Pub Date : 2024-08-21DOI: 10.1126/scirobotics.ads4122
Amos Matsiko
A neuroprosthesis could decode two languages from the brain activity of a bilingual participant who was unable to articulate speech.
一个神经假体可以从一名无法发音的双语参与者的大脑活动中解码出两种语言。
{"title":"Bilingual speech neuroprosthesis","authors":"Amos Matsiko","doi":"10.1126/scirobotics.ads4122","DOIUrl":"10.1126/scirobotics.ads4122","url":null,"abstract":"<div >A neuroprosthesis could decode two languages from the brain activity of a bilingual participant who was unable to articulate speech.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 93","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142019750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
In contrast with jumping robots made from rigid materials, soft jumpers composed of compliant and elastically deformable materials exhibit superior impact resistance and mechanically robust functionality. However, recent efforts to create stimuli-responsive jumpers from soft materials were limited in their response speed, takeoff velocity, and travel distance. Here, we report a magnetic-driven, ultrafast bistable soft jumper that exhibits good jumping capability (jumping more than 108 body heights with a takeoff velocity of more than 2 meters per second) and fast response time (less than 15 milliseconds) compared with previous soft jumping robots. The snap-through transitions between bistable states form a repeatable loop that harnesses the ultrafast release of stored elastic energy. On the basis of the dynamic analysis, the multimodal locomotion of the bistable soft jumper can be realized: the interwell mode of jumping and the intrawell mode of hopping. These modes are controlled by adjusting the duration and strength of the magnetic field, which endows the bistable soft jumper with robust locomotion capabilities. In addition, it is capable of jumping omnidirectionally with tunable heights and distances. To demonstrate its capability in complex environments, a realistic pipeline with amphibious terrain was established. The jumper successfully finished a simulative task of cleansing water through a pipeline. The design principle and actuating mechanism of the bistable soft jumper can be further extended for other flexible systems.
{"title":"Bistable soft jumper capable of fast response and high takeoff velocity","authors":"Daofan Tang, Chengqian Zhang, Chengfeng Pan, Hao Hu, Haonan Sun, Huangzhe Dai, Jianzhong Fu, Carmel Majidi, Peng Zhao","doi":"10.1126/scirobotics.adm8484","DOIUrl":"10.1126/scirobotics.adm8484","url":null,"abstract":"<div >In contrast with jumping robots made from rigid materials, soft jumpers composed of compliant and elastically deformable materials exhibit superior impact resistance and mechanically robust functionality. However, recent efforts to create stimuli-responsive jumpers from soft materials were limited in their response speed, takeoff velocity, and travel distance. Here, we report a magnetic-driven, ultrafast bistable soft jumper that exhibits good jumping capability (jumping more than 108 body heights with a takeoff velocity of more than 2 meters per second) and fast response time (less than 15 milliseconds) compared with previous soft jumping robots. The snap-through transitions between bistable states form a repeatable loop that harnesses the ultrafast release of stored elastic energy. On the basis of the dynamic analysis, the multimodal locomotion of the bistable soft jumper can be realized: the interwell mode of jumping and the intrawell mode of hopping. These modes are controlled by adjusting the duration and strength of the magnetic field, which endows the bistable soft jumper with robust locomotion capabilities. In addition, it is capable of jumping omnidirectionally with tunable heights and distances. To demonstrate its capability in complex environments, a realistic pipeline with amphibious terrain was established. The jumper successfully finished a simulative task of cleansing water through a pipeline. The design principle and actuating mechanism of the bistable soft jumper can be further extended for other flexible systems.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 93","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142020124","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1126/scirobotics.ade4642
Ge Zhang, Sungyun Yang, Jing Fan Yang, David Gonzalez-Medrano, Marc Z. Miskin, Volodymyr B. Koman, Yuwen Zeng, Sylvia Xin Li, Matthias Kuehne, Albert Tianxiang Liu, Allan M. Brooks, Mahesh Kumar, Michael S. Strano
The recent interest in microscopic autonomous systems, including microrobots, colloidal state machines, and smart dust, has created a need for microscale energy storage and harvesting. However, macroscopic materials for energy storage have noted incompatibilities with microfabrication techniques, creating substantial challenges to realizing microscale energy systems. Here, we photolithographically patterned a microscale zinc/platinum/SU-8 system to generate the highest energy density microbattery at the picoliter (10−12 liter) scale. The device scavenges ambient or solution-dissolved oxygen for a zinc oxidation reaction, achieving an energy density ranging from 760 to 1070 watt-hours per liter at scales below 100 micrometers lateral and 2 micrometers thickness in size. The parallel nature of photolithography processes allows 10,000 devices per wafer to be released into solution as colloids with energy stored on board. Within a volume of only 2 picoliters each, these primary microbatteries can deliver open circuit voltages of 1.05 ± 0.12 volts, with total energies ranging from 5.5 ± 0.3 to 7.7 ± 1.0 microjoules and a maximum power near 2.7 nanowatts. We demonstrated that such systems can reliably power a micrometer-sized memristor circuit, providing access to nonvolatile memory. We also cycled power to drive the reversible bending of microscale bimorph actuators at 0.05 hertz for mechanical functions of colloidal robots. Additional capabilities, such as powering two distinct nanosensor types and a clock circuit, were also demonstrated. The high energy density, low volume, and simple configuration promise the mass fabrication and adoption of such picoliter zinc-air batteries for micrometer-scale, colloidal robotics with autonomous functions.
{"title":"High energy density picoliter-scale zinc-air microbatteries for colloidal robotics","authors":"Ge Zhang, Sungyun Yang, Jing Fan Yang, David Gonzalez-Medrano, Marc Z. Miskin, Volodymyr B. Koman, Yuwen Zeng, Sylvia Xin Li, Matthias Kuehne, Albert Tianxiang Liu, Allan M. Brooks, Mahesh Kumar, Michael S. Strano","doi":"10.1126/scirobotics.ade4642","DOIUrl":"10.1126/scirobotics.ade4642","url":null,"abstract":"<div >The recent interest in microscopic autonomous systems, including microrobots, colloidal state machines, and smart dust, has created a need for microscale energy storage and harvesting. However, macroscopic materials for energy storage have noted incompatibilities with microfabrication techniques, creating substantial challenges to realizing microscale energy systems. Here, we photolithographically patterned a microscale zinc/platinum/SU-8 system to generate the highest energy density microbattery at the picoliter (10<sup>−12</sup> liter) scale. The device scavenges ambient or solution-dissolved oxygen for a zinc oxidation reaction, achieving an energy density ranging from 760 to 1070 watt-hours per liter at scales below 100 micrometers lateral and 2 micrometers thickness in size. The parallel nature of photolithography processes allows 10,000 devices per wafer to be released into solution as colloids with energy stored on board. Within a volume of only 2 picoliters each, these primary microbatteries can deliver open circuit voltages of 1.05 ± 0.12 volts, with total energies ranging from 5.5 ± 0.3 to 7.7 ± 1.0 microjoules and a maximum power near 2.7 nanowatts. We demonstrated that such systems can reliably power a micrometer-sized memristor circuit, providing access to nonvolatile memory. We also cycled power to drive the reversible bending of microscale bimorph actuators at 0.05 hertz for mechanical functions of colloidal robots. Additional capabilities, such as powering two distinct nanosensor types and a clock circuit, were also demonstrated. The high energy density, low volume, and simple configuration promise the mass fabrication and adoption of such picoliter zinc-air batteries for micrometer-scale, colloidal robotics with autonomous functions.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 93","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984058","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-08-14DOI: 10.1126/scirobotics.adl2067
Jae-Young Lee, Seongji Han, Munyu Kim, Yong-Sin Seo, Jongwoo Park, Dong Il Park, Chanhun Park, Hyunuk Seo, Joonho Lee, Hwi-Su Kim, Jeongae Bak, Hugo Rodrigue, Jin-Gyun Kim, Joono Cheong, Sung-Hyuk Song
Wheels have been commonly used for locomotion in mobile robots and transportation systems because of their simple structure and energy efficiency. However, the performance of wheels in overcoming obstacles is limited compared with their advantages in driving on normal flat ground. Here, we present a variable-stiffness wheel inspired by the surface tension of a liquid droplet. In a liquid droplet, as the cohesive force of the outermost liquid molecules increases, the net force pulling the liquid molecules inward also increases. This leads to high surface tension, resulting in the liquid droplet reverting to a circular shape from its distorted shape induced by gravitational forces. Similarly, the shape and stiffness of a wheel were controlled by changing the traction force at the outermost smart chain block. As the tension of the wire spokes connected to each chain block increased, the wheel characteristics reflected those of a general circular-rigid wheel, which has an advantage in high-speed locomotion on normal flat ground. Conversely, the modulus of the wheel decreased as the tension of the wire spoke decreased, and the wheel was easily deformed according to the shape of obstacles. This makes the wheel suitable for overcoming obstacles without requiring complex control or sensing systems. On the basis of this mechanism, a wheel was applied to a two-wheeled wheelchair system weighing 120 kilograms, and the state transition between a circular high-modulus state and a deformable low-modulus state was realized in real time when the wheelchair was driven in an outdoor environment.
{"title":"Variable-stiffness–morphing wheel inspired by the surface tension of a liquid droplet","authors":"Jae-Young Lee, Seongji Han, Munyu Kim, Yong-Sin Seo, Jongwoo Park, Dong Il Park, Chanhun Park, Hyunuk Seo, Joonho Lee, Hwi-Su Kim, Jeongae Bak, Hugo Rodrigue, Jin-Gyun Kim, Joono Cheong, Sung-Hyuk Song","doi":"10.1126/scirobotics.adl2067","DOIUrl":"10.1126/scirobotics.adl2067","url":null,"abstract":"<div >Wheels have been commonly used for locomotion in mobile robots and transportation systems because of their simple structure and energy efficiency. However, the performance of wheels in overcoming obstacles is limited compared with their advantages in driving on normal flat ground. Here, we present a variable-stiffness wheel inspired by the surface tension of a liquid droplet. In a liquid droplet, as the cohesive force of the outermost liquid molecules increases, the net force pulling the liquid molecules inward also increases. This leads to high surface tension, resulting in the liquid droplet reverting to a circular shape from its distorted shape induced by gravitational forces. Similarly, the shape and stiffness of a wheel were controlled by changing the traction force at the outermost smart chain block. As the tension of the wire spokes connected to each chain block increased, the wheel characteristics reflected those of a general circular-rigid wheel, which has an advantage in high-speed locomotion on normal flat ground. Conversely, the modulus of the wheel decreased as the tension of the wire spoke decreased, and the wheel was easily deformed according to the shape of obstacles. This makes the wheel suitable for overcoming obstacles without requiring complex control or sensing systems. On the basis of this mechanism, a wheel was applied to a two-wheeled wheelchair system weighing 120 kilograms, and the state transition between a circular high-modulus state and a deformable low-modulus state was realized in real time when the wheelchair was driven in an outdoor environment.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 93","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adl2067","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984059","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Would robots really bother with a bloody uprising?","authors":"Robin R. Murphy","doi":"10.1126/scirobotics.adr2950","DOIUrl":"10.1126/scirobotics.adr2950","url":null,"abstract":"<div >In the amusing 1982 novel <i>Software</i>, robots punish their human overlords by raising prices on longevity drugs and organ transplants.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 92","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861776","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1126/scirobotics.adr7180
{"title":"Erratum for the Research Article “Excitation of natural spinal reflex loops in the sensory-motor control of hand prostheses” by P. G. Sagastegui Alva et al.","authors":"","doi":"10.1126/scirobotics.adr7180","DOIUrl":"10.1126/scirobotics.adr7180","url":null,"abstract":"","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 92","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861771","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Effective mosquito population suppression has been repeatedly demonstrated in field trials through the release of male mosquitoes to induce sterile mating with wild females using the incompatible insect technique (IIT), the sterile insect technique (SIT), or their combination. However, upscaling these techniques requires a highly efficient and scalable approach for the sex separation of mass-reared mosquitoes to minimize the unintentional release of females, which can lead to either population replacement or biting nuisance, a major bottleneck up to now. Here, we report the successful development of an automated mosquito pupa sex sorter that can effectively separate large numbers of males from females for population suppression of Aedes aegypti, A. albopictus, and Culex quinquefasciatus. The male production capacity of the automated sex sorter was increased by ~17-fold compared with manual sex separation with the Fay-Morlan sorter and enabled one person to separate 16 million males per week. With ~0.5% female contamination, the produced males exhibited high flight ability and mating performance. The field trial demonstrates that the quality of A. albopictus males produced using the automated sex sorter is suitable for inducing population suppression. These results indicate that the automated sex sorter offers the potential to upscale IIT and SIT against mosquito vectors for disease control.
{"title":"Upscaling the production of sterile male mosquitoes with an automated pupa sex sorter","authors":"Jun-Tao Gong, Wadaka Mamai, Xiaohua Wang, Jian Zhu, Yongjun Li, Julian Liu, Qixian Tang, Yuanhui Huang, Jixin Zhang, Jiayi Zhou, Hamidou Maiga, Nanwintoum Séverin Bimbilé Somda, Claudia Martina, Simran Singh Kotla, Thomas Wallner, Jérémy Bouyer, Zhiyong Xi","doi":"10.1126/scirobotics.adj6261","DOIUrl":"10.1126/scirobotics.adj6261","url":null,"abstract":"<div >Effective mosquito population suppression has been repeatedly demonstrated in field trials through the release of male mosquitoes to induce sterile mating with wild females using the incompatible insect technique (IIT), the sterile insect technique (SIT), or their combination. However, upscaling these techniques requires a highly efficient and scalable approach for the sex separation of mass-reared mosquitoes to minimize the unintentional release of females, which can lead to either population replacement or biting nuisance, a major bottleneck up to now. Here, we report the successful development of an automated mosquito pupa sex sorter that can effectively separate large numbers of males from females for population suppression of <i>Aedes aegypti</i>, <i>A. albopictus</i>, and <i>Culex quinquefasciatus</i>. The male production capacity of the automated sex sorter was increased by ~17-fold compared with manual sex separation with the Fay-Morlan sorter and enabled one person to separate 16 million males per week. With ~0.5% female contamination, the produced males exhibited high flight ability and mating performance. The field trial demonstrates that the quality of <i>A. albopictus</i> males produced using the automated sex sorter is suitable for inducing population suppression. These results indicate that the automated sex sorter offers the potential to upscale IIT and SIT against mosquito vectors for disease control.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 92","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adj6261","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861774","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1126/scirobotics.adr0224
Jacob E. Crawford
Drone-based mosquito releases facilitate the introduction of dengue-blocking bacteria in wild mosquito populations.
无人驾驶飞机释放蚊子有助于在野生蚊子种群中引入登革热阻断细菌。
{"title":"Virus-blocking mosquitoes take flight in the fight against dengue","authors":"Jacob E. Crawford","doi":"10.1126/scirobotics.adr0224","DOIUrl":"10.1126/scirobotics.adr0224","url":null,"abstract":"<div >Drone-based mosquito releases facilitate the introduction of dengue-blocking bacteria in wild mosquito populations.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 92","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1126/scirobotics.adk7913
Ya-Hsun Lin, Dirk Albert Joubert, Sebastian Kaeser, Cameron Dowd, Jurg Germann, Anam Khalid, Jai Andrew Denton, Kate Retski, Aminiasi Tavui, Cameron Paul Simmons, Scott Leslie O’Neill, Jeremie Roger Lionel Gilles
Over the past 50 years, there has been a marked increase in diseases like dengue fever, chikungunya, and Zika. The World Mosquito Program (WMP) has developed an approach that, instead of attempting to eliminate vector species, introduces Wolbachia into native Aedes aegypti populations through the release of Wolbachia-infected mosquitoes. Using this approach, a randomized controlled study recently demonstrated a 77% reduction in dengue across a treatment area within Yogyakarta, Indonesia. Existing release methods use the ground-based release of mosquito eggs or adults that are labor-intensive, are logistically challenging to scale up, and can be restrictive in areas where staff safety is a concern. To overcome these limitations, we developed a fully automated mosquito dosing release system that released smaller cohorts of mosquitoes over a wide area and integrated it into an uncrewed aerial vehicle. We established the effectiveness of this system using an aerial mark, release, and recapture approach. We then demonstrated that using only the aerial release method, we can establish Wolbachia infection in a naive Ae. aegypti population. In both cases, the use of aerial releases demonstrated comparable outcomes to ground-based releases without the required labor or risk. These two trials demonstrated the feasibility of using an aerial release approach for large-scale mosquito releases.
{"title":"Field deployment of Wolbachia-infected Aedes aegypti using uncrewed aerial vehicle","authors":"Ya-Hsun Lin, Dirk Albert Joubert, Sebastian Kaeser, Cameron Dowd, Jurg Germann, Anam Khalid, Jai Andrew Denton, Kate Retski, Aminiasi Tavui, Cameron Paul Simmons, Scott Leslie O’Neill, Jeremie Roger Lionel Gilles","doi":"10.1126/scirobotics.adk7913","DOIUrl":"10.1126/scirobotics.adk7913","url":null,"abstract":"<div >Over the past 50 years, there has been a marked increase in diseases like dengue fever, chikungunya, and Zika. The World Mosquito Program (WMP) has developed an approach that, instead of attempting to eliminate vector species, introduces <i>Wolbachia</i> into native <i>Aedes aegypti</i> populations through the release of <i>Wolbachia</i>-infected mosquitoes. Using this approach, a randomized controlled study recently demonstrated a 77% reduction in dengue across a treatment area within Yogyakarta, Indonesia. Existing release methods use the ground-based release of mosquito eggs or adults that are labor-intensive, are logistically challenging to scale up, and can be restrictive in areas where staff safety is a concern. To overcome these limitations, we developed a fully automated mosquito dosing release system that released smaller cohorts of mosquitoes over a wide area and integrated it into an uncrewed aerial vehicle. We established the effectiveness of this system using an aerial mark, release, and recapture approach. We then demonstrated that using only the aerial release method, we can establish <i>Wolbachia</i> infection in a naive <i>Ae. aegypti</i> population. In both cases, the use of aerial releases demonstrated comparable outcomes to ground-based releases without the required labor or risk. These two trials demonstrated the feasibility of using an aerial release approach for large-scale mosquito releases.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 92","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/scirobotics.adk7913","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861772","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pub Date : 2024-07-31DOI: 10.1126/scirobotics.adr9645
Melisa Yashinski
Artificial neuroendocrine system responds to interaction with users and modulates robot behavior.
人工神经内分泌系统响应与用户的互动,并调节机器人的行为。
{"title":"Robot behavior that can adapt to user interaction","authors":"Melisa Yashinski","doi":"10.1126/scirobotics.adr9645","DOIUrl":"10.1126/scirobotics.adr9645","url":null,"abstract":"<div >Artificial neuroendocrine system responds to interaction with users and modulates robot behavior.</div>","PeriodicalId":56029,"journal":{"name":"Science Robotics","volume":"9 92","pages":""},"PeriodicalIF":26.1,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141861773","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}