仿真,并通过实证研究进行了验证。
{"title":"A novel approach for planning of shipbuilding processes","authors":"Aytek Gungor, Y. Unsan, B. Barlas","doi":"10.21278/brod74402","DOIUrl":"https://doi.org/10.21278/brod74402","url":null,"abstract":"Shipbuilding is acknowledged as an uncertain, complex, and unique industrial effort that yields massive products consisting of numerous parts and is vulnerable to unexpected events. The industry is also dominated by customer requirements through designs tailor-made for a specific ship. Planning in shipbuilding is therefore considered a formidable process. Consequently, many studies have been conducted to develop a planning framework for the industry to efficiently handle planning process. Yet none of these studies are deemed substantial enough to be regarded as holistic, straightforward, well-accepted, and compatible with the nature of shipbuilding. This study is therefore an important contribution by presenting a novel, hybrid, and integrated general-purpose planning framework applicable to all shipbuilding processes. The novel method exploits historical ship construction scheduling data, synthesizing hierarchical planning, dynamic scheduling, and discrete-event simulation, which is validated through an empirical study in this paper.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42457309","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Research on classification and navigational risk factors of intelligent ship 智能船舶入级及航行风险因素研究
4区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-09-01 DOI: 10.21278/brod74406
Wenjun Zhang, Yingjun Zhang
Based on combing the concept and development of intelligent ship, this paper brings forward the summary and classification of intelligent ships proposed by different institutions, and the main classification schemes are compared accordingly. Then one of these classification schemes is selected to study what are the key navigational risks under each grading level, with a detailed analysis of these risk factors. Finally, the index system of navigational risk factors for intelligent ships under different classification standards is constructed to lay a foundation for a further study of intelligent ship safe navigation, and at the same time avoid some risk factors in advance for the maritime management department, ship management companies, and ship design and research institutes.
在梳理智能船舶概念和发展的基础上,对不同机构提出的智能船舶进行了总结和分类,并对主要分类方案进行了比较。然后选择其中一种分级方案,研究每个分级方案下的关键航行风险,并对这些风险因素进行详细分析。最后,构建了不同入级标准下智能船舶航行风险因素指标体系,为智能船舶安全航行的深入研究奠定基础,同时也为海事管理部门、船舶管理公司和船舶设计科研院所提前规避一些风险因素。
{"title":"Research on classification and navigational risk factors of intelligent ship","authors":"Wenjun Zhang, Yingjun Zhang","doi":"10.21278/brod74406","DOIUrl":"https://doi.org/10.21278/brod74406","url":null,"abstract":"Based on combing the concept and development of intelligent ship, this paper brings forward the summary and classification of intelligent ships proposed by different institutions, and the main classification schemes are compared accordingly. Then one of these classification schemes is selected to study what are the key navigational risks under each grading level, with a detailed analysis of these risk factors. Finally, the index system of navigational risk factors for intelligent ships under different classification standards is constructed to lay a foundation for a further study of intelligent ship safe navigation, and at the same time avoid some risk factors in advance for the maritime management department, ship management companies, and ship design and research institutes.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":"2 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135349178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Principal component analysis of containership traffic in the Black Sea 黑海集装箱船运输的主成分分析
IF 1.8 4区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-09-01 DOI: 10.21278/brod74404
Y. Garbatov, P. Georgiev
A novel quantitative analysis employing the Principal Component Analysis (PCA) of containership traffic in the Black Sea from 2018 to 2021 is performed. The study uses a matrix covering five ship size classes from A to E for four years of operation, from 2018 to 2021, accounting for ship traffic, CO2, fuel consumption (FC), shipping intensity, and eco and traffic efficiency. Only the first two principal factors are analysed because of their total variation weight. Shipping intensity, FC intensity, and CO2 intensity plays a significant role in the first factor, while Eco efficiency, FC efficiency, and Traffic efficiency are considered for the second factor. Notably, the set of parameters pertains to time and is strongly associated with DWT. Two principal components were identified, F1 and F2, where F1 integrates efficiency and intensity. At the same time, F2 separates the intensity from the efficiency conditional on the ship size and the year of operations. In the principal component F1 the activities of ships A and C differ from B, D and E, separating more efficiently from less efficiently used ships, and in F2, the activities of class sizes of ships C and D and E contrast A and B ships, distinguishing the big-size class ships from small ones. It was concluded that the most intensively used ships are the ship size classes C and D, and the most efficient are ship size classes A and B. The most intensive use of the ships was in 2020, followed by 2021, and the most efficient were in 2018, 2019. Based on the ship activities and using the Within-class variance, ships are grouped into two clusters of similar activities, where the first one, with lower variance and more homogeneous, includes only the ship size class A. The second one with a relatively large variance consists of the rest size of the ships. Linear relationships considering the intensity and efficiency are derived as a function of the main variables, where the factor loading represents the variable’s coefficient, given as a relative weight to any factor.
采用主成分分析(PCA)对2018年至2021年黑海集装箱船运输量进行了新的定量分析。该研究使用了一个矩阵,涵盖了从a到E的五种船舶尺寸类别,从2018年到2021年的四年运营,考虑了船舶交通量、二氧化碳、燃料消耗(FC)、运输强度以及生态和交通效率。由于前两个主因子的总变异权重较大,故只分析前两个主因子。航运强度、FC强度和CO2强度对第一个因素的影响显著,而生态效率、FC效率和交通效率对第二个因素的影响显著。值得注意的是,参数集与时间有关,并且与DWT密切相关。确定了两个主成分F1和F2,其中F1代表效率和强度。同时,F2将强度与效率分开,这取决于船舶尺寸和运营年份。在主成分F1中,船舶A和C的活动不同于B、D和E,更有效地分离了使用效率较低的船舶;在F2中,船舶C、D和E的类别大小活动对比了A和B的船舶,区分了大型类别船舶和小型类别船舶。结果表明,船舶集约度最高的是C级和D级,效率最高的是A级和b级。船舶集约度最高的是2020年,其次是2021年,效率最高的是2018年和2019年。基于船舶活动并使用Within-class方差,将船舶分为两个相似活动的聚类,其中方差较小且更均匀的第一个聚类仅包含a类船舶尺寸,方差较大的第二个聚类包含船舶的其余尺寸。考虑强度和效率的线性关系推导为主要变量的函数,其中因子载荷表示变量的系数,作为任何因素的相对权重。
{"title":"Principal component analysis of containership traffic in the Black Sea","authors":"Y. Garbatov, P. Georgiev","doi":"10.21278/brod74404","DOIUrl":"https://doi.org/10.21278/brod74404","url":null,"abstract":"A novel quantitative analysis employing the Principal Component Analysis (PCA) of containership traffic in the Black Sea from 2018 to 2021 is performed. The study uses a matrix covering five ship size classes from A to E for four years of operation, from 2018 to 2021, accounting for ship traffic, CO2, fuel consumption (FC), shipping intensity, and eco and traffic efficiency. Only the first two principal factors are analysed because of their total variation weight. Shipping intensity, FC intensity, and CO2 intensity plays a significant role in the first factor, while Eco efficiency, FC efficiency, and Traffic efficiency are considered for the second factor. Notably, the set of parameters pertains to time and is strongly associated with DWT. Two principal components were identified, F1 and F2, where F1 integrates efficiency and intensity. At the same time, F2 separates the intensity from the efficiency conditional on the ship size and the year of operations. In the principal component F1 the activities of ships A and C differ from B, D and E, separating more efficiently from less efficiently used ships, and in F2, the activities of class sizes of ships C and D and E contrast A and B ships, distinguishing the big-size class ships from small ones. It was concluded that the most intensively used ships are the ship size classes C and D, and the most efficient are ship size classes A and B. The most intensive use of the ships was in 2020, followed by 2021, and the most efficient were in 2018, 2019. Based on the ship activities and using the Within-class variance, ships are grouped into two clusters of similar activities, where the first one, with lower variance and more homogeneous, includes only the ship size class A. The second one with a relatively large variance consists of the rest size of the ships. Linear relationships considering the intensity and efficiency are derived as a function of the main variables, where the factor loading represents the variable’s coefficient, given as a relative weight to any factor.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48615509","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The effect of PID control scheme on the course-keeping of ship in oblique stern waves 斜尾波中PID控制方案对船舶航向保持的影响
4区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-09-01 DOI: 10.21278/brod74408
Yunbo Li
Sailing in oblique stern waves causes a ship to make sharp turns and uncontrollable course deviation, which is accompanied by a large heel and sometimes leads to capsizing. Studying the control algorithm in oblique stern waves is imperative because an excellent controller scheme can improve the ship’s course-keeping stability. This paper uses the Maneuvering Modelling Group (MMG) method based on hydrodynamic derivatives and the Computational Fluid Dynamics (CFD)-based self-navigation simulation to simulate ship navigation in waves. This study examines the effect of proportion-integral-derivative (PID) controller schemes on the stability of course maintenance based on hydrodynamic derivatives and 3DOF MMG methods. Then, the optimized PID control parameters are used to simulate the ship’s 6DOF self-propulsion navigation in oblique waves using the CFD method. The nonlinear phenomena during the process, such as side-hull emergency, slamming, and green water, are considered. This study found that the range of the control bandwidth should be optimized based on the ship's heading and wave parameters.
在斜尾波中航行会使船舶发生急转弯和无法控制的航向偏离,并伴有较大的后跟,有时会导致倾覆。研究斜尾波下的控制算法是十分必要的,因为一个好的控制方案可以提高船舶的航向保持稳定性。本文采用基于水动力导数的机动建模组(MMG)方法和基于计算流体力学(CFD)的自航仿真方法对船舶在波浪中的航行进行了仿真。本文研究了比例-积分-导数(PID)控制方案对基于流体动力导数和3d - of - MMG方法的航向维持稳定性的影响。然后,利用优化后的PID控制参数,利用CFD方法对船舶在斜波中进行了6DOF自推进航行仿真。在此过程中,考虑了舷侧急变、轰击、绿水等非线性现象。研究发现,控制带宽的范围应根据船舶航向和波浪参数进行优化。
{"title":"The effect of PID control scheme on the course-keeping of ship in oblique stern waves","authors":"Yunbo Li","doi":"10.21278/brod74408","DOIUrl":"https://doi.org/10.21278/brod74408","url":null,"abstract":"Sailing in oblique stern waves causes a ship to make sharp turns and uncontrollable course deviation, which is accompanied by a large heel and sometimes leads to capsizing. Studying the control algorithm in oblique stern waves is imperative because an excellent controller scheme can improve the ship’s course-keeping stability. This paper uses the Maneuvering Modelling Group (MMG) method based on hydrodynamic derivatives and the Computational Fluid Dynamics (CFD)-based self-navigation simulation to simulate ship navigation in waves. This study examines the effect of proportion-integral-derivative (PID) controller schemes on the stability of course maintenance based on hydrodynamic derivatives and 3DOF MMG methods. Then, the optimized PID control parameters are used to simulate the ship’s 6DOF self-propulsion navigation in oblique waves using the CFD method. The nonlinear phenomena during the process, such as side-hull emergency, slamming, and green water, are considered. This study found that the range of the control bandwidth should be optimized based on the ship's heading and wave parameters.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":"35 1","pages":"0"},"PeriodicalIF":0.0,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135735141","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigation of the optimum longitudinal single transverse step location for a high-speed craft 高速飞行器纵向单横台阶最佳位置的研究
IF 1.8 4区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-06-01 DOI: 10.21278/brod74303
A. Avci, B. Barlas
One of the crucial aspects of the conceptual design of a stepped planing hull is the prediction of its performance. To improve performance, the prediction of total resistance must become more accurate. In the field of research, both towing tank experiments and numerical analysis may be used to achieve this goal. In this study, experiments were conducted initially to investigate total resistance of a relatively high-speed craft without a transverse step. Later, numerical computations were carried out to validate the experimental results. After it was determined that the test results and CFD methods were in good agreement, the experimental method continued to investigate the resistance properties of the hull with four different configurations to evaluate the optimal longitudinal position of a single transverse step. The ideal longitudinal position of the single transverse step was evaluated based on a similar relatively high-speed hull with a velocity of up to beam Froude number (FrB) 2.56 in this study, focusing on the FrB range between 2.30 and 2.45.
阶梯滑行船体概念设计的一个关键方面是对其性能的预测。为了提高性能,总阻力的预测必须更加准确。在研究领域,拖曳舱实验和数值分析都可以用来实现这一目标。在这项研究中,最初进行的实验是为了研究没有横向台阶的相对高速飞行器的总阻力。随后进行了数值计算,验证了实验结果。在确定测试结果与CFD方法一致后,实验方法继续研究四种不同配置的船体阻力特性,以评估单个横向台阶的最佳纵向位置。在本研究中,单个横向台阶的理想纵向位置是基于速度高达梁弗劳德数(FrB)2.56的类似相对高速船体进行评估的,重点是FrB范围在2.30至2.45之间。
{"title":"Investigation of the optimum longitudinal single transverse step location for a high-speed craft","authors":"A. Avci, B. Barlas","doi":"10.21278/brod74303","DOIUrl":"https://doi.org/10.21278/brod74303","url":null,"abstract":"One of the crucial aspects of the conceptual design of a stepped planing hull is the prediction of its performance. To improve performance, the prediction of total resistance must become more accurate. In the field of research, both towing tank experiments and numerical analysis may be used to achieve this goal. In this study, experiments were conducted initially to investigate total resistance of a relatively high-speed craft without a transverse step. Later, numerical computations were carried out to validate the experimental results. After it was determined that the test results and CFD methods were in good agreement, the experimental method continued to investigate the resistance properties of the hull with four different configurations to evaluate the optimal longitudinal position of a single transverse step. The ideal longitudinal position of the single transverse step was evaluated based on a similar relatively high-speed hull with a velocity of up to beam Froude number (FrB) 2.56 in this study, focusing on the FrB range between 2.30 and 2.45.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45614808","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Numerical study of trimaran wave load based on time-domain Rankine method 基于时域朗肯方法的三体船波浪载荷数值研究
IF 1.8 4区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-06-01 DOI: 10.21278/brod74306
Haoyun Tang, Q. Wan, H. Ren
Due to the complex fluid interference between outrigger and main hull, it is difficult to predict the trimaran load fluctuation accurately in different marine environments. Therefore, a time-domain Rankine method is developed to improve the accuracy of trimaran load prediction. This method successfully adds the nonlinear load components in time-domain load simulation by taking into account the factors such as instantaneous hull wetted surface, steady ship waves, green wave and slamming. Additionally, the nonlinear growth of green wave and slamming is also observed at outrigger and wet deck, with the increasing of speeds and wave heights. Finally, the relatively smaller errors in the Rankine method are confirmed by comparison with the values from a trimaran model test and linear time-domain load prediction method. Furthermore, the weakly nonlinear Rankine method is considered to be more suitable for trimaran load prediction under harsh marine environment.
由于支腿和主船体之间存在复杂的流体干扰,很难准确预测三体船在不同海洋环境下的载荷波动。因此,为了提高三体船载荷预测的准确性,提出了一种时域Rankine方法。该方法在时域载荷模拟中成功地加入了非线性载荷分量,同时考虑了瞬时船体湿表面、稳定船体波浪、绿色波浪和砰击等因素。此外,随着速度和波高的增加,在支腿和湿甲板上也观察到绿色波浪和砰击的非线性增长。最后,通过与三体船模型试验和线性时域载荷预测方法的值进行比较,证实了Rankine方法中相对较小的误差。此外,弱非线性Rankine方法被认为更适合于恶劣海洋环境下的三体船载荷预测。
{"title":"Numerical study of trimaran wave load based on time-domain Rankine method","authors":"Haoyun Tang, Q. Wan, H. Ren","doi":"10.21278/brod74306","DOIUrl":"https://doi.org/10.21278/brod74306","url":null,"abstract":"Due to the complex fluid interference between outrigger and main hull, it is difficult to predict the trimaran load fluctuation accurately in different marine environments. Therefore, a time-domain Rankine method is developed to improve the accuracy of trimaran load prediction. This method successfully adds the nonlinear load components in time-domain load simulation by taking into account the factors such as instantaneous hull wetted surface, steady ship waves, green wave and slamming. Additionally, the nonlinear growth of green wave and slamming is also observed at outrigger and wet deck, with the increasing of speeds and wave heights. Finally, the relatively smaller errors in the Rankine method are confirmed by comparison with the values from a trimaran model test and linear time-domain load prediction method. Furthermore, the weakly nonlinear Rankine method is considered to be more suitable for trimaran load prediction under harsh marine environment.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46067073","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Robust optimal control of a nonlinear surface vessel model with parametric uncertainties 具有参数不确定性的非线性水面船舶模型的鲁棒最优控制
IF 1.8 4区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-06-01 DOI: 10.21278/brod74307
Ahmad Irham Jambak, I. Bayezit
This paper presents a fast alternative optimization method for developing a reliable optimal controller that can handle system model parameter uncertainties. The source of uncertainty in this study is identified as hydrodynamic coefficients, which are prone to errors due to the challenges involved in obtaining accurate values. The proposed optimization method utilizes a complex nonlinear ship model provided by Maneuver Modelling Group (MMG) as the reference for the ship motion model. The optimization process is divided into two stages: a blind search followed by bisection optimization, to obtain a robust optimal controller. To demonstrate the effectiveness of the proposed approach, system response analysis and practical tests were performed on Step, M-Turn, and Doublet maneuvers. The results show that the controller parameters obtained from the proposed optimization method are capable of achieving high success rates in controlling a system with uncertain parameters.
本文提出了一种快速替代优化方法,用于开发能够处理系统模型参数不确定性的可靠最优控制器。在本研究中,不确定性的来源被确定为流体动力系数,由于涉及到获得准确值的挑战,这些系数容易出现误差。该优化方法利用机动建模集团(MMG)提供的复杂非线性船舶模型作为船舶运动模型的参考。优化过程分为盲搜索和二分优化两个阶段,得到鲁棒最优控制器。为了证明该方法的有效性,系统响应分析和实际测试进行了步进,m -转和双波机动。结果表明,该优化方法所得到的控制器参数对具有不确定参数的系统具有较高的控制成功率。
{"title":"Robust optimal control of a nonlinear surface vessel model with parametric uncertainties","authors":"Ahmad Irham Jambak, I. Bayezit","doi":"10.21278/brod74307","DOIUrl":"https://doi.org/10.21278/brod74307","url":null,"abstract":"This paper presents a fast alternative optimization method for developing a reliable optimal controller that can handle system model parameter uncertainties. The source of uncertainty in this study is identified as hydrodynamic coefficients, which are prone to errors due to the challenges involved in obtaining accurate values. The proposed optimization method utilizes a complex nonlinear ship model provided by Maneuver Modelling Group (MMG) as the reference for the ship motion model. The optimization process is divided into two stages: a blind search followed by bisection optimization, to obtain a robust optimal controller. To demonstrate the effectiveness of the proposed approach, system response analysis and practical tests were performed on Step, M-Turn, and Doublet maneuvers. The results show that the controller parameters obtained from the proposed optimization method are capable of achieving high success rates in controlling a system with uncertain parameters.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44904752","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
A comparison of regression models for the ice loads measured during the ice tank test 冰槽试验中冰荷载回归模型的比较
IF 1.8 4区 工程技术 Q1 ENGINEERING, MARINE Pub Date : 2023-06-01 DOI: 10.21278/brod74301
Seung Jae Lee, K. Jung, Namkug Ku, Jaeyong Lee
To evaluate the time-domain positioning performance of arctic marine structures, it is necessary to generate an ice load appropriate for the current position and heading of the structure. The position and orientation angle of a floating body continuously change with time. Therefore, an ice load is required for any attitude in the time-domain simulation. In this study, we present a fundamental technique for analyzing ice loads in the frequency domain based on data measured at various angles in the ice-water tank experiment. We perform spectral analysis instead of general FFT to analyze the ice load, which has the characteristics of a random signal. To generate the necessary ice load in the time domain, we must first interpolate the measured data in the frequency domain. Using the Blackman-Tukey method, we estimate the spectrum for the measured data, then process the data to generate the training set required for machine learning. Based on the results, we perform regression analysis by applying four representative techniques, including linear regression, random forest, or neural network, and compare the results with MSE. The deep neural network method performed best, but we provide further discussion for each model.
为了评估北极海洋结构的时域定位性能,有必要生成适合该结构当前位置和航向的冰荷载。浮体的位置和方位角随时间不断变化。因此,在时域模拟中,任何姿态都需要冰载荷。在这项研究中,我们提出了一种基于冰水箱实验中不同角度测量的数据在频域中分析冰荷载的基本技术。我们用频谱分析代替一般的FFT来分析冰荷载,它具有随机信号的特性。为了在时域中产生必要的冰荷载,我们必须首先在频域中对测量数据进行插值。使用Blackman-Tukey方法,我们估计测量数据的频谱,然后处理数据以生成机器学习所需的训练集。基于这些结果,我们通过应用四种代表性技术进行回归分析,包括线性回归、随机森林或神经网络,并将结果与MSE进行比较。深度神经网络方法表现最好,但我们为每个模型提供了进一步的讨论。
{"title":"A comparison of regression models for the ice loads measured during the ice tank test","authors":"Seung Jae Lee, K. Jung, Namkug Ku, Jaeyong Lee","doi":"10.21278/brod74301","DOIUrl":"https://doi.org/10.21278/brod74301","url":null,"abstract":"To evaluate the time-domain positioning performance of arctic marine structures, it is necessary to generate an ice load appropriate for the current position and heading of the structure. The position and orientation angle of a floating body continuously change with time. Therefore, an ice load is required for any attitude in the time-domain simulation. In this study, we present a fundamental technique for analyzing ice loads in the frequency domain based on data measured at various angles in the ice-water tank experiment. We perform spectral analysis instead of general FFT to analyze the ice load, which has the characteristics of a random signal. To generate the necessary ice load in the time domain, we must first interpolate the measured data in the frequency domain. Using the Blackman-Tukey method, we estimate the spectrum for the measured data, then process the data to generate the training set required for machine learning. Based on the results, we perform regression analysis by applying four representative techniques, including linear regression, random forest, or neural network, and compare the results with MSE. The deep neural network method performed best, but we provide further discussion for each model.","PeriodicalId":55594,"journal":{"name":"Brodogradnja","volume":" ","pages":""},"PeriodicalIF":1.8,"publicationDate":"2023-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43985219","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
期刊
Brodogradnja
全部 Acc. Chem. Res. ACS Applied Bio Materials ACS Appl. Electron. Mater. ACS Appl. Energy Mater. ACS Appl. Mater. Interfaces ACS Appl. Nano Mater. ACS Appl. Polym. Mater. ACS BIOMATER-SCI ENG ACS Catal. ACS Cent. Sci. ACS Chem. Biol. ACS Chemical Health & Safety ACS Chem. Neurosci. ACS Comb. Sci. ACS Earth Space Chem. ACS Energy Lett. ACS Infect. Dis. ACS Macro Lett. ACS Mater. Lett. ACS Med. Chem. Lett. ACS Nano ACS Omega ACS Photonics ACS Sens. ACS Sustainable Chem. Eng. ACS Synth. Biol. Anal. Chem. BIOCHEMISTRY-US Bioconjugate Chem. BIOMACROMOLECULES Chem. Res. Toxicol. Chem. Rev. Chem. Mater. CRYST GROWTH DES ENERG FUEL Environ. Sci. Technol. Environ. Sci. Technol. Lett. Eur. J. Inorg. Chem. IND ENG CHEM RES Inorg. Chem. J. Agric. Food. Chem. J. Chem. Eng. Data J. Chem. Educ. J. Chem. Inf. Model. J. Chem. Theory Comput. J. Med. Chem. J. Nat. Prod. J PROTEOME RES J. Am. Chem. Soc. LANGMUIR MACROMOLECULES Mol. Pharmaceutics Nano Lett. Org. Lett. ORG PROCESS RES DEV ORGANOMETALLICS J. Org. Chem. J. Phys. Chem. J. Phys. Chem. A J. Phys. Chem. B J. Phys. Chem. C J. Phys. Chem. Lett. Analyst Anal. Methods Biomater. Sci. Catal. Sci. Technol. Chem. Commun. Chem. Soc. Rev. CHEM EDUC RES PRACT CRYSTENGCOMM Dalton Trans. Energy Environ. Sci. ENVIRON SCI-NANO ENVIRON SCI-PROC IMP ENVIRON SCI-WAT RES Faraday Discuss. Food Funct. Green Chem. Inorg. Chem. Front. Integr. Biol. J. Anal. At. Spectrom. J. Mater. Chem. A J. Mater. Chem. B J. Mater. Chem. C Lab Chip Mater. Chem. Front. Mater. Horiz. MEDCHEMCOMM Metallomics Mol. Biosyst. Mol. Syst. Des. Eng. Nanoscale Nanoscale Horiz. Nat. Prod. Rep. New J. Chem. Org. Biomol. Chem. Org. Chem. Front. PHOTOCH PHOTOBIO SCI PCCP Polym. Chem.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1